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Abstract

A Bayesian Exponential Family Harmonium (BEFH) model is presented for topical modeling of
text and multimedia data, and for “posterior” latent semantic projection of such data for subsequent
data mining tasks. BEFHs are a Bayesian approach to inference and learning with the recently
proposed EFH models and their variants, which enables smoothed, robust estimation of the topic-
attribute coupling coefficients that are reminiscent of thesmoothed topical word-probabilities in
the latent Dirichlet Allocation (LDA) model. The Langevin algorithm conjoint with an MCMC
scheme is applied for posterior inference with BEFH. An empirical Bayes method is also developed
to estimate the hyperparameters.



Keywords: Bayesian learning, latent semantics indexing, Markov chain Monte Carlo, undi-
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1 Introduction

The vast size of the text and multimedia information available from digital libraries and world-
wide-web, and large amount of knowledge contained therein,creates a need to organize and sum-
marize topical contents of these data. In recent years, there is a growing volume of research on
applying probabilistic graphical models (GMs) to develop automatic information distillation sys-
tems that can explore and exploit real-world data from diverse sources, such as texts, images and
biological sequences.

Probabilistic graphical models provide a compact description of complex stochastic relation-
ships among random variables, which can correspond to both perceivable entities (e.g., words,
imageries) and abstract concepts (e.g., topics, themes); and such a formalism often facilitates flexi-
ble statistical reasoning and query answering based on efficient computational algorithms. Inspired
by the classical approach oflatent semantic indexing(Deerwester et al., 1990), recently there have
been important advances in developing latent semantic GMs for large text corpus and/or multime-
dia data, based on either a Bayesian network (BN) or a Markov random field (MRF) formalism.
For instance, theprobabilistic latent semantic indexing(pLSI) (Hofmann, 1999) method models
each document as an admixture of topic-specific distributions of words. The more recentlatent
Dirichlet allocation (LDA) technique (Blei et al., 2003) employs a hierarchical Bayesian exten-
sion of pLSI, treating both the document-specific topic-mixing coefficients and the topic-specific
word probabilities as random variables, under appropriateconjugate priors. LDA can be extended
to multimedia collections by assuming that the unobserved “topics” are correlated with both image
variables and word variables (Barnard et al., 2003, Blei andJordan, 2003). Recently, Welling et al.
(2004) proposed another class of latent semantic GMs known as the exponential family harmonium
model (EFH), which can be understood as an undirected, and non-Bayesian counterpart of the LDA
model. Subsequently, Xing et al. (2005) extended EFH to adual-wing harmonium model(DWH)
for joint modeling of text and image. Gehler et al. (2006) proposed therate adapting Poisson
(RAP) model which follows the general architecture of EFH model and use conditional Poisson
distributions to model observed count data. And McCallum etal. (2006) proposed a training cri-
terion calledmultiple-conditional learning(MCL) for MRFs and EFHs. Unlike the directed GMs
such as pLSI and LDA, EFH does not employ auxiliary latent variables (i.e., the imaginary topic
indicators for every word) to facilitate topic mixing and simulate data generation; and it allows a
more flexible representation of the latent topic aspects fordocuments (i.e., as a point is a Euclidean
space rather than in a simplex).

An important advantage of the directed latent-topic modelssuch as LDA is that they can be
straightforwardly embedded in a Bayesian framework, and can undergo Bayesian training, smooth-
ing and inference. To date, the MRF-based models such as EFH and DWH have been largely
limited to a maximum likelihood (ML) framework, which is prone to undesirable effects such as
overfitting the (small) data, high variance in sampling-based inference and parameter estimation,
and indifference to prior knowledge. These limitations restrict their utilities in many realistic data
mining scenarios where data are sparse and spurious. The ML framework also makes it difficult to
fully exploit the modeling power of MRF in latent topic distillations and to develop future exten-
sions. The unavailability of a Bayesian version of EFH is partly due to the remarkable technical
difficulties one must overcome when working under such a formalism. It is well-known that sta-
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tistical learning of EFH models from data, even under an ML framework, is technically nontrivial.
As discussed in Murray and Ghahramani (2004) and Qi et al. (2005), Bayesian learning for gen-
eral MRF, is even more challenging, particularly in cases that involve latent variables as in EFH. In
this paper, we attempt to address some of this challenges: endowing EFH with a simple Bayesian
prior, and presenting a sampling-based algorithm for Bayesian inference and learning.

We present Bayesian EFH (BEFH), in which a multivariate Gaussian prior is introduced for the
weight matrix that couples the latent topics with observed attributes in EFH (and also in DWH).
As detailed in the sequel, it is illuminative to view the weight matrix of EFH as the matrix of word
probabilities under all topics in LDA. Under this analogy, our prior corresponds to the Dirich-
let priors for the word probabilities in LDA. It is well-known that methods for Bayesian infer-
ence/learning in directed GMs such as LDA does not apply to the undirected GMs concerned here,
because of the intractability and non-conjugacy arising from the partition function. In this paper,
we present the Langevin algorithm conjoint with a MCMC sampling scheme for posterior infer-
ence under BEFH. We also propose an empirical Bayes method based on the Langevin algorithm
for unsupervised estimation of the BEFH hyperparameter given training data. Finally we show
comparisons of ML and Bayesian approaches on a synthetic dataset with known parameters and a
dataset provided by TRECVID 2003 (Smeaton and Over, 2003) with both text and image data.

2 From EFH to Bayesian EFH

In this section, we outline the basic structure of a BayesianEFH in the context of a simple instan-
tiation of EFH for latent topic modeling of text corpus.

For completeness, we begin with a brief recap of the basic EFH, as described in (Welling et al.,
2004). Consider an undirected GM defined on a complete bipartite graph containing two layers of
nodes (Fig 1). LetH = {Hj} denote the set ofhidden unitsin such a graph, and letX = {Xi}
denote the set ofinput units. An EFH defines the following Markov random field:

p(x,h) ∝
1

Z
exp

{

∑

ia

θiafia(xi) +
∑

jb

λjbgjb(hj) +
∑

ijab

W jb
ia fia(xi)gjb(hj)

}

, (1)

where{fia(·) : ∀a} denotes the set of potential functions (or features) definedon each of the
input units (indexed byi) in the model, and likewise{gjb(·) : ∀b} for the hidden units;Θ =

{θia} ∪ {λjb} ∪ {W jb
ia } denotes the ”weights” of the corresponding potentials or potential pairs;

andZ stands for the partition function, which is a function ofΘ.
The bipartite topology of the harmonium graph suggests thatnodes within the same layer are

conditionally independent given all nodes of the opposite layer. Specifically, from Eq. (1), we have
the following factored form for the between-layer conditional distribution functions:p(x|h) =
∏

i p(xi|h), p(h|x) =
∏

j p(hj|x), and each of the singleton conditional has a simple exponential
family form:

p(xi|h) = exp
{

∑

a

θ̂iafia(xi) − Ai({θ̂ia})
}

, (2)

p(hj |x) = exp
{

∑

b

λ̂jbgjb(hj) − Bj({λ̂jb})
}

, (3)
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Figure 1: The graphical model representation for (a) a harmonium with 2 hidden units and 3 input
units.

whereAi(·) andBj(·) denote the respective log-partition functions; and the shifted parameterŝθia

andλ̂jb are defined as,

θ̂ia = θia +
∑

jb

W jb
ia gjb(hj),

λ̂jb = λjb +
∑

ia

W jb
ia fia(xi),

where the shifts are induced by the total couplings between units in the input and hidden layers.
As seen from the above definition, since all the parameters inthe joint distribution under EFH can
be identified from the local conditional distributions, onecan determine an EFH using a bottom-up
strategy to by directly specifying the often easily comprehensible local conditionals. For instance,
as our running example in this paper, we define the following Gaussian-Bernoulli EFH (GB-EFH)
for text:

p(xi|h) = Bernoulli
(

xi|logit(θi +
∑

j

hjWij)
)

, (4)

p(hj |x) = N (hj|
∑

i

xiWij, 1), (5)

where logit(α) = (1 + e−α)
−1 is the logistic function, and the shift of the logit-transformed

Bernoulli rateθi is induced by a weighted combination of the latent unitsh. It can be shown
that under this construction, we obtain an EFH with the joint:

p(x,h) ∝ exp
{

θT
x −

1

2
h

T
h + x

T
Wh

}

. (6)

The GB-EFH models text (represented by variablesx) as binary occurrences of words, which is
suitable for sparse, short text such as video captions. Whenmodeling long articles, one may want
to directly model word counts; and in this case one can replace Eq. (4) with, e.g., a Binomial
distribution.
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Figure 2: A comparison of EFH, LDA and BEFH models over a single document. Circles represent
variables, and diamond represents model parmeters. (a) EFH. For easy comparison, the hidden unit
(i.e., the topic weight coefficients){Hj} and the input units{Xi} are represented as vector valued
variablesH andX, respectively. For simplicity, only theW parameter of EFH is explicitly shown.
(b) LDA. Note the correspondence betweenπ in LDA and H in EFH, and the fact thatβj ’s are
random variables rather than parameters.I denotes the length of the document. (c) BEFH. Note
thatW ≡ {Wj} are now lifted as random variables.

It is interesting to examine side-by-side the GB-EFH and theLDA model as displayed in Fig. 2.
Note that, when treating each hidden unithj as a representative of a latent topic aspect, Eq.(4)
can be understood as a likelihood function of an observed attribute, such as a word occurrence,
induced by a combination of topics. Thus, the coupling matrix W = {W1, . . . , WJ} in GB-EFH
is reminiscent of the word probability matrixB = {β1, . . . , βJ} in LDA, whereβj denotes the
M-dimensional vector (M denotes the size of the vocabulary) of multinomial word probabilities
under topicj. In GB-EFH eachM-vectorWj represents the set of “contributions” topicj has on
each word in a vocabulary. Although structurally similar, it is noteworthy that the topic mixing
mechanism of GB-EFH is very different from that of the LDA model. In LDA the topic mixing is
achieved by marginalizing out the auxiliary topic indicator variables for each word occurrence1.
Whereas it can be shown that in EFH the expected rates of all words are directly determined by
the weighted sum of topic specific contributions

∑

j hjWj ≡ Wh. In this regard EFH is closer to
the classical LSI principle in which the observed rates of all words can be expressed as a weighted
combinations of the eigen-topics (i.e., orthonormal topic-specific word rate vectors).

Empirically, it was noted that the performance of EFH and variants on latent semantic modeling
is comparable, and sometimes superior, to LDA (Welling et al., 2004, Xing et al., 2005). But as
shown in Fig. 2, structurally EFH is not yet a full undirectedcounterpart of LDA, which employs
an elegant hierarchical strategy to incorporate priors forboth the word probabilitiesB and topic
mixing coefficientsπ. We expect that, as is the case for LDA, it is possible for EFH to also leverage
on the possible extra modeling power endowed by a Bayesian formalism.

1As illustrated in Fig. 2b, the LDA likelihood of a wordxw, given topic mixing coefficientθ and the probabilities
of this word under allJ topics,{βw,1, . . . , βw,J} can be written asp(xw|θ) =

∑

z p(z|θ)p(xw|B, z) =
∑

j θjβw,j.
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Now we propose a Bayesian EFH that exploits the purported benefits. To maintain exchanga-
bility between hidden units{hj}, we place column-iid prior on W, that is, each column ofW
follows a multivariate Gaussian, which is a common choice for modeling continuous parameters
without any additional assumption:

p(W) =
J
∏

j=1

p(Wj) =
J
∏

j=1

N (Wj|µ, Σ). (7)

A full covariance matrix in the above prior would have sizeM2, which is prohibitively expensive
for modeling large vocabulary. For simplicity, we considera further simplification where:Σ =
diag(σ), i.e. Σij = σiσjδ(i, j). (Modulo computational cost, upgrading to the full covariance
matrix is straightforward with the same algorithm developed in the sequel.) This means that each
element ofW follows an independent normal distribution. Note that although we omit correlations
between the topic-word coupling coefficients, the expressiveness of this prior is comparable to the
Dirichlet prior for columns in theB matrix of LDA, which captures little correlation behavior of
the word-probabilities sampled from a simplex.

Now we are left with two remaining sets of parameters of EFH:θ andλ. It turns out that in
many practical settings (e.g., GB-EFH and DWH),λ is vacuous, i.e.,λ = 0, which essentially
“centers” the conditional distributionp(h|x) at the shifts induced by the input units. Forθ, in EFH
it lacks an intuitive semantics, such as being a prior for topic coefficients as in LDA. Therefore we
choose to leaveθ as fixed parameters to be estimated via an ML principle.

Now, putting things together, we arrive at a Bayesian EFH model with the following joint
density function

p(x,h,W|θ, µ, σ) = p(W|µ, σ)p(x,h|θ,W). (8)

The hyperparamters in the model areµ andσ, which we treat as fixed quantities presumably known
or to be estimated.

3 Posterior Inference via MCMC

Given the prior distribution onW with presumably known hyperparameters and a collection ofN
iid-sampled data X= (x1, . . . ,xN), also suppose that parametersθ are known or already estimated
by an alternative learning method such as ML learning, we need to compute or approximate the
posterior

p(W|X) ∝ p(X|W)p(W) =
1

(Z(W))N
p̃(X|W)p(W) (9)

and the predictive posterior density over hidden variables

p(h|x, X) =

∫

W

p(h|x,W)p(W|X)dW, (10)

wherep̃(·) in Eq. (9) represents the unnormalized density function corresponding top(·).
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We can take a Monte Carlo approach to obtain a set ofm samples{W1, . . . ,Wm} by simulat-
ing an ergodic Markov chain whose stationary distribution is the posteriorp(W|X). The difficulty
here is due to the presence of an intractable term(1/Z(W))N in the posterior distribution, which
is a functionof the target random parametersW. Therefore, unlike simple posterior inference
settings in which there is anormalization constantthat will be canceled out by computing the ratio
of two posterior densities or taking the derivative, in Bayesian inference with MRFs using MCMC
we have to seek an efficient approximation of the intractablerandom partition function in posterior
distribution.

In the following, we investigate two MCMC approximation schemes and show that in both
cases the intractable term can be written as expectations under the data distributionp(x|W). Then
we show that these terms can be approximated efficiently by minimizing the contrastive diver-
gence (CD) (Hinton, 2002), or equivalently, by performing Gibbs sampling for only very few
steps starting from data (the empirical distribution). Thederivation is in parallel with that in
Murray and Ghahramani (2004); here we provide a more detailed discussion on the comparison
of the two schemes

3.1 Approximation schemes

3.1.1 Metropolis-Hasting algorithms

Consider simulating a Markov chain using a Metropolis-Hasting algorithm with the proposal dis-
tributionq(W′|W). The acceptance probability of the transitionW → W

′ is

ρ(W,W′) = min

(

p(W′|X)

p(W|X)

q(W|W′)

q(W′|W)
, 1

)

(11)

Suppose the proposal distribution is easy to draw sample from and is tractable, then the only
difficulty in implementing Metropolis-Hasting algorithmsis to approximate the intractable term
(

Z(W)
Z(W′)

)N

, whereN is the size of the dataset. The ratio of two partition functions can be written

as an expectation over the data distributionp(x|W′).

Z(W)

Z(W′)
=
∑

x

e
1
2
xT(WWT−W′W′T)x eθ

T
x+ 1

2
xTW′W′Tx

Z(W′)

=

〈

exp

{

1

2
x

T
(

WW
T − W

′
W

′T
)

x

}〉

p(x|W′)

(12)

3.1.2 The Langevin algorithm

We also investigate theLangevin algorithmas an alternative approximate MCMC scheme. The
Markov chain simulated by the Langevin algorithm is characterized by the following stochastic
transition equation

W
′ = W +

ǫ2

2
∇ log p(W|X) + ǫNW (13)
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whereNW are randomly generated fromN (0, I|W|). This is a discrete version of the Langevin
diffusion andǫ2 corresponds to the discretization size2. The Markov chain converges whenǫ is
reasonbly small and has the desired densityp(W|X) asǫ2 → 0. The gradient of the posterior is
the sum of three terms

∇ log p(W|X) = ∇ log p(X,W) = ∇ log p(W) + ∇ log p̃(X|W) + (−N∇ log Z(W)) (14)

where in the GB-EFH model

{∇ log p(W)}ij ,
∂ log p(W)

∂Wij

=
∂ log pij(W)

∂Wij

= −
1

σ2
i

(Wij − µi) (15)

and∇ log p̃(X|W) is also tractable

∇ log p̃(X|W) =
∑

i

∇ log p̃(xi|W) =
∑

i

xix
T
i W = XXT

W. (16)

Hence, the only intractable term involved in the Langevin algorithm isN∇ log Z(W), in which
∇ log Z(W) can be written as an expectation over the data distributionp(x|W)

∇ log Z(W) =
1

Z(W)

∑

x

∇p̃(x|W) =
p̃(x|W)

Z(W)

∑

x

∇ log p̃(x|W)

=
∑

x

p(x|W)∇ log p̃(x|W) =
〈

xx
T
W

〉

p(x|W)
(17)

3.1.3 Discussion on the two schemes

The straightforward approach of estimatingZ(W) itself often fails to provide reliable estimates.
To provide some intuition of the nature of this difficulty, wegive a brief illustration as follows:
with some mathematical manipulation which is included in Appendix A, the partition function in
the BG-EFH model equals the expectation of the following random variable

Z(t) =
∏

i

(1 + ti) (18)

under the multivariate lognormal distribution oft

t ∼ LogNormal(θ,WW
T )

Thus under the Bayesian framework in whichW is considered a random matrix, we should expect
Z(W) to haveexponentialmean and variance.

2A diffusion is a continuous time process which can be defined by a stochastic differential equation. The Langevin
diffusion is characterized by

dW(t) =
1

2
∇ log p(W(t)|X)dt + dB(t),

whereB(t) is a |W|-dimensional Brownian motion.
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Thus, we put more emphasis on variance in the bias-variance tradeoff of estimators in approx-
imate Bayesian learning. Compare the approximations in theLangevin algorithm to updateW as
in Eq. 13 and in Metropolis-Hasting algorithms to compute the acceptance probability as in Eq. 11

ǫ2∇ log p(W|X) = −ǫ2N∇ log Z(W) + C (19)
(

Z(W)

Z(W′)

)N

≈ eNe(W−W′)N∇ log Z(W′) (20)

whereC = ǫ2(∇ log p(W) + ∇ log p̃(X|W)) can be computed exactly, and Eq. 20 is obtained by
first-order Taylor expansion. We expect the latter approximation hasexponentialvariance com-
pared to the former one. Therefore, we choose the Langevin algorithm conjoint with the MCMC
scheme for posterior inference on BEFH model.

3.2 Approximating the expectations with brief sampling

∇ log Z(W) in Eq. 17 can be estimated using a “sampling very few steps from the data” technique.
It is first proposed by Hinton (2002) under the name of minimizing constrastive divergence (CD)
and suggested by Murray and Ghahramani (2004) for approximate Bayesian inference in MRF in
which it is namedbrief sampling. Brief sampling in GB-EFH runs multiple chains starting from
the dataX. Each chain performsl full step of Gibbs sampling. A total ofN samples are obtained,
denoted byXl = (x(l)

1 , . . . ,x(l)

N ). Then∇ log Z(W) is approximated as an expectation over the
empirical distribution ofXl. This whole procedure of brief sampling is illustrated as follows where
we setl = 1:

• Drawh
(1)

k ∼ N (WT
xk, IJ) for k = 1, . . . , N ;

• Drawx
(1)
k ∼ Bernoulli

(

logit((θ + Wh
(1)

k ))
)

for k = 1, . . . , N ;

• ∇ log Z(W) ≈ 1
N

∑

k x
(1)

k (x(1)

k )T
W = 1

N
X1XT

1 W

Brief sampling has been previously shown to provide low variance estimation with a small bias
in ML learning (Carreira-Perpinan and Hinton, 2005). The intractable term in ML learning of
MRF is just the same term∇ log Z(W), therefore we expect similar low-variance behavior of
brief sampling estimation in the Langevin algorithm. Fig. 4in the experiment section provides an
empirical demonstration.

3.3 Computing the predictive posterior density

Given m samples{W1, . . . ,Wm} obtained by the Langevin algorithm with brief sampling de-
scribed above, the predictive conditional distribution isapproximated by

p(h|x, X) =
1

m

m
∑

k=1

p(h|x,Wk). (21)
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More specifically, in GB-EFH we are interested in the conditional expectation ofh givenx, this is
computed as

E (h|x, X) =
1

m

m
∑

k=1

E (h|x,Wk) =
1

m

m
∑

k=1

W
T
k x. (22)

4 Hyperparameter Estimation

Now we briefly outline how to compute the maximum likelihood estimates of the hyperparameters
µ andσ of BEFH from training data, based on an empirical Bayes principle. (ML estimation for
other model parameters such asθ andλ roughly follows the same scheme and hence omitted for
simplicity.) We employ a Monte Carlo EM scheme. In the “E”-step, we impute the hidden variables
in BEFH, specifically,W, from its posterior distribution; and in Sec. 3 we have developed the
Langevin algorithm for this step. Given a set ofK imputedW from iterationt, we proceed to
the “M”-step, in which now we are essentially back to the standard ML learning scenario for fully
observed MRF, and compute an estimate of the hyperparameters as follow: we seek:

(µ(t+1), σ(t+1)) = arg max
µ,σ

K
∑

k=1

log p(X,W(t)

k |µ, σ)

= arg max
µ,σ

K
∑

k=1

(

log p(W(t)

k |µ, σ) + log p(X|W(t)

k )
)

= arg max
µ,σ

K
∑

k=1

log p(W(t)

k |µ, σ), (23)

whereW(t)

k denotes thek-th imputed sample at iterationt.
It can be shown that, the ML estimate of each element ofµ andσ is:

µ(t+1)

i =
1

JK

∑

j

∑

k

W (t)

ij,k (24)

σi
(t+1) =

√

1

JK − 1

∑

j

∑

k

(W (t)

ij,k − µ(t+1)

i )2 (25)

whereW (t)

ij,k denotes theij-th element ofW(t)

k .
To initialize the EM procedure, we can make use of the ML estimate ofW, denoted byWMLE,

and let

µ(0)

i =
1

J

∑

j

W MLE
ij (26)

σi
(0) =

√

1

J − 1

∑

j

(W MLE
ij − µ(0)

i )2 (27)
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5 Experiments

5.1 Synthetic EFH parameter estimation

The dataset is generated for a GB-EFH model withθ = 0. The model containsM = 100 observed
variables andJ = 10 hidden variables, so the number of parameters inW is M × J = 1000. We
vary the size of the training dataset from 25 to 200 and compare the performance of ML estimation
via gradient ascent and the Langevin algorithm proposed in Sec. 3.

Generatingiid samples from a general MRF is known to be nontrivial. However, for a GB-EFH
model exact samples can be genereated fairly efficiently by employing the perfect sampling tech-
nique (Childs et al., 2001) when all the elements of the matrix V = WWT are non-negative. To
ensure this property, we first generate anM ×M matrix whose elements are uniformly distributed
in the [0, 0.1] interval. ThenW is determined by performing an SVD on this matrix so thatV is
the best rank-J approximation.

There is an inidentifiability issue here because the data distribution

p(x|W) =
1

Z
exp

(

1

2
x

T
WW

T
x

)

(28)

is a function ofV and is invariant ifW is right-multiplied by an orthogonal matrixQ because
(WQ)(WQ)T = WWT. Also it can be shown the prior ofW defined in Eq. 7 is also invariant
under this transformation. Therefore our evaluation criteria are based on the matrixV instead of
W . We define two error measures:mean averaged error(mae) andmean relative error(mre) to
evaluate an estimatêV

mae =
1

M2

∑

i

∑

j

|Vij − V̂ij| (29)

mre =
1

M2

∑

i

∑

j

|Vij − V̂ij |

max{|Vij|, |V̂ij|}
(30)

Two tunable parameters in the Langevin algorithm are yet to be determined: the step sizeǫ in
Eq. 13 and the number of stepsl to sample from data in brief sampling. We choose an appropriate
ǫ by investigating the evolution of a number of elements ofW during the simulation of the Markov
chain. Under a too large step size the chain goes to infinity ina few steps, and under a too small
one the burn-in time is undesirably long. Fig 3 shows a simulation of the Langevin algorithm using
the step size we choose.

Fig. 4 shows the estimate of the gradient using brief sampling versus the number of sampling
stepsl. We also generate the same number of samples using the perfect sampling technique to pro-
vide an approximately correct version for comparison. Brief sampling provides biased estimation
compared to the exact sampling approach, but the bias is relatively small considering the difficulty
of dealing with intratable partition function. Note that the bias is not decreased by increasingl.
The variance of the estimation, on the other hand, is minimized whenl = 1. Therefore, we let
l = 1 in the subsequent experiments.
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Figure 3: Details of Monte Carlo simulations of the Langevinalgorithm, withy-axis corresponds
to the value ofW11. Three chains of different starting points are shown. The burn-in time to reach
convergence is approximately 50 transition.
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Figure 4: The estimation versus the number of sampling stepsin brief sampling (solid line)
compared with the estimation perfect sampling (dash line),with y-axis corresponds to an esti-
mated derivative of log-partition function∂ log Z(W)/∂W11 averaged over 50 runs. Both sampling
schemes generate 100 samples in each run. The standard errorbars are scaled by 1.64, indicating
95% significance of the difference in estimation.

In Fig. 5 we compare the performance of ML estimation via gradient ascent and the Bayesian
approach using the Langevin algorithm. The Langevin algorithm consistently achieves lower errors
under both measures and with different sizes of the trainingset. As more data are available, the
performance of ML estimation improves little; it appears that the gradient ascent procedure gets
stuck into a local minimum. On the other hand, the Langevin algorithm does benifit from more
data, which is possibly the consequence of the uninformative prior we placed for this problem by
settingµi = 0, σi = d = 0.1 for i = 1, . . . , M . The estimation by both methods has a non-neglible
bias from the true value, and we conjecture that it is due to the sparsity of the data. We also observe
that the performance difference of ML estimation and the Langevin algorithm is much larger as
measured bymean absolute errorthanmean relative error, which suggests that the latter algorithm
provides better estimates for parameters with larger values.

11



25 50 100 200
0

0.005

0.01

0.015

0.02

0.025

Size of Training Dataset

ML Learning
Bayesian Inference

25 50 100 200
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Size of Traning Dataset

 
ML learning
 
Bayesian Inference
 

(a) (b)
Figure 5: The Performance of ML learning and Bayesian inference using the brief Langevin al-
gorithm under two different error measures (a) mean absolute error; (b) mean relative error. The
results are averged over 10 runs. The error bar is shown only for Bayesian inference in (a), in other
cases the standard error are too small to be distinguishablefrom the figure.

5.2 Classification of Text and Image Data

The dataset is from the complied TRECVID’03 news video collection in (Xing et al., 2005). It
contains 1078 video shots with captions; each one can be treated as a document and belongs to one
of five pre-defined categories. 1894 binary word occurence features and 166 continuous features
for key images are extracted from each document. We extend the dual-wing harmonium (DWH)
developed in (Xing et al., 2005), which was previously trained by ML estimation, to Bayesian
DWH (BDWH) in which column-iid multivariate normal priors are placed on the coupling matrices
for word and image features respectively. The hyperparameters in the priors are estimated using
the empirical Bayes method developed in Sec. 4.

To give a hint on the difficulty of performing Bayesian learning in a real dataset discussed in
Sec. 3, we implement the naı̈ve Monte Carlo estimation of thepartition function in Eq. 18 for both
GB-EFH with synthetic dataset and DWH with real world dataset. The histograms of the estimated
Z over 100 runs are shown in Fig. 6. In the synthetic dataset theestimated values approximately fit
to a normal distribution. However, in the real dataset, there are a few spurious outliers, which shift
the mean estimated values over all the runs significantly, leading to generally biased, high variance
estimates. In Fig. 6(b) the variance of the estimation is three times as large as the estimated mean.

We evaluate the performance of four different models LSI (Deerwester et al., 1990), GM-LDA,
DWH and BDWH for classification task on the news video collection. For each algorithm, the
parameters are estimated using all data, without referenceto their labels. Once the model are
learned, every document in the data are projected into the lower-dimensional latent semantic space.
The data are then randomly splited to a training set and a testing set with the same size. We show
the result of using one nearest neighbor (1-NN) classifier topredict the category of each test data
given the training data.

Fig. 7 compares the performance obtained at different dimensions of latent semantic space, or
equivalently different numbers of latent topics ranging from 4 to 32. BDWH and DWH achieve
comparable classification accuracy consistently, and outperform LSI and GM-LDA with a good
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Figure 6: Histogram of 100 estimations of partition function using a naı̈ve Monte Carlo approx-
imation on (a) synthetic dataset; (b) real dataset. Arrows are centered at the mean and indicate
an interval of length of 2 times the standard deviation. Eachestimation computes the expectation
using 1000 samples. The displayed values in (b) are scaled bya factor of2 × 10−4.
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Figure 7: Classification accuracy versus number of latent topics.

margin when the number of latent topics are 16 and 32. LSI, DWHand BDWH all get better
performances in higher dimensional semantic space with less dimensionality-reduction. In the
constrast, GM-LDA outperforms other methods when the number of latent topics are 4 but the
performance curve goes down when the number of latent topicsincreases from 16 to 32, which
may reflect a low-dimensionality bias from the modeling.

6 Conclusion

We have proposed a new Bayesian formalism of EFH model and variants for latent semantic mod-
eling of text and multimedia data. The Langevin algorithm conjoint with an MCMC scheme was
applied to carry out approximate posterior inference, and an empirical Bayes method is also de-
veloped for esimating the parameters. The Bayesian approach achieves superior performance of
parameter estimation on a synthetic data set and comparableclassfication accuracy on a real dataset

13



of both text and image data.
Our experiments presented in this paper focus on binary occurences of words which is suitable

for short texts. In ongoing work, we are building an BEFH to directly model word counts. Also,
the independent Gaussian prior we used can be replaced by an more informative one, while the
inference and learning algorithm can straightforwardly apply to the new formalism. Finally, the
discretization scheme in the Langevin algorithm can be moreelaborate, such as incorporating the
idea suggested in (Sexton and Weingarten, 1992).
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A Partition Function of the GB-EFH Model

The joint probability distribution of observed variablesx and hidden variablesh in the GB-EFH
model is

p(x,h) =
1

Z(θ,W)
exp

(

θT
x −

1

2
h

T
h + x

T
Wh

)

(31)

where the corresponding partition function is

Z(θ,W) =
∑

x,h

exp

(

θT
x −

1

2
h

T
h + x

T
Wh

)

(32)

And the marginal pdfs are

p(x) =
1

Zx(θ,W)
exp

(

θT
x +

1

2
x

T
WW

T
x

)

(33)

p(h) =
1

Zh(θ,W)
exp

(

−
1

2
h

T
h + 1

T log(1 + exp(θ + Wh))

)

(34)

where

Zx(θ,W) = (2π)−
J

2 Z(θ,W)

Zh(θ,W) = Z(θ,W)

hereJ = |h| is the number of latent topics (hidden variables).
Therefore,

Zx(θ,W) = (2π)−
J

2 Zh(θ,W)

=
∑

h

exp

((

−
J

2
log 2π −

1

2
h

T
h

)

+ 1
T log(1 + exp(θ + Wh))

)

=
∑

h

q(h) exp
(

1
T log(1 + exp(θ + Wh))

)

≡
〈

exp
(

1
T log(1 + exp(θ + Wh))

)

〉

q(h)
(35)

where

q(h) = (2π)−
J

2 exp

(

J
∑

j=1

−
1

2
h2

j

)

∼ N (0, IJ)

Thus by introducing a vector of random variablet = θ + Wh, the partition function of the GB-
EFH model equals the expectation of the following random variable

Z(t) =
∏

i

(1 + ti) (36)

under the multivariate lognormal distributiont ∼ LogNormal(θ,WW
T ).
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