Appendix

A Scalable Approach to Probabilistic Latent Space Inference of
Large-Scale Networks

A Details of Stochastic Variational Inference

Exact form of the variational lower bound. We adopted a structured mean-field approximation method, in which the
true (but intractable) posterior of latent variables p(s,0,B | E, o, \) is approximated by a partially factorized distribution
q(s,6,B),
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where I is the set of triples with triangular motifs formed: I = {(i,j, k) : i < j < k, E;jx = 1,2,3 or4}. |I| = O(N§?)
after 0-subsampling.

The variational lower bound of the log marginal likelihood of the triangular motifs based on this variational distribution is
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The first two line in (2) is the global term g(y, n7) that depends only the global variational paramters « and 1), whereas the last
two lines is a summation of local term #(¢;;x,~y, 1), one for each triangular motif.

Exact local update. For each sampled triangle (4, j, k) in a mini-batch, update the O(K?) entries of the tensor parameters
@41 as follows and then normalize to have sum equal to one.

e Forz e {1,...,K},
i O exp {EQ[IOg Baaw 2|l[Eijr = 4]+ Eq[log(Baax1/3)[1[Eijk # 4]+ Eq[log 0; »] +Eq[log 05..] + Eg [log 9k,x]}.
e Forz,ye{l,...,K}andz # y, (€)
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+ Byllog 8; 4] + Eyllog 0;.4] + Eq[log 0y ] }



e For distinct z,y,z € {1,..., K},

G o exp {Eq llog Bo 2] I[Eijr = 4] +Ey[log(Bo.1 /3)|I[Eiji, # 4]+ Eq[log 0; o] +Eq[log 6;.0] + Eq[log ek,x]}.
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The update equations for ¢7 ;" and ¢} are similar to ¢;;”, and therefore we omit the details.
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Global update. The natural gradient VLg(n, «) with respect to 7 is
e Forz e {1,...,K},
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The natural gradient VL g(n, «) with respect to v is, foreachi = 1,...,Nandz =1, ..., K,
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B More Experimental Details
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In the main paper, we omitted certain technical details about our experiments. For completeness, we shall furnish them here.



Synthetic Data — Statistics for the largest (N = 10, 000) networks
Network | Nodes N | Edges M | Degree mean/median/max | 2,3-Tris (§ = 50) | Frac. of 3-Tris | Roles K
MMSB easy 10K 279K 55.9/56/81 11.0M 0.060 100
MMSB hard 10K 282K 56.4/56/85 11.2M 0.047 100
Power-Law easy 10K 200K 40/41/126 5.2M 0.31 100
Power-Law hard 10K 200K 40/39/176 5.5M 0.23 100

Table 1: Synthetic Data Experiments. Statistics for the largest (N = 10, 000) networks.

B.1 Generating Synthetic Data

Latent Space Models. We use two latent space models as the basis for our experiments — the MMSB model (Airoldi et al.,
2009) (which the MMSB batch variational algorithm solves for), and a model that produces power-law networks from a latent
space. A description of both models follows:

1. MMSB: Let B be a K x K symmetric block matrix, the probability of an edge from i to j is 67 B6;. We symmetrize
the resulting network, converting all directed edges into undirected ones.

2. Power-Law latent space model: Let M/ be the number of edges in the network. We generate all M edges by repeating
the following procedure: (a) pick a vertex ¢ with probability proportional to its degree; (b) draw a destination role
a ~ Discrete(6;); (c) find the set V,, of all vertices v such that 8, is the largest element of 6, (breaking ties at random);
(d) within V,;, pick the destination vertex j with probability proportional to its degree, and generate the undirected edge
(i, 7). If (i, ) is already present, we repeat the procedure.

The MMSB model produces networks with “blocks” of nodes characterized by high edge probabilities, whereas the Power-law
model produces “communities” centered around a high-degree hub node. We show that our algorithm rapidly and accurately
recovers latent space roles based on these two notions of node-relatedness.

Ground Truth Role Vectors. For both models, we synthesized ground truth role vectors ;’s to generate networks of varying
difficulty. We generated networks with N € {500, 1000, 2000, 5000, 10000} nodes, with the number of roles growing as
K = N/100 (i.e. linear in N)). We set the ground truth ;s as follows: first, we divided the nodes into K groups of size 100.
For the z-th group, we set 90 vectors 6;’s to have mass 1 in role z, i.e. 6;;, = 1. The remaining 10 vectors 6;’s were set to
have mass 0.5 in role z, and 0.5 in another randomly chosen role. This forms a latent space where 90% of the nodes have
pure-membership, and 10% have mixed-membership between 2 roles. We call these networks “MMSB easy” and “Power-Law
easy”, respectively.

We also created a second, more challenging series of networks (we call them “hard”) using role vectors with heavier mixing.
These roles were constructed as follows: for the z-th group, we set 80 vectors 6;’s to have mass 1 in role z, 10 vectors 6;’s to
have 0.5 mass in role  and 0.5 mass in 1 other random role, and 10 vectors 6;’s to have 0.25 mass in role z and 0.25 mass in
3 other random roles. The resulting latent space has nodes with up to 4 roles.

In total, we generated 20 networks: 5 sizes x 2 models x 2 sets of role vectors; summary statistics for the 4 largest N =
10, 000 networks can be found in Table 1. For networks under the Power-Law model, we generated M = 20N edges (so the
average degree is 40). As for networks under the MMSB model, we used a block matrix B with diagonal elements set to 0.2,
and off-diagonal elements set to 0.001. Under this B, the ratio of intra-role to inter-role edges decreases as (N, K) increase
— from approximately 20 : 1 at (N = 1000, K = 10),to 2 : 1 at (N = 10000, K = 100). In this sense, the amount of noise
increases as the network gets larger, making membership recovery harder.



