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Abstract

Undirected graphical models are important in a number of modern applications that in-
volve exploring or exploiting dependency structures underlying the data. For example,
they are often used to explore complex systems where connections between entities are
not well understood, such as in functional brain networks or genetic networks. Existing
methods for estimating structure of undirected graphical models focus on scenarios where
each node represents a scalar random variable, such as a binary neural activation state
or a continuous mRNA abundance measurement, even though in many real world prob-
lems, nodes can represent multivariate variables with much richer meanings, such as whole
images, text documents, or multi-view feature vectors. In this paper, we propose a new
principled framework for estimating the structure of undirected graphical models from such
multivariate (or multi-attribute) nodal data. The structure of a graph is inferred through
estimation of non-zero partial canonical correlation between nodes. Under a Gaussian
model, this strategy is equivalent to estimating conditional independencies between ran-
dom vectors represented by the nodes and it generalizes the classical problem of covariance
selection (Dempster, 1972). We relate the problem of estimating non-zero partial canonical
correlations to maximizing a penalized Gaussian likelihood objective and develop a method
that efficiently maximizes this objective. Extensive simulation studies demonstrate the ef-
fectiveness of the method under various conditions. We provide illustrative applications to
uncovering gene regulatory networks from gene and protein profiles, and uncovering brain
connectivity graph from positron emission tomography data. Finally, we provide sufficient
conditions under which the true graphical structure can be recovered correctly.

Keywords: graphical model selection, multi-attribute data, network analysis, partial
canonical correlation

1. Introduction

Gaussian graphical models are commonly used to represent and explore conditional inde-
pendencies between variables in a complex system. An edge between two nodes is present
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in the graph if and only if the corresponding variables are conditionally independent given
all the other variables. Current approaches to estimating the Markov network structure
underlying a Gaussian graphical model focus on cases where nodes in a network repre-
sent scalar variables such as the binary voting actions of actors (Banerjee et al., 2008; Kolar
et al., 2010) or the continuous mRNA abundance measurements of genes (Peng et al., 2009).
However, in many modern problems, we are interested in studying a network where nodes
can represent more complex and informative vector-variables or multi-attribute entities.
For example, due to advances of modern data acquisition technologies, researchers are able
to measure the activities of a single gene in a high-dimensional space, such as an image of
the spatial distribution of the gene expression, or a multi-view snapshot of the gene activity
such as mRNA and protein abundances; when modeling a social network, a node may corre-
spond to a person for which a vector of attributes is available, such as personal information,
demographics, interests, and other features. Therefore, there is a need for methods that
estimate the structure of an undirected graphical model from such multi-attribute data.

In this paper, we develop a new method for estimating the structure of undirected
graphical models of which the nodes correspond to vectors, that is, multi-attribute entities.
We consider the following setting. Let X “ pXT

1 , ..., X
T
p q

T where X1 P Rk1 , . . . , Xp P Rkp
are random vectors that jointly follow a multivariate Gaussian distribution with mean µ “
pµT1 , . . . , µ

T
p q
T and covariance matrix Σ˚, which is partitioned as

Σ˚ “

¨

˚

˝

Σ˚11 ¨ ¨ ¨ Σ˚1p
...

. . .
...

Σ˚p1 ¨ ¨ ¨ Σ˚pp

˛

‹

‚

, (1)

with Σ˚ij “ CovpXi, Xjq. Without loss of generality, we assume µ “ 0. Let G “ pV,Eq be
a graph with the vertex set V “ t1, . . . , pu and the set of edges E Ď V ˆ V that encodes
the conditional independence relationships among pXaqaPV . That is, each node a P V of
the graph G corresponds to the random vector Xa and there is no edge between nodes a
and b in the graph if and only if Xa is conditionally independent of Xb given all the vectors
corresponding to the remaining nodes, X ab “ tXc : c P V zta, buu. Such a graph is
known as a Markov network (of Markov graph), which we shall emphasize in this paper to
contrast an alternative graph over V known as the association network, which is based on
pairwise marginal independence. Conditional independence can be read from the inverse of
the covariance matrix of X, as the block corresponding to Xa and Xb will be equal to zero
when they are conditionally independent, whereas marginal independencies are captured by
the covariance matrix itself. It is well known that estimating an association network from
data can result in a hard-to-interpret dense graph due to prevalent indirect correlations
among variables (for example, multiple nodes each influenced by a common single node
could result in a clique over all these nodes), which can be avoided in estimating a Markov
network.

Let Dn “ txiu
n
i“1 be a sample of n independent and identically distributed (iid) vectors

drawn from Np0,Σ˚q. For a vector xi, we denote xi,a P Rka the component corresponding
to the node a P V . Our goal is to estimate the structure of the graph G from the sample
Dn. Note that we allow for different nodes to have different number of attributes, which
is useful in many applications, for example, when a node represents a gene pathway (of
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different sizes) in a regulatory network, or a brain region (of different volumes) in a neural
activation network.

Learning the structure of a Gaussian graphical model, where each node represents a
scalar random variable, is a classical problem, known as the covariance selection (Demp-
ster, 1972). One can estimate the graph structure by estimating the sparsity pattern of the
precision matrix Ω “ Σ´1. For high dimensional problems, Meinshausen and Bühlmann
(2006) propose a parallel Lasso approach for estimating Gaussian graphical models by solv-
ing a collection of sparse regression problems. This procedure can be viewed as a pseudo-
likelihood based method. In contrast, Banerjee et al. (2008), Yuan and Lin (2007), and
Friedman et al. (2008) take a penalized likelihood approach to estimate the sparse precision
matrix Ω. To reduce estimation bias, Lam and Fan (2009), Johnson et al. (2012), and Shen
et al. (2012) developed the non-concave penalties to penalize the likelihood function. More
recently, Yuan (2010) and Cai et al. (2011) proposed the graphical Dantzig selector and
CLIME, which can be solved by linear programming and are more amenable to theoretical
analysis than the penalized likelihood approach. Under certain regularity conditions, these
methods have proven to be graph-estimation consistent (Ravikumar et al., 2011; Yuan, 2010;
Cai et al., 2011) and scalable software packages, such as glasso and huge, were developed
to implement these algorithms (Zhao et al., 2012). For a recent survey see Pourahmadi
(2011). However, these methods cannot be extended to handle multi-attribute data we
consider here in an obvious way. For example, if the number of attributes is the same for
each node, one may naively estimate one graph per attribute, however, it is not clear how
to combine such graphs into a summary graph with a clear statistical interpretation. The
situation becomes even more difficult when nodes correspond to objects that have different
number of attributes.

In a related work, Katenka and Kolaczyk (2011) use canonical correlation to estimate
association networks from multi-attribute data, however, such networks have different in-
terpretation to undirected graphical models. In particular, as mentioned above, association
networks are known to confound the direct interactions with indirect ones as they only
represent marginal associations, whereas Markov networks represent conditional indepen-
dence assumptions that are better suited for separating direct interactions from indirect
confounders. Our work is related to the literature on simultaneous estimation of multiple
Gaussian graphical models under a multi-task setting (Guo et al., 2011; Varoquaux et al.,
2010; Honorio and Samaras, 2010; Chiquet et al., 2011; Danaher et al., 2014). However, the
model given in (1) is different from models considered in various multi-task settings and the
optimization algorithms developed in the multi-task literature do not extend to handle the
optimization problem given in our setting.

Unlike the standard procedures for estimating the structure of Gaussian graphical mod-
els, for example, neighborhood selection (Meinshausen and Bühlmann, 2006) or glasso
(Friedman et al., 2008), which infer the partial correlations between pairs of nodes, our
proposed method estimates the graph structure based on the partial canonical correlation,
which can naturally incorporate complex nodal observations. Under that the Gaussian
model in (1), the estimated graph structure has the same probabilistic independence inter-
pretations as the Gaussian graphical model over univariate nodes. The main contributions
of the paper are the following. First, we introduce a new framework for learning structure
of undirected graphical models from multi-attribute data. Second, we develop an efficient
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algorithm that estimates the structure of a graph from the observed data. Third, we provide
extensive simulation studies that demonstrate the effectiveness of our method and illustrate
how the framework can be used to uncover gene regulatory networks from gene and pro-
tein profiles, and to uncover brain connectivity graph from functional magnetic resonance
imaging data. Finally, we provide theoretical results, which give sufficient conditions for
consistent structure recovery.

2. Methodology

In this section, we propose to estimate the graph by estimating non-zero partial canonical
correlation between the nodes. This leads to a penalized maximum likelihood objective, for
which we develop an efficient optimization procedure.

2.1 Preliminaries

LetXa andXb be two multivariate random vectors. Canonical correlation is defined between
Xa and Xb as

ρcpXa, Xbq “ max
uPRka ,vPRkb

corrpuTXa, v
TXbq.

That is, computing canonical correlation between Xa and Xb is equivalent to maximizing
the correlation between two linear combinations uTXa and vTXb with respect to vectors
u and v. Canonical correlation can be used to measure association strength between two
nodes with multi-attribute observations. For example, in Katenka and Kolaczyk (2011), a
graph is estimated from multi-attribute nodal observations by elementwise thresholding the
canonical correlation matrix between nodes, but such a graph estimator may confound the
direct interactions with indirect ones.

In this paper, we exploit the partial canonical correlation to estimate a graph from
multi-attribute nodal observations. A graph is going to be formed by connecting nodes
with non-zero partial canonical correlation. Let pA “ argmin E

`

||Xa ´AX ab||
2
2

˘

and
pB “ argmin E

`

||Xb ´BX ab||
2
2

˘

, then the partial canonical correlation between Xa and
Xb is defined as

ρcpXa, Xb;X abq “ max
uPRka ,vPRkb

corrtuT pXa ´ pAX abq, v
T pXb ´ pBX abqu, (2)

that is, the partial canonical correlation between Xa and Xb is equal to the canonical
correlation between the residual vectors of Xa and Xb after the effect of X ab is removed
(Rao, 1969).1

Let Ω˚ “ pΣ˚q´1 denote the precision matrix. A simple calculation, given in Ap-
pendix B.3, shows that

ρcpXa, Xb;X abq ‰ 0 if and only if max
uPRka ,vPRkb

uTΩ˚abv ‰ 0. (3)

This implies that estimating whether the partial canonical correlation is zero or not can be
done by estimating whether a block of the precision matrix is zero or not. Furthermore,

1. The operator Ep¨q denotes the expectation and X ab “ tXc : c P V zta, buu denotes all the variables
except for Xa and Xb.
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under the Gaussian model in (1), vectors Xa and Xb are conditionally independent given
X ab if and only if partial canonical correlation is zero. A graph built on this type of
inter-nodal relationship is known as a Markov network, as it captures both local and global
Markov properties over all arbitrary subsets of nodes in the graph, even though the graph
is built based on pairwise conditional independence properties. In Section 2.2, we use
the above observations to design an algorithm that estimates the non-zero partial canonical
correlation between nodes from data Dn using the penalized maximum likelihood estimation
of the precision matrix.

Based on the relationship given in (3), we can motivate an alternative method for
estimating the non-zero partial canonical correlation. Let a “ tb : b P V ztauu denote
the set of all nodes minus the node a. Then

E pXa | Xa “ xaq “ Σ˚a,aΣ
˚,´1
a,a xa.

Since Ω˚a,a “ ´pΣ˚aa ´ Σ˚a,aΣ
˚,´1
a,a Σ˚a,aq

´1Σ˚a,aΣ
˚,´1
a,a , we observe that a zero block Ωab can

be identified from the regression coefficients when each component of Xa is regressed on
Xa. We do not build an estimation procedure around this observation, however, we note
that this relationship shows how one would develop a regression based analogue of the work
presented in Katenka and Kolaczyk (2011).

2.2 Penalized Log-Likelihood Optimization

Based on the data Dn, we propose to minimize the penalized negative Gaussian log-
likelihood under the model in (1),

min
Ωą0

!

trSΩ´ log |Ω| ` λ
ÿ

a,b

||Ωab||F

)

, (4)

where S “ n´1
řn
i“1 xix

T
i is the sample covariance matrix, ||Ωab||F denotes the Frobenius

norm of Ωab and λ is a user defined parameter that controls the sparsity of the solution
pΩ. The first two terms in (4) correspond to the negative Gaussian log-likelihood, while
the second term is the Frobenius norm penalty, which encourages blocks of the precision
matrix to be equal to zero, similar to the way that the `2 penalty is used in the group Lasso
(Yuan and Lin, 2006). Here we assume that the same number of samples is available per
attribute. However, the same method can be used in cases when some samples are obtained
on a subset of attributes. Indeed, we can simply estimate each element of the matrix S
from available samples, treating non-measured attributes as missing completely at random
(for more details see Kolar and Xing, 2012).

The dual problem to (4) is

max
Σ

ÿ

jPV

kj ` log |Σ| subject to max
a,b

||Sab ´ Σab||F ď λ, (5)

where kj is the number attributes of node j, Σ is the dual variable to Ω and |Σ| denotes the
determinant of Σ. Note that the primal problem gives us an estimate of the precision matrix,
while the dual problem estimates the covariance matrix. The proposed optimization pro-
cedure, described below, will simultaneously estimate the precision matrix and covariance
matrix, without explicitly performing an expensive matrix inversion.
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We propose to optimize the objective function in (4) using an inexact block coordinate
descent procedure, inspired by Mazumder and Agarwal (2011). The block coordinate de-
scent is an iterative procedure that operates on a block of rows and columns while keeping
the other rows and columns fixed. We write

Ω “

ˆ

Ωaa Ωa,a

Ωa,a Ωa,a

˙

, Σ “

ˆ

Σaa Σa,a

Σa,a Σa,a

˙

, S “

ˆ

Saa Sa,a
Sa,a Sa,a

˙

,

and suppose that prΩ, rΣq are the current estimates of the precision matrix and covari-
ance matrix. With the above block partition, we have log |Ω| “ logpΩa,aq ` logpΩaa ´

Ωa,apΩa,aq
´1Ωa,aq. In the next iteration, pΩ is of the form

pΩ “ rΩ`

ˆ

∆aa ∆a,a

∆a,a 0

˙

“

˜

pΩaa
pΩa,a

pΩa,a
rΩa,a

¸

,

and is obtained by minimizing

trSaaΩaa`2 trSa,aΩa,a ´ log |Ωaa ´ Ωa,aprΩa,aq
´1Ωa,a| ` λ||Ωaa||F ` 2λ

ÿ

b‰a

||Ωab||F . (6)

Exact minimization over the variables Ωaa and Ωa,a at each iteration of the block coordinate
descent procedure can be computationally expensive. Therefore, we propose to update Ωaa

and Ωa,a using one generalized gradient step update (see Beck and Teboulle, 2009) in each
iteration. Note that the objective function in (6) is a sum of a smooth convex function and a
non-smooth convex penalty so that the gradient descent method cannot be directly applied.
Given a step size t, generalized gradient descent optimizes a quadratic approximation of the
objective at the current iterate rΩ, which results in the following two updates

pΩaa “ argmin
Ωaa

!

trpSaa ´ rΣaaqΩaa `
1

2t
||Ωaa ´ rΩaa||

2
F ` λ||Ωaa||F

)

, and (7)

pΩab “ argmin
Ωab

!

trpSab ´ rΣabqΩba `
1

2t
||Ωab ´ rΩab||

2
F ` λ||Ωab||F

)

, @b P a. (8)

If the resulting estimator pΩ is not positive definite or the update does not decrease the
objective, we halve the step size t and find a new update. Once the update of the precision
matrix pΩ is obtained, we update the covariance matrix pΣ. Updates to the precision and
covariance matrices can be found efficiently, without performing expensive matrix inversion.
First, note that the solutions to (7) and (8) can be computed in a closed form as

pΩaa “ p1´ tλ{||rΩaa ` tprΣaa ´ Saaq||F q`prΩaa ` tprΣaa ´ Saaqq, and (9)

pΩab “ p1´ tλ{||rΩab ` tprΣab ´ Sabq||F q`prΩab ` tprΣab ´ Sabqq, @b P a, (10)

where pxq` “ maxp0, xq. Next, the estimate of the covariance matrix can be updated
efficiently, without inverting the whole pΩ matrix, using the matrix inversion lemma as
follows

pΣa,a “ prΩa,aq
´1 ` prΩa,aq

´1
pΩa,appΩaa ´ pΩa,aprΩa,aq

´1
pΩa,aq

´1
pΩa,aprΩa,aq

´1,

pΣa,a “ ´pΩaa
pΩa,a

pΣa,a,

pΣaa “ ppΩaa ´ pΩa,aprΩa,aq
´1

pΩa,aq
´1,

(11)

6



Graph Estimation From Multi-attribute Data

with prΩa,aq
´1 “ rΣa,a ´ rΣa,a

rΣ´1
aa

rΣa,a.

Combining all three steps we get the following algorithm:

1. Set the initial estimator rΩ “ diagpSq and rΣ “ rΩ´1. Set the step size t “ 1.

2. For each a P V perform the following:

Update pΩ using (9) and (10).

If pΩ is not positive definite, set tÐ t{2 and repeat the update.

Update pΣ using (11).

3. Repeat Step 2 until the duality gap

ˇ

ˇ

ˇ
trpSpΩq ´ log |pΩ| ` λ

ÿ

a,b

||pΩab||F ´
ÿ

jPV

kj ´ log |Σ|
ˇ

ˇ

ˇ
ď ε,

where ε is a prefixed precision parameter (for example, ε “ 10´3).

Finally, we form a graph pG “ pV, pEq by connecting nodes with ||pΩab||F ‰ 0.

Computational complexity of the procedure is given in Appendix A. Convergence of the
above described procedure to the unique minimum of the objective function in (4) does
not follow from the standard results on the block coordinate descent algorithm (Tseng,
2001) for two reasons. First, the minimization problem in (6) is not solved exactly at each
iteration, since we only update Ωaa and Ωa,a using one generalized gradient step update
in each iteration. Second, the blocks of variables, over which the optimization is done at
each iteration, are not completely separable between iterations due to the symmetry of the
problem. The proof of the following convergence result is given in Appendix B.

Lemma 1 For every value of λ ą 0, the above described algorithm produces a sequence of

estimates
!

rΩptq
)

tě1
of the precision matrix that monotonically decrease the objective values

given in (4). Every element of this sequence is positive definite and the sequence converges
to the unique minimizer pΩ of (4).

2.3 Efficient Identification of Connected Components

When the target graph pG is composed of smaller, disconnected components, the solution
to the problem in (4) is block diagonal (possibly after permuting the node indices) and can
be obtained by solving smaller optimization problems. That is, the minimizer pΩ can be
obtained by solving (4) for each connected component independently, resulting in massive
computational gains. We give necessary and sufficient condition for the solution pΩ of (4)
to be block-diagonal, which can be easily checked by inspecting the empirical covariance
matrix S.

Our first result follows immediately from the Karush-Kuhn-Tucker conditions for the
optimization problem (4) and states that if pΩ is block-diagonal, then it can be obtained by
solving a sequence of smaller optimization problems.
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Lemma 2 If the solution to (4) takes the form pΩ “ diagppΩ1, pΩ2, . . . , pΩlq, that is, pΩ is a
block diagonal matrix with the diagonal blocks pΩ1, . . . , pΩl, then it can be obtained by solving

min
Ωl1ą0

!

trSl1Ωl1 ´ log |Ωl1 | ` λ
ÿ

a,b

||Ωab||F

)

separately for each l1 “ 1, . . . , l, where Sl1 are submatrices of S corresponding to Ωl1.

Next, we describe how to identify diagonal blocks of pΩ. Let P “ tP1, P2, . . . , Plu be a
partition of the set V and assume that the nodes of the graph are ordered in a way that if
a P Pj , b P Pj1 , j ă j1, then a ă b. The following lemma states that the blocks of pΩ can be
obtained from the blocks of a thresholded sample covariance matrix.

Lemma 3 A necessary and sufficient condition for pΩ to be block diagonal with blocks
P1, P2, . . . , Pl is that ||Sab||F ď λ for all a P Pj, b P Pj1, j ‰ j1.

Blocks P1, P2, . . . , Pl can be identified by forming a p ˆ p matrix Q with elements
qab “ 1It||Sab||F ą λu and computing connected components of the graph with adjacency
matrix Q. The lemma states also that given two penalty parameters λ1 ă λ2, the set of un-
connected nodes with penalty parameter λ1 is a subset of unconnected nodes with penalty
parameter λ2. The simple check above allows us to estimate graphs on data sets with large
number of nodes, if we are interested in graphs with small number of edges. However, this is
often the case when the graphs are used for exploration and interpretation of complex sys-
tems. Lemma 3 is related to existing results established for speeding-up computation when
learning single and multiple Gaussian graphical models (Witten et al., 2011; Mazumder and
Hastie, 2012; Danaher et al., 2014). Each condition is different, since the methods optimize
different objective functions.

3. Consistent Graph Identification

In this section, we provide theoretical analysis of the estimator described in Section 2.2.
In particular, we provide sufficient conditions for consistent graph recovery. For simplicity
of presentation, we assume that ka “ k, for all a P V , that is, we assume that the same
number of attributes is observed for each node. For each a “ 1, . . . , kp, we assume that
pσ˚aaq

´1{2Xa is sub-Gaussian with parameter γ, where σ˚aa is the ath diagonal element of
Σ˚. Recall that Z is a sub-Gaussian random variable if there exists a constant σ P p0,8q
such that

E pexpptZqq ď exppσ2t2q, for all t P R.

Our assumptions involve the Hessian of the function fpAq “ trSA´ log |A| evaluated at
the true Ω˚, H “ HpΩ˚q “ pΩ˚q´1 b pΩ˚q´1 P Rppkq2ˆppkq2 , with b denoting the Kronecker
product, and the true covariance matrix Σ˚. The Hessian and the covariance matrix can
be thought of as block matrices with blocks of size k2 ˆ k2 and kˆ k, respectively. We will
make use of the operator Cp¨q that operates on these block matrices and outputs a smaller
matrix with elements that equal to the Frobenius norm of the original blocks. For example,
CpΣ˚q P Rpˆp with elements CpΣ˚qab “ ||Σ˚ab||F . Let T “ tpa, bq : ||Ωab||F ‰ 0u and
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N “ tpa, bq : ||Ωab||F “ 0u. With this notation introduced, we assume that the following
irrepresentable condition holds. There exists a constant α P r0, 1q such that

|||C
`

HNT pHT T q´1
˘

|||8 ď 1´ α, (12)

where |||A|||8 “ maxi
ř

j |Aij |. We will also need the following quantities to specify the

results κΣ˚ “ |||CpΣ˚q|||8 and κH “ |||CpH´1
T T q|||8. These conditions extend the conditions

specified in Ravikumar et al. (2011) needed for estimating graphs from single attribute
observations.

We have the following result that provides sufficient conditions for the exact recovery of
the graph.

Proposition 4 Let τ ą 2. We set the penalty parameter λ in (4) as

λ “ 8kα´1
´

128p1` 4γ2q2pmax
a
pσ˚aaq

2qn´1p2 logp2kq ` τ logppqq
¯1{2

.

If n ą C1s
2k2p1 ` 8α´1q2pτ log p ` log 4 ` 2 log kq, where s is the maximal degree of nodes

in G, C1 “ p48
?

2p1` 4γ2qpmaxa σ
˚
aaqmaxpκΣ˚κH, κ

3
Σ˚κ

2
Hqq

2 and

min
pa,bqPT ,a‰b

||Ωab||F ą 16
?

2p1` 4γ2qpmax
a

σ˚aaqp1` 8α´1qκHk

ˆ

τ log p` log 4` 2 log k

n

˙1{2

,

then pr
´

pG “ G
¯

ě 1´ p2´τ .

The proof of Proposition 4 is given in Appendix B. We extend the proof of Ravikumar
et al. (2011) to accommodate the Frobenius norm penalty on blocks of the precision matrix.
This proposition specifies the sufficient sample size and a lower bound on the Frobenius norm
of the off-diagonal blocks needed for recovery of the unknown graph. Under these conditions
and correctly specified tuning parameter λ, the solution to the optimization problem in (4)
correctly recovers the graph with high probability. In practice, one needs to choose the
tuning parameter in a data dependent way. For example, using the Bayesian information
criterion. Even though our theoretical analysis obtains the same rate of convergence as
that of Ravikumar et al. (2011), our method has a significantly improved finite-sample
performance, as will be shown in Section 5. It remains an open question whether the
sample size requirement can be improved as in the case of group Lasso (see, for example,
Lounici et al., 2011). The analysis of Lounici et al. (2011) relies heavily on the special
structure of the least squares regression. Hence, their method does not carry over to the
more complicated objective function as in (4).

4. Interpreting Edges

We propose a post-processing step that will allow us to quantify the strength of links
identified by the method proposed in Section 2.2, as well as identify important attributes
that contribute to the existence of links.

For any two nodes a and b for which Ωab ‰ 0, we define N pa, bq “ tc P V zta, bu : Ωac ‰

0 or Ωbc ‰ 0u, which is the Markov blanket for the set of nodes tXa, Xbu. Note that the
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conditional distribution of pXT
a , X

T
b q

T given X ab is equal to the conditional distribution
of pXT

a , X
T
b q

T given XN pa,bq. Now,

ρcpXa, Xb;X abq “ ρcpXa, Xb;XN pa,bqq

“ max
waPRka ,wbPRkb

corrpuT pXa ´ rAXN pa,bqq, v
T pXb ´ rBXN pa,bqqq,

where rA “ argmin E
`

||Xa ´AXN pa,bq||
2
2

˘

and rB “ argmin E
`

||Xb ´BXN pa,bq||
2
2

˘

. Let

Σpa, bq “ varpXa, Xb | XN pa,bqq. Now we can express the partial canonical correlation as

ρcpXa, Xb;XN pa,bqq “ max
waPRka ,wbPRka

wTa Σabwb
`

wTa Σaawa
˘1{2 `

wTb Σbbwb
˘1{2

,

where

Σpa, bq “

ˆ

Σaa Σab

Σba Σbb

˙

.

The weight vectors wa and wb can be easily found by solving the system of eigenvalue
equations

#

Σ
´1
aa ΣabΣ

´1
bb Σbawa “ φ2wa

Σ
´1
bb ΣbaΣ

´1
aa Σabwb “ φ2wb

(13)

with wa and wb being the vectors that correspond to the maximum eigenvalue φ2. Fur-
thermore, we have ρcpXa, Xb;XN pa,bqq “ φ. Following Katenka and Kolaczyk (2011), the
weights wa, wb can be used to access the relative contribution of each attribute to the
edge between the nodes a and b. In particular, the weight pwa,iq

2 characterizes the relative
contribution of the ith attribute of node a to ρcpXa, Xb;XN pa,bqq.

Given an estimate pN pa, bq “ tc P V zta, bu : pΩac ‰ 0 or pΩbc ‰ 0u of the Markov blanket
N pa, bq, we form the residual vectors

ri,a “ xi,a ´ qAx
i,xN pa,bq, ri,b “ xi,b ´ qBx

i,xN pa,bq,

where qA and qB are the least square estimators of rA and rB. Given the residuals, we form
qΣpa, bq, the empirical version of the matrix Σpa, bq, by setting

qΣaa “ corr
`

tri,auiPrns
˘

, qΣbb “ corr
`

tri,buiPrns
˘

, qΣab “ corr
`

tri,auiPrns, tri,auiPrns
˘

.

Now, solving the eigenvalue system in (13) will give us estimates of the vectors wa, wb and
the partial canonical correlation.

Note that we have described a way to interpret the elements of the off-diagonal blocks in
the estimated precision matrix. The elements of the diagonal blocks, which correspond to
coefficients between attributes of the same node, can still be interpreted by their relationship
to the partial correlation coefficients.

10



Graph Estimation From Multi-attribute Data

5. Simulation Studies

In this section, we perform a set of simulation studies to illustrate finite sample performance
of our method. We demonstrate that the scalings of pn, p, sq predicted by the theory are
sharp. Furthermore, we compare against three other methods: 1) a method that uses the
glasso first to estimate one graph over each of the k individual attributes and then creates
an edge in the resulting graph if an edge appears in at least one of the single attribute
graphs, 2) the method of Guo et al. (2011) and 3) the method of Danaher et al. (2014). We
have also tried applying the glasso to estimate the precision matrix for the model in (1) and
then post-processing it, so that an edge appears in the resulting graph if the corresponding
block of the estimated precision matrix is non-zero. The result of this method is worse
compared to the first baseline, so we do not report it here.

All the methods above require setting one or two tuning parameters that control the
sparsity of the estimated graph. We select these tuning parameters by minimizing the
Bayesian information criterion (Schwarz, 1978), which balances the goodness of fit of the
model and its complexity, over a grid of parameter values. For our multi-attribute method,
the Bayesian information criterion takes the following form

BICpλq “ trpSpΩq ´ log |pΩ| `
ÿ

aăb

1ItpΩab ‰ 0ukakb logpnq.

Other methods for selecting tuning parameters are possible, like minimization of cross-
validation or Akaike information criterion (Akaike, 1974). However, these methods tend to
select models that are too dense.

Theoretical results given in Section 3 characterize the sample size needed for consis-
tent recovery of the underlying graph. In particular, Proposition 4 suggests that we need
n “ θs2k2 logppkq samples to estimate the graph structure consistently, for some control pa-
rameter θ ą 0. Therefore, if we plot the hamming distance between the true and recovered
graph against θ, we expect the curves to reach zero distance for different problem sizes at
a same point. We verify this on randomly generated chain and nearest-neighbors graphs.

Simulation 1. We generate data as follows. A random graph with p nodes is created
by first partitioning nodes into p{20 connected components, each with 20 nodes, and then
forming a random graph over these 20 nodes. A chain graph is formed by permuting the
nodes and connecting them in succession, while a nearest-neighbor graph is constructed
following the procedure outlined in Li and Gui (2006). That is, for each node, we draw a
point uniformly at random on a unit square and compute the pairwise distances between
nodes. Each node is then connected to s “ 4 closest neighbors. Since some of nodes will
have more than 4 adjacent edges, we randomly remove edges from nodes that have degree
larger than 4 until the maximum degree of a node in a graph is 4. Once the graph is created,
we construct a precision matrix, with non-zero blocks corresponding to edges in the graph.
Elements of diagonal blocks are set as 0.5|a´b|, 0 ď a, b ď k, while off-diagonal blocks have
elements with the same value, 0.2 for chain graphs and 0.3{k for nearest-neighbor graph.
Finally, we add ρI to the precision matrix, so that its minimum eigenvalue is equal to 0.5.
Note that s “ 2 for the chain graph and s “ 4 for the nearest-neighbor graph. Simulation
results are averaged over 100 replicates.

Figure 1 shows simulation results. Each row in the figure reports results for one method,
while each column in the figure represents a different simulation setting. For the first two
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(b) Procedure of Danaher et al. (2014)
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(c) Procedure of Guo et al. (2011)
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(d) Multi-attribute procedure

Figure 1: Results of Simulation 1. Average hamming distance plotted against the rescaled
sample size. Off-diagonal blocks are full matrices.
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Figure 2: Results of Simulation 1 for smaller sample size. The number of attributes is k “ 2.
Average F1 score plotted against the sample size.

columns, we set k “ 3 and vary the total number of nodes in the graph. The third simulation
setting sets the total number of nodes p “ 20 and changes the number of attributes k. In
the case of the chain graph, we observe that for small sample sizes the method of Danaher
et al. (2014) outperforms all the other methods. We note that the multi-attribute method is
estimating many more parameters, which require large sample size in order to achieve high
accuracy. However, as the sample size increases, we observe that multi-attribute method
starts to outperform the other methods. In particular, for the sample size indexed by
θ “ 13 all the graph are correctly recovered, while other methods fail to recover the graph
consistently at the same sample size. In the case of nearest-neighbor graph, none of the
methods recover the graph well for small sample sizes. However, for moderate sample sizes,
multi-attribute method outperforms the other methods. Furthermore, as the sample size
increases none of the other methods recover the graph exactly. This suggests that the
conditions for consistent graph recovery may be weaker in the multi-attribute setting.

From Figure 1 we can observe that for sufficiently large sample size n, multi-attribute
method recovers the graph structure exactly. Next, we evaluate performance of the methods
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for smaller sample sizes, with the number of attributes k “ 2. Figure 2 shows average F1

score plotted against the sample size.2 This figure shows more precisely performance of
the methods for smaller sample sizes that are not sufficient for perfect graph recovery.
Again, even though none of the methods perform well, we can observe somewhat better
performance of the multi-attribute procedure.

5.1 Alternative Structure of Off-diagonal Blocks

In this section, we investigate performance of different estimation procedures under different
assumptions on the elements of the off-diagonal blocks of the precision matrix.

Simulation 2. First, we investigate a situation where the multi-attribute method does
not perform as well as the methods that estimate multiple graphical models. One such
situation arises when different attributes are conditionally independent. To simulate this
situation, we use the data generating approach as before, however, we make each block Ωab

of the precision matrix Ω a diagonal matrix. Figure 3 summarizes results of the simulation.
We see that the methods of Danaher et al. (2014) and Guo et al. (2011) perform better,
since they are estimating much fewer parameters than the multi-attribute method. glasso
does not exploit any structural information underlying the estimation problem and requires
larger sample size to correctly estimate the graph than other methods.

Simulation 3. A completely different situation arises when the edges between nodes
can be inferred only based on inter-attribute data, that is, when a graph based on any
individual attribute is empty. To generate data under this situation, we follow the proce-
dure as before, but with the diagonal elements of the off-diagonal blocks Ωab set to zero.
Figure 4 summarizes results of the simulation. In this setting, we clearly see the advantage
of the multi-attribute method, compared to other three methods. Furthermore, we can see
that glasso does better than multi-graph methods of Danaher et al. (2014) and Guo et al.
(2011). The reason is that glasso can identify edges based on inter-attribute relationships
among nodes, while multi-graph methods rely only on intra-attribute relationships. This
simulation illustrates an extreme scenario where inter-attribute relationships are important
for identifying edges.

Simulation 4. So far, off-diagonal blocks of the precision matrix were constructed to
have constant values. Now, we use the same data generating procedure, but generate off-
diagonal blocks of a precision matrix in a different way. Each element of the off-diagonal
block Ωab is generated independently and uniformly from the set r´0.3,´0.1s

Ť

r0.1, 0.3s.
The results of the simulation are given in Figure 5. Again, qualitatively, the results are
similar to those given in Figure 1, except that in this setting more samples are needed to
recover the graph correctly.

5.2 Different Number of Samples per Attribute

In this section, we show how to deal with a case when different number of samples is available
per attribute. As noted in Section 2.2, we can treat non-measured attributes as missing
completely at random (see Kolar and Xing, 2012, for more details).

2. The F1 score is a measure commonly used in information retrieval and is defined as the harmonic mean
of precision and recall, that is, F1 :“ 2 ˚ precision ˚ recall{pprecision ` recallq. The precision is defined
as precision :“ | pE X E|{| pE| and the recall is defined as recall :“ | pE X E|{|E| .
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(b) Procedure of Danaher et al. (2014)
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(c) Procedure of Guo et al. (2011)
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(d) Multi-attribute procedure

Figure 3: Results of Simulation 2 described in Section 5.1. Average hamming distance
plotted against the rescaled sample size. Blocks Ωab of the precision matrix Ω are
diagonal matrices.
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(b) Procedure of Danaher et al. (2014)
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(c) Procedure of Guo et al. (2011)

0 1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

40

45

50

Chain Graph

θ

H
a

m
m

in
g

 d
is

ta
n

c
e

0 2 4 6 8 10

0

2

4

6

8

10

12

Nearest Neighbor Graph

θ

H
a

m
m

in
g

 d
is

ta
n

c
e
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Figure 4: Results of Simulation 3 described in Section 5.1. Average hamming distance
plotted against the rescaled sample size. Off-diagonal blocks Ωab of the precision
matrix Ω have zeros as diagonal elements.
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(c) Procedure of Guo et al. (2011)
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Figure 5: Results of Simulation 4 described in Section 5.1. Average hamming distance
plotted against the rescaled sample size. Off-diagonal blocks Ωab of the precision
matrix Ω have elements uniformly sampled from r´0.3,´0.1s

Ť

r0.1, 0.3s.
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Figure 6: Results of Simulation 5 described in Section 5.2. Average hamming distance
plotted against the rescaled sample size. Additional samples available for the
first attribute.

Let R “ prilqiPt1,...,nu,lPt1,...,pku P Rnˆpk be an indicator matrix, which denotes for each
sample point xi the components that are observed. Then we can form an estimate of the
sample covariance matrix S “ pσlkq P Rpkˆpk as

σlk “

řn
i“1 ri,lri,kxi,lxi,k
řn
i“1 ri,lri,k

.

This estimate is plugged into the objective in (4).
Simulation 5. We generate a chain graph with p “ 60 nodes, construct a precision

matrix associated with the graph and k “ 3 attributes, and generate n “ θs2k2 logppkq
samples, θ ą 0. Next, we generate additional 10%, 30% and 50% samples from the same
model, but record only the values for the first attribute. Results of the simulation are given
in Figure 6. Qualitatively, the results are similar to those presented in Figure 1.

5.3 Scale-Free Graphs

In this section, we show simulation results when the methods are applied to estimate struc-
ture of scale-free graph, that is, graph whose degree distribution follows a power low. A
prominent characteristic of these graphs is presence of hub nodes.3 Such graphs commonly
arise in studies of real world systems, such as gene or protein networks (Albert and Barabási,
2002).

Simulation 6. We generate a scale-free graph using the preferential attachment pro-
cedure described in Barabási and Albert (1999). The procedure starts with a 4-node cycle.
New nodes are added to the graph, one at a time, and connected to nodes currently in
the graph with probability proportional to their degree. Once the graph is generated, pa-
rameters in the model are set as in Simulation 1, with the number of attributes k “ 2.
Simulation results are summarized in Figure 7. These networks are harder to estimate
using the `1-penalized procedures, due to the presence of high-degree hubs (Peng et al.,
2009).

3. Hub nodes are nodes whose degree greatly exceeds average degree in a network.
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Figure 7: Results of Simulation 6 described in Section 5.3. Average F1 score plotted against
the sample size.

6. Illustrative Applications to Real Data

In this section, we illustrate how to apply our method to data arising in studies of biological
regulatory networks and Alzheimer’s disease.

6.1 Analysis of a Gene/Protein Regulatory Network

We provide illustrative, exploratory analysis of data from the well-known NCI-60 database,
which contains different molecular profiles on a panel of 60 diverse human cancer cell lines.
Data set consists of protein profiles (normalized reverse-phase lysate arrays for 92 antibod-
ies) and gene profiles (normalized RNA microarray intensities from Human Genome U95
Affymetrix chip-set forą 9000 genes). We focus our analysis on a subset of 91 genes/proteins
for which both types of profiles are available. These profiles are available across the same
set of 60 cancer cells. More detailed description of the data set can be found in Katenka
and Kolaczyk (2011).

We inferred three types of networks: a network based on protein measurements alone,
a network based on gene expression profiles and a single gene/protein network. For pro-
tein and gene networks we use the glasso, while for the gene/protein network, we use
our procedure outlined in Section 2.2. We use the stability selection (Meinshausen and
Bühlmann, 2010) procedure to estimate stable networks. In particular, we first select the
penalty parameter λ using cross-validation, which over-selects the number of edges in a net-
work. Next, we use the selected λ to estimate 100 networks based on random subsamples
containing 80% of the data-points. Final network is composed of stable edges that appear
in at least 95 of the estimated networks. Table 1 provides a few summary statistics for the
estimated networks. Furthermore, protein and gene/protein networks share 96 edges, while
gene and gene/protein networks share 104 edges. Gene and protein network share only 17
edges. Finally, 66 edges are unique to gene/protein network. Figure 8 shows node degree
distributions for the three networks. We observe that the estimated networks are much
sparser than the association networks in Katenka and Kolaczyk (2011), as expected due to
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marginal correlations between a number of nodes. The differences in networks require a
closer biological inspection by a domain scientist.

We proceed with a further exploratory analysis of the gene/protein network. We in-
vestigate the contribution of two nodal attributes to the existence of an edge between the
nodes. Following Katenka and Kolaczyk (2011), we use a simple heuristic based on the

protein network gene network gene/protein network
Number of edges 122 214 249
Density 0.03 0.05 0.06
Largest connected component 62 89 82
Avg Node Degree 2.68 4.70 5.47
Avg Clustering Coefficient 0.0008 0.001 0.003

Table 1: Summary statistics for protein, gene, and gene/protein networks (p “ 91).

20



Graph Estimation From Multi-attribute Data

(a) Healthy subjects (b) Mild Cognitive Impairment (c) Alzheimer’s & Dementia

Figure 10: Brain connectivity networks

weight vectors to classify the nodes and edges into three classes. For an edge between the
nodes a and b, we take one weight vector, say wa, and normalize it to have unit norm.
Denote wp the component corresponding to the protein attribute. Left plot in Figure 9
shows the values of w2

p over all edges. The edges can be classified into three classes based
on the value of w2

p. Given a threshold T , the edges for which w2
p P p0, T q are classified as

gene-influenced, the edges for which w2
p P p1´T, 1q are classified as protein influenced, while

the remainder of the edges are classified as mixed type. In the left plot of Figure 9, the
threshold is set as T “ 0.25 following Katenka and Kolaczyk (2011). Similar classification
can be performed for nodes after computing the proportion of incident edges. Let p1, p2

and p3 denote proportions of gene, protein and mixed edges, respectively, incident with
a node. These proportions are represented in a simplex in the right subplot of Figure 9.
Nodes with mostly gene edges are located in the lower left corner, while the nodes with
mostly protein edges are located in the lower right corner. Mixed nodes are located in the
center and towards the top corner of the simplex. Further biological enrichment analysis is
possible (see Katenka and Kolaczyk, 2011), however, we do not pursue this here.

6.2 Uncovering Functional Brain Network

We apply our method to the Positron Emission Tomography data set, which contains 259
subjects, of whom 72 are healthy, 132 have mild cognitive Impairment and 55 are diagnosed
as Alzheimer’s & Dementia. Note that mild cognitive impairment is a transition stage
from normal aging to Alzheimer’s & Dementia. The data can be obtained from http:

//adni.loni.ucla.edu/. The preprocessing is done in the same way as in Huang et al.
(2009).

Each Positron Emission Tomography image contains 91 ˆ 109 ˆ 91 “ 902, 629 voxels.
The effective brain region contains 180, 502 voxels, which are partitioned into 95 regions,
ignoring the regions with fewer than 500 voxels. The largest region contains 5, 014 voxels and
the smallest region contains 665 voxels. Our preprocessing stage extracts 948 representative
voxels from these regions using the K-median clustering algorithm. The parameter K is
chosen differently for each region, proportionally to the initial number of voxels in that
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Healthy Mild Cognitive Alzheimer’s &
subjects Impairment Dementia

Number of edges 116 84 59
Density 0.030 0.020 0.014
Largest connected component 48 27 25
Avg Node Degree 2.40 1.73 1.2
Avg Clustering Coefficient 0.001 0.0023 0.0007

Table 2: Summary statistics for brain connectivity networks

region. More specifically, for each category of subjects we have an n ˆ pd1 ` . . . ` d95q

matrix, where n is the number of subjects and d1 ` . . . ` d95 “ 902, 629 is the number
of voxels. Next we set Ki “ rdi{

ř

j djs, the number of representative voxels in region i,
i “ 1, . . . , 95. The representative voxels are identified by running the K-median clustering
algorithm on a sub-matrix of size nˆ di with K “ Ki.

We inferred three networks, one for each subtype of subjects using the procedure out-
lined in Section 2.2. Note that for different nodes we have different number of attributes,
which correspond to medians found by the clustering algorithm. We use the stability se-
lection (Meinshausen and Bühlmann, 2010) approach to estimate stable networks. The
stability selection procedure is combined with our estimation procedure as follows. We first
select the penalty parameter λ in (4) using cross-validation, which overselects the number
of edges in a network. Next, we create 100 subsampled data sets, each of which contain
80% of the data points, and estimate one network for each data set using the selected λ.
The final network is composed of stable edges that appear in at least 95 of the estimated
networks.

We visualize the estimated networks in Figure 10. Table 2 provides a few summary
statistics for the estimated networks. Appendix C contains names of different regions, as
well as the adjacency matrices for networks. From the summary statistics, we can observe
that in normal subjects there are many more connections between different regions of the
brain. Loss of connectivity in Alzheimer’s & Dementia has been widely reported in the
literature (Greicius et al., 2004; Hedden et al., 2009; Andrews-Hanna et al., 2007; Wu et al.,
2011).

Learning functional brain connectivity is potentially valuable for early identification of
signs of Alzheimer’s disease. Huang et al. (2009) approach this problem using exploratory
data analysis. The framework of Gaussian graphical models is used to explore functional
brain connectivity. Here we point out that our approach can be used for the same ex-
ploratory task, without the need to reduce the information in the whole brain to one num-
ber. For example, from our estimates, we observe the loss of connectivity in the cerebellum
region of patients with Alzheimer’s disease, which has been reported previously in Sjöbeck
and Englund (2001). As another example, we note increased connectivity between the
frontal lobe and other regions in the patients, which was linked to compensation for the lost
connections in other regions (Stern, 2006; Gould et al., 2006).
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7. Conclusion and Discussion

This paper extends the classical Gaussian graphical model to handle multi-attribute data.
Multi-attribute data appear naturally in social media and scientific data analysis. For
example, in a study of social networks, one may use personal information, including demo-
graphics, interests, and many other features, as nodal attributes. We proposed a new family
of Gaussian graphical models for modeling such multi-attribute data. The main idea is to
replace the notion of partial correlation in the existing graphical model literature by partial
canonical correlation. Such a modification, though simple, has profound impact to both
applications and theory. Practically, many challenging data, including brain imaging and
gene expression profiles, can be naturally fitted using this model, which has been illustrated
in the paper. Theoretically, we proved sufficient conditions that secure the correct recovery
of the unknown population network structure.

The methods and theory of this paper can be naturally extended to handle non-Gaussian
data by replacing the Gaussian model with the more general nonparanormal model (Liu
et al., 2009) or the transelliptical model (Liu et al., 2012). Both of them can be viewed as
semiparametric extensions of the Gaussian graphical model. Instead of assuming that data
follows a Gaussian distribution, one assumes that there exists a set of strictly increasing
univariate functions, so that after marginal transformation the data follows a Gaussian or
Elliptical distribution. More details on model interpretation can be found in Liu et al. (2009)
and Liu et al. (2012). To handle multi-attribute data in this semiparametric framework, we
would replace the sample covariance matrix S in Eq. (4) by a rank-based correlation matrix
estimator. We leave the formal analysis of this approach for future work.
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Appendix A. Complexity Analysis of Multi-attribute Estimation

Step 2 of the estimation algorithm updates portions of the precision and covariance matri-
ces corresponding to one node at a time. We observe that the computational complexity of
updating the precision matrix is O

`

pk2
˘

. Updating the covariance matrix requires comput-

ing prΩa,aq
´1, which can be efficiently done in O

`

p2k2 ` pk2 ` k3
˘

“ O
`

p2k2
˘

operations,
assuming that k ! p. With this, the covariance matrix can be updated in O

`

p2k2
˘

opera-
tions. Therefore the total cost of updating the covariance and precision matrices is O

`

p2k2
˘

operations. Since step 2 needs to be performed for each node a P V , the total complexity is
O
`

p3k2
˘

. Let T denote the total number of times step 2 is executed. This leads to the over-
all complexity of the algorithm as O

`

Tp3k2
˘

. In practice, we observe that T « 10 to 20 for
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sparse graphs. Furthermore, when the whole solution path is computed, we can use warm
starts to further speed up computation, leading to T ă 5 for each λ.

Appendix B. Technical Proofs

In this appendix, we collect proofs of the results presented in the main part of the paper.

B.1 Proof of Lemma 1

We start the proof by giving to technical results needed later. The following lemma states
that the minimizer of (4) is unique and has bounded minimum and maximum eigenvalues,
denoted as Λmin and Λmax.

Lemma 5 For every value of λ ą 0, the optimization problem in Eq. (4) has a unique
minimizer pΩ, which satisfies ΛminppΩq ě pΛmaxpSq`λpq

´1 ą 0 and ΛmaxppΩq ď λ´1
ř

jPV kj.

Proof The optimization objective given in (4) can be written in the equivalent constrained
form as

min
Ωą0

trSΩ´ log |Ω| subject to
ÿ

a,b

||Ωab||F ď Cpλq.

The procedure involves minimizing a continuous objective over a compact set, and so
by Weierstrass theorem, the minimum is always achieved. Furthermore, the objective is
strongly convex and therefore the minimum is unique.

The solution pΩ to the optimization problem (4) satisfies

S ´ pΩ´1 ` λZ “ 0, (14)

where Z P B
ř

a,b ||
pΩab||F is the element of the sub-differential and satisfies ||Zab||F ď 1 for

all pa, bq P V 2. Therefore,

ΛmaxppΩ
´1q ď ΛmaxpSq ` λΛmaxpZq ď ΛmaxpSq ` λp.

Next, we prove an upper bound on ΛmaxppΩq. At optimum, the primal-dual gap is zero,
which gives that

ÿ

a,b

||pΩab||F ď λ´1p
ÿ

jPV

kj ´ trSpΩq ď λ´1
ÿ

jPV

kj ,

as S ľ 0 and pΩ ą 0. Since ΛmaxppΩq ď
ř

a,b ||
pΩab||F , the proof is done.

The next results states that the objective function has a Lipschitz continuous gradient,
which will be used to show that the generalized gradient descent can be used to find pΩ.

Lemma 6 The function fpAq “ trSA´ log |A| has a Lipschitz continuous gradient on the
set tA P Sp : ΛminpAq ě γu, with the Lipschitz constant L “ γ´2.

Proof We have that ∇fpAq “ S ´A´1. Then

||∇fpAq ´∇fpA1q||F “ ||A´1 ´ pA1q´1||F

ď ΛmaxA
´1||A´A1||FΛmaxA

´1

ď γ´2||A´A1||F ,
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which completes the proof.

Now, we provide the proof of Lemma 1.
By construction, the sequence of estimates prΩptqqtě1 decrease the objective value and

are positive definite.
To prove the convergence, we first introduce some additional notation. Let fpΩq “

trSΩ´ log |Ω| and F pΩq “ fpΩq `
ř

ab ||Ωab||F . For any L ą 0, let

QLpΩ; Ωq :“ fpΩq ` trrpΩ´ Ωq∇fpΩqs ` L

2
||Ω´ Ω||2F `

ÿ

ab

||Ωab||F

be a quadratic approximation of F pΩq at a given point Ω, which has a unique minimizer

pLpΩq :“ arg min
Ω
QLpΩ; Ωq.

From Lemma 2.3. in Beck and Teboulle (2009), we have that

F pΩq ´ F ppLpΩqq ě
L

2
||pLpΩq ´ Ω||2F , (15)

if F ppLpΩqq ď QLppLpΩq; Ωq. Note that F ppLpΩqq ď QLppLpΩq; Ωq always holds if L is as
large as the Lipschitz constant of ∇F .

Let rΩpt´1q and rΩptq denote two successive iterates obtained by the procedure. With-
out loss of generality, we can assume that rΩptq is obtained by updating the rows/columns
corresponding to the node a. From (15), it follows that

2

Lk
pF prΩpt´1qq ´ F prΩptqqq ě ||rΩpt´1q

aa ´ rΩptqaa ||F ` 2
ÿ

b‰a

||rΩ
pt´1q
ab ´ rΩ

ptq
ab ||F , (16)

where Lk is a current estimate of the Lipschitz constant. Recall that in our procedure the
scalar t serves as a local approximation of 1{L. Since eigenvalues of pΩ are bounded according
to Lemma 5, we can conclude that the eigenvalues of rΩpt´1q are bounded as well. Therefore
the current Lipschitz constant is bounded away from zero, using Lemma 6. Combining the
results, we observe that the right hand side of (16) converges to zero as t Ñ 8, since the
optimization procedure produces iterates that decrease the objective value. This shows that

||rΩ
pt´1q
aa ´ rΩ

ptq
aa ||F ` 2

ř

b‰a ||
rΩ
pt´1q
ab ´ rΩ

ptq
ab ||F converges to zero, for any a P V . Since prΩptq is

a bounded sequence, it has a limit point, which we denote pΩ. It is easy to see, from the
stationary conditions for the optimization problem given in (6), that the limit point pΩ also
satisfies the global KKT conditions to the optimization problem in (4).

B.2 Proof of Lemma 3

Suppose that the solution pΩ to (4) is block diagonal with blocks P1, P2, . . . , Pl. For two
nodes a, b in different blocks, we have that ppΩq´1

ab “ 0 as the inverse of the block diagonal
matrix is block diagonal. From the KKT conditions, it follows that ||Sab||F ď λ.

Now suppose that ||Sab||F ď λ for all a P Pj , b P Pj1 , j ‰ j1. For every l1 “ 1, . . . , l
construct

rΩl1 “ arg min
Ωl1ą0

trSl1Ωl1 ´ log |Ωl1 | ` λ
ÿ

a,b

||Ωab||F .
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Then pΩ “ diagppΩ1, pΩ2, . . . , pΩlq is the solution of (4) as it satisfies the KKT conditions.

B.3 Proof of Eq. (3)

First, we note that

var
`

pXT
a , X

T
b q

T | Xab

˘

“ Σab,ab ´ Σab,abΣ
´1
ab,ab

Σab,ab

is the conditional covariance matrix of pXT
a , X

T
b q

T given the remaining nodes Xab (see
Proposition C.5 in Lauritzen (1996)). Define Σ “ Σab,ab´Σab,abΣ

´1
ab,ab

Σab,ab. Partial canon-

ical correlation between Xa and Xb is equal to zero if and only if Σab “ 0. On the other

hand, the matrix inversion lemma gives that Ωab,ab “ Σ
´1

. Now, Ωab “ 0 if and only if
Σab “ 0. This shows the equivalence relationship in Eq. (3).

B.4 Proof of Proposition 4

We provide sufficient conditions for consistent network estimation. Proposition 4 given in
Section 3 is then a simple consequence. To provide sufficient conditions, we extend the work
of Ravikumar et al. (2011) to our setting, where we observe multiple attributes for each
node. In particular, we extend their Theorem 1.

For simplicity of presentation, we assume that ka “ k, for all a P V , that is, we assume
that the same number of attributes is observed for each node. Our assumptions involve the
Hessian of the function fpAq “ trSA´ log |A| evaluated at the true Ω˚,

H “ HpΩ˚q “ pΩ˚q´1 b pΩ˚q´1 P Rppkq
2ˆppkq2 , (17)

and the true covariance matrix Σ˚. The Hessian and the covariance matrix can be thought
of block matrices with blocks of size k2 ˆ k2 and k ˆ k, respectively. We will make use of
the operator Cp¨q that operates on these block matrices and outputs a smaller matrix with
elements that equal to the Frobenius norm of the original blocks,

¨

˚

˚

˚

˝

A11 A12 ¨ ¨ ¨ A1p

A21 A22 ¨ ¨ ¨ A2p
...

. . .
...

Ap1 ¨ ¨ ¨ App

˛

‹

‹

‹

‚

Cp¨q
ÝÝÝÝÝÝÑ

¨

˚

˚

˚

˝

||A11||F ||A12||F ¨ ¨ ¨ ||A1p||F

||A21||F ||A22||F ¨ ¨ ¨ ||A2p||F
...

. . .
...

||Ap1||F ¨ ¨ ¨ ||App||F

˛

‹

‹

‹

‚

.

In particular, CpΣ˚q P Rpˆp and CpHq P Rp2ˆp2 .
We denote the index set of the non-zero blocks of the precision matrix as

T :“ tpa, bq P V ˆ V : ||Ω˚ab||2 ‰ 0u Y tpa, aq : a P V u

and let N denote its complement in V ˆ V , that is,

N “ tpa, bq : ||Ωab||F “ 0u.

As mentioned earlier, we need to make an assumption on the Hessian matrix, which
takes the standard irrepresentable-like form. There exists a constant α P r0, 1q such that

|||C
`

HNT pHT T q´1
˘

|||8 ď 1´ α. (18)
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These condition extends the irrepresentable condition given in Ravikumar et al. (2011),
which was needed for estimation of networks from single attribute observations. It is worth
noting, that the condition given in Eq. (18) can be much weaker than the irrepresentable
condition of Ravikumar et al. (2011) applied directly to the full Hessian matrix. This can
be observed in simulations done in Section 5, where a chain network is not consistently
estimated even with a large number of samples.

We will also need the following two quantities to specify the results

κΣ˚ “ |||CpΣ˚q|||8, (19)

and
κH “ |||CpH´1

T T q|||8. (20)

Finally, the results are going to depend on the tail bounds for the elements of the
matrix CpS ´ Σ˚q. We will assume that there is a constant v˚ P p0,8s and a function
f : Nˆ p0,8q ÞÑ p0,8q such that for any pa, bq P V ˆ V

pr pCpS ´ Σ˚qab ě δq ď
1

fpn, δq
δ P p0, v´1

˚ s. (21)

The function fpn, δq will be monotonically increasing in both n and δ. Therefore, we define
the following two inverse functions

nf pδ; rq “ arg maxtn : fpn, δq ď ru (22)

and
δf pr;nq “ arg maxtδ : fpn, δq ď ru (23)

for r P r1,8q.
With the notation introduced, we have the following result.

Theorem 7 Assume that the irrepresentable condition in Eq. (18) is satisfied and that
there exists a constant v˚ P p0,8s and a function fpn, δq so that Eq. (21) is satisfied for
any pa, bq P V ˆ V . Let

λ “
8

α
δf pn, p

τ q

for some τ ą 2. If

n ą nf

ˆ

1

maxpv˚, 6p1` 8α´1qsmaxpκΣ˚κH, κ
3
Σ˚κ

2
Hqq

, pτ
˙

, (24)

then
||CppΩ´ Ωq||8 ď 2p1` 8α´1qκHδf pn, p

τ q (25)

with probability at least 1´ p2´τ .

Theorem 7 is of the same form as Theorem 1 in Ravikumar et al. (2011), but the `8 element-
wise convergence is established for CppΩ´Ωq, which will guarantee successful recovery of non-
zero partial canonical correlations if the blocks of the true precision matrix are sufficiently
large.
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Theorem 7 is proven as Theorem 1 in Ravikumar et al. (2011). We provide technical
results in Lemma 8, Lemma 9 and Lemma 10, which can be used to substitute results of
Lemma 4, Lemma 5 and Lemma 6 in Ravikumar et al. (2011) under our setting. The rest
of the arguments then go through. Below we provide some more details.

First, let Z : Rpkˆpk ÞÑ Rpkˆpk be the mapping defined as

ZpAqab “

#

Aab
||Aab||F

if ||Aab||F ‰ 0,

Z with ||Z||F ď 1 if ||Aab||F “ 0,
(26)

Next, define the function

GpΩq “ tr ΩS ´ log |Ω| ` λ||CpΩq||1, @Ω ą 0 (27)

and the following system of equations

"

Sab ´ pΩ
´1qab “ ´λZpΩqab, if Ωab ‰ 0

||Sab ´ pΩ
´1qab||F ď λ, if Ωab “ 0.

(28)

It is known that Ω P Rrpˆrp is the minimizer of optimization problem in Eq. (4) if and only if
it satisfies the system of equations given in Eq. (28). We have already shown in Lemma 5
that the minimizer is unique.

Let rΩ be the solution to the following constrained optimization problem

min
Ωą0

trSΩ´ log |Ω| ` λ||CpΩq||1 subject to CpΩqab “ 0, @pa, bq P N . (29)

Observe that one cannot find rΩ in practice, as it depends on the unknown set N . However,
it is a useful construction in the proof. We will prove that rΩ is solution to the optimization
problem given in Eq. (4), that is, we will show that rΩ satisfies the system of equations (28).

Using the first-order Taylor expansion we have that

rΩ´1 “ pΩ˚q´1 ´ pΩ˚q´1∆pΩ˚q´1 `Rp∆q, (30)

where ∆ “ Ω ´ Ω˚ and Rp∆q denotes the remainder term. With this, we state and prove
Lemma 8, Lemma 9 and Lemma 10. They can be combined as in Ravikumar et al. (2011)
to complete the proof of Theorem 7.

Lemma 8 Assume that

max
ab
||∆ab||F ď

αλ

8
and max

ab
||Σ˚ab ´ Sab||F ď

αλ

8
. (31)

Then rΩ is the solution to the optimization problem in Eq. (4).

Proof We use R to denote Rp∆q. Recall that ∆N “ 0 by construction. Using (30) we can
rewrite (28) as

Hab,T∆T ´Rab ` Sab ´ Σ
˚

ab ` λZprΩqab “ 0 if pa, bq P T (32)

||Hab,T∆T ´Rab ` Sab ´ Σ
˚

ab||2 ď λ if pa, bq P N . (33)
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By construction, the solution rΩ satisfy (32). Under the assumptions, we show that (33) is
also satisfied with inequality.

From (32), we can solve for ∆T ,

∆T “ H´1
T ,T rRT ´ ΣT ` ST ´ λZprΩqT s.

Then

||Hab,TH´1
T ,T rRT ´ ΣT ` ST ´ λZprΩqT s ´Rab ` Sab ´ Σ

˚

ab||2

ď λ||Hab,TH´1
T ,T ZprΩqT ||2 ` ||Hab,TH´1

T ,T rRT ´ ΣT ` ST s||2 ` ||Rab ` Sab ´ Σ
˚

ab||2

ď λp1´ αq ` p2´ αq
αλ

4
ă λ

using assumption on H in (18) and (31). This shows that rΩ satisfies (28).

Lemma 9 Assume that

||Cp∆q||8 ď
1

3κΣ˚s
. (34)

Then

||CpRp∆qq||8 ď
3s

2
κ3

Σ˚ ||Cp∆q||28. (35)

Proof Remainder term can be written as

Rp∆q “ pΩ˚ `∆q´1 ´ pΩ˚q´1 ` pΩ˚q´1∆pΩ˚q´1.

Using (40), we have that

|||CppΩ˚q´1∆q|||8 ď |||CppΩ˚q´1q|||8|||Cp∆q|||8
ď s|||CppΩ˚q´1q|||8||Cp∆q||8

ď
1

3
,

which gives us the following expansion

pΩ˚ `∆q´1 “ pΩ˚q´1 ´ pΩ˚q´1∆pΩ˚q´1 ` pΩ˚q´1∆pΩ˚q´1∆JpΩ˚q´1,

with J “
ř

kě0p´1qkppΩ˚q´1∆qk. Using (41) and (40), we have that

||CpRq||8 ď ||CppΩ˚q´1∆q||8|||CppΩ˚q´1∆JpΩ˚q´1qT |||8

ď |||CppΩ˚q´1q|||38||Cp∆q||8|||CpJT q|||8|||Cp∆q|||8
ď s|||CppΩ˚q´1q|||38||Cp∆q||28|||CpJT q|||8.
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Next, we have that

|||CpJT q|||8 ď
ÿ

ką0

|||Cp∆pΩ˚q´1q|||k8

ď
1

1´ |||Cp∆pΩ˚q´1q|||8

ď
3

2
,

which gives us

||CpRq||8 ď
3s

2
κ3

Σ˚ ||Cp∆q||28
as claimed.

Lemma 10 Assume that

r :“ 2κHp||CpS ´ Σ˚q||8 ` λq ď min

ˆ

1

3κΣ˚s
,

1

3κHκ3
Σ˚s

˙

. (36)

Then
||Cp∆q||8 ď r. (37)

Proof The proof follows the proof of Lemma 6 in Ravikumar et al. (2011). Define the ball

Bprq :“ tA : CpAqab ď r,@pa, bq P T u,

the gradient mapping
GpΩT q “ ´pΩ

´1qT ` ST ` λZpΩqT
and

F p∆T q “ ´H´1
T TGpΩ

˚
T `∆T q `∆T .

We need to show that F pBprqq Ď Bprq, which implies that ||Cp∆T q||8 ď r.
Under the assumptions of the lemma, for any ∆S P Bprq, we have the following decom-

position
F p∆T q “ H´1

T T Rp∆qT `H´1
T T pST ´ Σ

˚

T ` λZpΩ˚ `∆qT q.

Using Lemma 9, the first term can be bounded as

||CpH´1
T T Rp∆qT q||8 ď |||CpH

´1
T T q|||8||CpRp∆q||8

ď
3s

2
κHκ

3
Σ˚ ||Cp∆q||28

ď
3s

2
κHκ

3
Σ˚r

2

ď r{2

where the last inequality follows under the assumptions. Similarly

||CpH´1
T T pST ´ Σ

˚

T ` λZpΩ˚ `∆qT q||8

ď |||CpH´1
T T q|||8p||CpS ´ Σ˚q||8 ` λ||CpZpΩ˚ `∆qq||8q

ď κHp||CpS ´ Σ
˚
q||8 ` λq

ď r{2.
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This shows that F pBprqq Ď Bprq.

The following result is a corollary of Theorem 7, which shows that the graph structure
can be estimated consistently under some assumptions.

Corollary 11 Assume that the conditions of Theorem 7 are satisfied. Furthermore, suppose
that

min
pa,bqPT , a‰b

||Ω||F ą 2p1` 8α´1qκHδf pn, p
τ q,

then Algorithm 1 estimates a graph pG which satisfies

pr
´

pG ‰ G
¯

ě 1´ p2´τ .

Next, we specialize the result of Theorem 7 to a case where X has sub-Gaussian tails.
That is, the random vector X “ pX1, . . . , Xpkq

T is zero-mean with covariance Σ˚. Each
pσ˚aaq

´1{2Xa is sub-Gaussian with parameter γ.

Proposition 12 Set the penalty parameter in λ in Eq. (4) as

λ “ 8kα´1
´

128p1` 4γ2q2pmax
a
pσ˚aaq

2qn´1p2 logp2kq ` τ logppqq
¯1{2

.

If
n ą C1s

2k2p1` 8α´1q2pτ log p` log 4` 2 log kq,

where C1 “ p48
?

2p1` 4γ2qpmaxa σ
˚
aaqmaxpκΣ˚κH, κ

3
Σ˚κ

2
Hqq

2, then

||CppΩ´ Ωq||8 ď 16
?

2p1` 4γ2qmax
i
σ˚iip1` 8α´1qκHk

ˆ

τ log p` log 4` 2 log k

n

˙1{2

with probability 1´ p2´τ .

The proof simply follows by observing that, for any pa, bq,

pr pCpS ´ Σ˚qab ą δq ď pr

ˆ

max
pc,dqPpa,bq

pσcd ´ σ
˚
cdq

2 ą δ2{k2

˙

ď k2pr p|σcd ´ σ
˚
cd| ą δ{kq

ď 4k2 exp

ˆ

´
nδ2

c˚k2

˙

(38)

for all δ P p0, 8p1` 4γ2qpmaxa σ
˚
aaqq with c˚ “ 128p1` 4γ2q2pmaxapσ

˚
aaq

2q. Therefore,

fpn, δq “
1

4k2
exppc˚

nδ2

k2
q,

nf pδ; rq “
k2 logp4k2rq

c˚δ2
,

δf pr;nq “

ˆ

k2 logp4k2rq

c˚n

˙1{2

.

Theorem 7 and some simple algebra complete the proof.
Proposition 4 is a simple consequence of Proposition 12.

31



Kolar, Liu, and Xing

B.5 Some Results on Norms of Block Matrices

Let T be a partition of V . Throughout this section, we assume that matrices A,B P Rpˆp
and a vector b P Rp are partitioned into blocks according to T .

Lemma 13

max
aPT

||Aa¨b||2 ď max
aPT

ÿ

bPT
||Aab||F max

cPT
||bc||2. (39)

Proof For any a P T ,

||Aa¨b||2 ď
ÿ

bPT
||Aabbb||2

“
ÿ

bPT

˜

ÿ

iPa

pAibbbq
2

¸1{2

ď
ÿ

bPT

˜

ÿ

iPa

||Aib||
2
2||bb||

2
2

¸1{2

ď
ÿ

bPT

˜

ÿ

iPa

||Aib||
2
2

¸1{2

max
cPT

||bc||2

“
ÿ

bPT
||Aab||F max

cPT
||bc||2.

Lemma 14

|||CpABq|||8 ď |||CpBq|||8|||CpAq|||8. (40)

Proof Let C “ AB and let T be a partition of V .

|||CpABq|||8 “ max
aPT

ÿ

bPT
||Cab||F

ď max
aPT

ÿ

b

ÿ

c

||Aac||F ||Bcb||F

ď tmax
aPT

ÿ

c

||Aac||F utmax
cPT

ÿ

b

||Bcb||F u

“ |||CpAq|||8|||CpBq|||8.

Lemma 15

||CpABq||8 ď ||CpAq||8|||CpBqT |||8. (41)
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Proof For a fixed a and b,

CpABqab “ ||
ÿ

c

AacBcb||F

ď
ÿ

c

||Aac||F ||Bcb||F

ď max
c
||Aac||

ÿ

c

||Bcb||F .

Maximizing over a and b gives the result.

Appendix C. Additional Information About Functional Brain Networks

Table 3 contains list of the names of the brain regions. The number before each region is
used to index the node in the connectivity models. Figures 11, 12 and 13 contain adjacency
matrices for the estimated graph structures.
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Figure 11: Adjacency matrix for the brain connectivity network: healthy subjects
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Figure 12: Adjacency matrix for the brain connectivity network: Mild Cognitive Impair-
ment
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Figure 13: Adjacency matrix for the brain connectivity network: Alzheimer’s & Dementia
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1 Precentral_L 49 Fusiform_L

2 Precentral_R 50 Fusiform_R

3 Frontal_Sup_L 51 Postcentral_L

4 Frontal_Sup_R 52 Postcentral_R

5 Frontal_Sup_Orb_L 53 Parietal_Sup_L

6 Frontal_Sup_Orb_R 54 Parietal_Sup_R

7 Frontal_Mid_L 55 Parietal_Inf_L

8 Frontal_Mid_R 56 Parietal_Inf_R

9 Frontal_Mid_Orb_L 57 SupraMarginal_L

10 Frontal_Mid_Orb_R 58 SupraMarginal_R

11 Frontal_Inf_Oper_L 59 Angular_L

12 Frontal_Inf_Oper_R 60 Angular_R

13 Frontal_Inf_Tri_L 61 Precuneus_L

14 Frontal_Inf_Tri_R 62 Precuneus_R

15 Frontal_Inf_Orb_L 63 Paracentral_Lobule_L

16 Frontal_Inf_Orb_R 64 Paracentral_Lobule_R

17 Rolandic_Oper_L 65 Caudate_L

18 Rolandic_Oper_R 66 Caudate_R

19 Supp_Motor_Area_L 67 Putamen_L

20 Supp_Motor_Area_R 68 Putamen_R

21 Frontal_Sup_Medial_L 69 Thalamus_L

22 Frontal_Sup_Medial_R 70 Thalamus_R

23 Frontal_Med_Orb_L 71 Temporal_Sup_L

24 Frontal_Med_Orb_R 72 Temporal_Sup_R

25 Rectus_L 73 Temporal_Pole_Sup_L

26 Rectus_R 74 Temporal_Pole_Sup_R

27 Insula_L 75 Temporal_Mid_L

28 Insula_R 76 Temporal_Mid_R

29 Cingulum_Ant_L 77 Temporal_Pole_Mid_L

30 Cingulum_Ant_R 78 Temporal_Pole_Mid_R

31 Cingulum_Mid_L 79 Temporal_Inf_L

32 Cingulum_Mid_R 80 Temporal_Inf_R

33 Hippocampus_L 81 Cerebelum_Crus1_L

34 Hippocampus_R 82 Cerebelum_Crus1_R

35 ParaHippocampal_L 83 Cerebelum_Crus2_L

36 ParaHippocampal_R 84 Cerebelum_Crus2_R

37 Calcarine_L 85 Cerebelum_4_5_L

38 Calcarine_R 86 Cerebelum_4_5_R

39 Cuneus_L 87 Cerebelum_6_L

40 Cuneus_R 88 Cerebelum_6_R

41 Lingual_L 89 Cerebelum_7b_L

42 Lingual_R 90 Cerebelum_7b_R

43 Occipital_Sup_L 91 Cerebelum_8_L

44 Occipital_Sup_R 92 Cerebelum_8_R

45 Occipital_Mid_L 93 Cerebelum_9_L

46 Occipital_Mid_R 94 Cerebelum_9_R

47 Occipital_Inf_L 95 Vermis_4_5

48 Occipital_Inf_R

Table 3: Names of the brain regions. L means that the brain region is located at the left
hemisphere; R means right hemisphere.

35



Kolar, Liu, and Xing

J. R. Andrews-Hanna, A. Z. Snyder, J. L. Vincent, C. Lustig, D. Head, M. E. Raichle, and
R. L. Buckner. Disruption of large-scale brain systems in advanced aging. Neuron, 56(5):
924–935, 2007.

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse maximum
likelihood estimation. J. Mach. Learn. Res., 9(3):485–516, 2008.

A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286
(5439):509–512, 1999.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imag. Sci., 2:183–202, 2009.

T. T. Cai, W. Liu, and X. Luo. A constrained `1 minimization approach to sparse precision
matrix estimation. J. Am. Stat. Assoc., 106(494):594–607, 2011.

J. Chiquet, Y. Grandvalet, and C. Ambroise. Inferring multiple graphical structures. Stat.
Comput., 21(4):537–553, 2011.

P. Danaher, P. Wang, and D. M. Witten. The joint graphical lasso for inverse covariance
estimation across multiple classes. J. R. Stat. Soc. B, 76(2):373–397, 2014.

A. P. Dempster. Covariance selection. Biometrics, 28:157–175, 1972.

J. H. Friedman, T. J. Hastie, and R. J. Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

R. L. Gould, B. Arroyo, R. G. Brown, A. M. Owen, E. T. Bullmore, and R. J. Howard. Brain
mechanisms of successful compensation during learning in alzheimer disease. Neurology,
67(6):1011–1017, 2006.

M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon. Default-mode network activity
distinguishes alzheimer’s disease from healthy aging: Evidence from functional MRI.
Proc. Natl. Acad. Sci. U.S.A., 101(13):4637–4642, 2004.

J. Guo, E. Levina, G. Michailidis, and J. Zhu. Joint estimation of multiple graphical models.
Biometrika, 98(1):1–15, 2011.

T. Hedden, K. R. A. V. Dijk, J. A. Becker, A. Mehta, R. A. Sperling, K. A. Johnson, and
R. L. Buckner. Disruption of functional connectivity in clinically normal older adults
harboring amyloid burden. J. Neurosci., 29(40):12686–12694, 2009.

J. Honorio and D. Samaras. Multi-task learning of gaussian graphical models. In
J. Fürnkranz and T. Joachims, editors, Proc. of ICML, pages 447–454, Haifa, Israel,
June 2010. Omnipress.

S. Huang, J. Li, L. Sun, J. Liu, T. Wu, K. Chen, A. Fleisher, E. Reiman, and J. Ye.
Learning brain connectivity of alzheimer’s disease from neuroimaging data. In Y. Bengio,
D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Proc. of NIPS,
pages 808–816, 2009.

36



Graph Estimation From Multi-attribute Data

C. Johnson, A. Jalali, and P. Ravikumar. High-dimensional sparse inverse covariance estima-
tion using greedy methods. In N. Lawrence and M. Girolami, editors, Proc. of AISTATS,
pages 574–582, 2012.

N. Katenka and E. D. Kolaczyk. Multi-attribute networks and the impact of partial infor-
mation on inference and characterization. Ann. Appl. Stat., 6(3):1068–1094, 2011.

M. Kolar and E. P. Xing. Consistent covariance selection from data with missing values. In
J. Langford and J. Pineau, editors, Proc. of ICML, pages 551–558, Edinburgh, Scotland,
GB, July 2012. Omnipress.

M. Kolar, L. Song, A. Ahmed, and E. P. Xing. Estimating Time-varying networks. Ann.
Appl. Stat., 4(1):94–123, 2010.

C. Lam and J. Fan. Sparsistency and rates of convergence in large covariance matrix
estimation. Ann. Stat., 37:4254–4278, 2009.

S. L. Lauritzen. Graphical Models, volume 17 of Oxford Statistical Science Series. The
Clarendon Press Oxford University Press, New York, 1996. Oxford Science Publications.

H. Li and J. Gui. Gradient directed regularization for sparse gaussian concentration graphs,
with applications to inference of genetic networks. Biostatistics, 7(2):302–317, 2006.

H. Liu, J. D. Lafferty, and L. A. Wasserman. The nonparanormal: Semiparametric es-
timation of high dimensional undirected graphs. J. Mach. Learn. Res., 10:2295–2328,
2009.

H. Liu, F. Han, and C.-H. Zhang. Transelliptical graphical models. In P. Bartlett, F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, editors, Proc. of NIPS, pages 809–817. 2012.

K. Lounici, M. Pontil, A. B. Tsybakov, and S. A. van de Geer. Oracle inequalities and
optimal inference under group sparsity. Ann. Stat., 39:2164–204, 2011.

R. Mazumder and D. K. Agarwal. A flexible, scalable and efficient algorithmic framework
for primal graphical lasso. Technical report, Stanford University, 2011.

R. Mazumder and T. J. Hastie. Exact covariance thresholding into connected components
for large-scale graphical lasso. J. Mach. Learn. Res., 13:781–794, 2012.
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