
Recovering time-varying networks of dependencies
in social and biological studies
Amr Ahmed and Eric P. Xing1

Language Technology Institute and Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Edited by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, and approved April 29, 2009 (received for review February 23, 2009)

A plausible representation of the relational information among
entities in dynamic systems such as a living cell or a social com-
munity is a stochastic network that is topologically rewiring and
semantically evolving over time. Although there is a rich literature
in modeling static or temporally invariant networks, little has been
done toward recovering the network structure when the networks
are not observable in a dynamic context. In this article, we present
a machine learning method called TESLA, which builds on a
temporally smoothed l1-regularized logistic regression formalism
that can be cast as a standard convex-optimization problem and
solved efficiently by using generic solvers scalable to large net-
works. We report promising results on recovering simulated time-
varying networks and on reverse engineering the latent sequence
of temporally rewiring political and academic social networks from
longitudinal data, and the evolving gene networks over >4,000
genes during the life cycle of Drosophila melanogaster from a
microarray time course at a resolution limited only by sample
frequency.

evolving network � social network � gene network � lasso �
Markov random field

In many problems arising in social, biological, and other fields, it
is often necessary to analyze populations of entities (e.g., indi-

viduals, genes) interconnected by a set of relationships (e.g.,
friendship, communication, influence) represented as a network.
Real-time analysis of network data is important for detecting
anomalies, predicting vulnerability, and assessing the potential
impact of interventions in various social, biological, or engineering
systems. It is not unusual for network data to be large, dynamic,
heterogeneous, noisy, and incomplete. Each of these characteristics
adds a degree of complexity to the interpretation and analysis of
networks.

Classical network analyses mostly assume that the networks in
question are fully observable, static, and isotropic. Given the
heterogeneity and complexity of network data in many domains,
these assumptions are limiting. For example, a majority of current
investigations of biological regulatory circuitry focus on networks
with invariant topology over a given set of molecules, such as a
protein–protein interaction network over all proteins of an organ-
ism regardless of the conditions under which individual interactions
may take place or a static gene network inferred from microarray
data even though the samples may be collected over a time course
or multiple conditions. In reality, over the course of a cellular
process, such as a cell cycle or an immune response, there may exist
multiple underlying ‘‘themes’’ that determine the functionalities of
each molecule and their relationships to each other, and such
themes are dynamic and stochastic. As a result, the molecular
networks at each time point are context dependent and can undergo
systematic rewiring, rather than being invariant over time. Indeed,
in a seminal study by Luscombe et al. (1), it was shown that the
‘‘active regulatory paths’’ in a gene expression correlation network
of Saccharomyces cerevisiae exhibit dramatic topological changes
and hub transience during a temporal cellular process and in
response to diverse stimuli. Similar phenomena are not uncommon
in many other domains, such as the evolution of citation networks
in scientific communities and the emergence/disintegration of

cryptic liaisons and communities in society. A key technical hurdle
that prevents us from an in-depth investigation of the mechanisms
underlying this phenomena is the unavailability of serial snapshots
of the rewiring network during the unfolding and progression of the
process in question. For example, under a dynamic biological
system, usually it is technologically impossible to experimentally
determine time-specific network topologies for a series of time
points based on techniques such as 2-hybrid or ChIP-chip
experiments.

Although there is a rich (and growing) literature on modeling
observed network data in either static (2) or dynamic scenarios
(3–5), with a few exceptions (6, 7), much less has been done toward
developing efficient inference techniques for recovering unob-
served network topologies from nodal (i.e., entitywise) observa-
tions in a dynamic context. Existing methods usually ignore poten-
tial network rewiring under different conditions and infer an
invariant network (8–10). Recently, a new class of models known
as the temporal exponential random graph model (tERGM) has
been proposed for modeling networks evolving over discrete time
steps (5). It is based on a log-linear graph transition model
P(Gt�Gt�1) defined on a set of temporal potentials that capture
certain characteristics of the graph rewiring dynamics, such as the
‘‘edge-stability,’’ ‘‘reciprocity,’’ and ‘‘transitivity’’ statistics over
time-adjacent graphs. Based on tERGM, subsequently, a hidden
tERGM model (htERGM) was developed to impose stochastic
constraints on latent rewiring graphs so that given a time series of
nodal attributes, one can infer time-specific network topology based
on the posterior distribution of Gt of every time point (7). However,
the MCMC-based algorithm in ref. 7 for posterior inference under
htERGM is very inefficient, and up until now, providing an efficient
inference algorithms for this model remains an open problem.

We propose TESLA, a machine learning algorithm for recover-
ing the structure of time-varying networks over a fixed set of nodes
from time series of nodal attributes. In these networks, an edge
between 2 nodes implies a dependency between their nodal states,
such as coactivation in a gene regulatory network. TESLA stems
from the acronym TESLLOR, which stands for temporally
smoothed l1-regularized logistic regression. It represents an exten-
sion of the well-known lasso-style sparse structure recovery tech-
nique and is based on a key assumption that temporally adjacent
networks are likely not to be dramatically different from each other
in topology and therefore are more likely to share common edges
than temporally distant networks. Building on the highly scalable
iterative l1-regularized logistic regression algorithm for estimating
single sparse networks (11), we develop a regression regularization
scheme that connects multiple time-specific network inference
functions via a first-order edge smoothness function that encour-
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ages edge retention between time-adjacent networks. An important
property of this idea is that it fully integrates all available samples
of the entire time series in a single inference procedure that
recovers the rewiring patterns between nodes over a time series of
arbitrary resolution—from a network for every single time point, to
one network for every K time points where K is very small.
Importantly, TESLA can be cast as a convex optimization problem
for which a globally optimal solution exists and can be efficiently
computed for networks with thousands of nodes. Recently, Zhou et
al. (6) proposed a nonparametric local kernel-weighting technique
for learning smoothly evolving graphical Gaussian models by using
the method in ref. 12 and showed interesting asymptotic consistency
results of their estimator. In contrast, here, we address the case of
discrete time-evolving graphs modeled as evolving Markov random
fields rather than graphical Gaussian models, and our method is a
more direct formalism that uses the smooth-evolution property as
an explicit penalty in the loss function that can be traded off with
data fitness, rather than an implicit condition needed to guarantee
consistency. Our ongoing theoretical analysis of TESLA suggests
that it can detect blockiness and jumps in graph evolution, and
possibly enjoys graph-structure consistency rather than parameter-
estimation consistency as shown in ref. 6 for their method.

We applied TESLA to the recovery of a time-varying social
network in the U.S. Senate based on 2 years of voting records, an
evolving author-keyword network from the proceedings of a ma-
chine learning conference over 13 years, and a sequence of 23
epoch-specific networks over 4,028 genes during the life cycle of
Drosophila melanogaster based on a microarray time course.
TESLA represents a practical and scalable method for recovering
large-scale time-varying networks underlying sociocultural and
biological processes at arbitrary temporal resolutions.

Problem Formulation
For concreteness, consider the problem of estimating a sequence of
time-varying dependency networks underlying a fixed set of genes
with discrete states (e.g., active or inactive) over a dynamic biolog-
ical process. Denote by Gt � (V, Et) the graph structure at time t
with node (i.e., gene) set v of size �V� � p and edge set Et. Let D �
{Xt}t�1

T represents the set of samples of node states associated with
all of the nodes of the graph over time. For generality, the time
stamp t can be also understood as denoting the onset of a time
epoch of length Nt. When Nt � 1, we have a single snapshot of node
states at time t; whereas when Nt � 1, we assume that we have
multiple iid observations of all node states corresponding to graph
Gt within epoch t; hence, Xt � {X1

t , …, XNt

t }, Xd
t � {0, 1}p. It should

be apparent that estimating a time-specific network Gt* naively
based on {Xt*} for every t* is an ill-defined problem, because this
corresponds to the near-extreme case of ‘‘large p (dimension
size) small n (sample size) problem’’ in statistical inference,
where, in principle, one wants n � Nt* � 1 to obtain truly
‘‘time-specific’’ estimation. Even with some relaxation on time
specificity, Nt would still be very small to reflect changes of Gt

with acceptable resolution.
A legitimate assumption one could exploit to overcome this

problem, as we shall do, is that the graphs {Gt} are not iid, but follow
a time-evolution process, so that all samples in D reflect something
about the graph Gt* for every t* � {1, . . . , T}. Consider the
following model:

P�xt�� t� � exp� �
i�V

� ii
t x i

t � �
�i, j��Et

� ij
t x i

t x j
t � A�� t�� , [1]

where the joint probability distribution of the random variables at
each time t is given by a pairwise Markov random field (MRF). In
Eq. 1, the parameters {� ij

t }(i, j)�Et capture the correlation (or the
dependency strength) between variables X i

t and X j
t, and A(�t) is

the log partition function of the distribution at time t. Given a set

of samples {x1:Nt

t } drawn from P(xt��t) at every time step t � 1,…,
T, our goal is to estimate the structure of the graph at every
time, i.e., to estimate {Êt}t�1

T . Note that {Êt}t�1
T can be directly

obtained from {�̂t}t�1
T through a sign function, with sign(�) � 0

if � � 0, sign(�) � 1 if � � 0, and sign(�) � �1 if � � 0.
We propose the following estimator for {�̂t}t�1

T , which
we’d like to call TESLA, obtained by solving a temporally
smoothed l1-regularized logistic regression problem for reasons
we shall explain in the next section:

�̂i
1, . . . , �̂i

T � arg min
�i

1,· · ·,�i
T
�
t�1

T

��x t; � i
t� � �1�

t�1

T

�� i
t�1

� �2 �
t�2

T

�� i
t � � i

t�1�1, @i , [2]

where

��xt; � i
t� � �

d�1

Nt

log P�xd,i
t �xd,�i

t , � i
t�

� �
d�1

Nt

� log�1 � exp�xd,�i
t � i

t�� � xd,�i
t � i

txd,i
t � ,

where � i
t denotes a (p � 1)-dimensional column vector correspond-

ing to the ith column of parameter matrix �t of the MRF excluding
� ii

t , i.e., the pairwise correlation coefficients from all other nodes in
V to node i at time t; xd,�i

t denotes the observed states of all nodes
except node i in the dth sample in time epoch t; �() represents the
log conditional likelihood of state xd,i

t given xd,�i
t under a logistic

regression model; and � � �1 represents the l1 norm of a vector. Note
that the TESLA problem in Eq. 2 will be defined and solved for
each node i in V, and in the end we recover an estimate of
{�̂t}t�1

T via a simple ‘‘signed’’ max (or min) magnitude function:
�̂ij

t � max(��̂ ij
t �, ��̂ ji

t �) 	 sign(argmax(��̂ ij
t �, ��̂ ji

t �)), @i 
 j, t,
and �̂ii

t � �̂ ii
t , @t. The edge set E can be subsequently recovered

from the nonzero entries in � t by using the sign function. As we
explain in the sequel, the problem in Eq. 2 has a close connection
to the graphical lasso method (13) for (static) sparse graph
estimation and the fused lasso method (14) for coupled multi-
variate regression. Thus, many of the virtues and theoretical
insights of these methods, such as computational efficiency,
sparsity, consistency, may apply to TESLA.

We are aware of 2 earlier attempts on estimating time-varying
graphs. In ref. 7, the time evolution of graph sequence {Gt} is
modeled by a hidden temporal exponential random graph model,
which allows one to explicitly infer a posterior distribution of Gt*

conditioning on all samples in D in much the same spirit of
performing posterior decoding of hidden states in a hidden Markov
model, albeit now with a computational complexity that is at least
O(2p2

) per iteration under an MCMC-based inference algorithm. In
ref. 6, a time interval-dependent kernel was applied to weight every
sample in D with respect to t*, which are subsequently treated as
reweighed iid samples from Gt* for estimating Gt*. It can be shown
that if {Xt} are continuous valued and follow a time-varying
graphical Gaussian model (GGM), and when the precision matrix
� of the GGM is assumed to be smoothly evolving, this scheme can
consistently recover the (value of) � t* corresponding to every Gt*

in the limit (6). However, another important type of consistency
known as model-selection consistency, or pattern consistency,
which concerns the identification of nonzero elements of � t*, and
hence directly leads to recovery of the topology Et* of graph Gt*, is
not available. It is noteworthy that in ref. 6, the smooth evolution
assumption is used as a precondition to guarantee value consistency
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of the � t* estimator, rather than being treated as an explicitly
tunable constraint that can be used to accommodate real data.
Therefore, in cases where more turbulent dynamics (e.g., sudden
jumps) drives graph evolution, this method may run into difficulties.
The TESLA model presented above represents a more direct
approach that allows more flexible tradeoff among smoothness of
graph evolution, sparsity of graph estimation, and likelihood of the
fit. Although we focus on discrete-valued networks in this article,
our technique can be readily applied to continuous-valued net-
works. In the following section, we explain in detail the rational
behind the TESLA model, and an algorithm that efficiently solves
the estimation problem.

Temporally Smoothed Sparse Graphical Regression
It is reasonable to expect that the time-varying networks underlying
biological or social processes represent a sparse structure that
evolves smoothly over time. The TESLA objective defined in Eq. 2
is essentially a temporally smoothed sparse graphical regression
problem aiming at reconstructing such networks. It builds on 3 key
ideas that are extensively studied in recent literature for structure
recovery from high-dimensional data: (i) structural estimation via
graphical regression; (ii) sparsity and consistency via l1 shrinkage of
parameters; (iii) structure coupling via parameter fusion. Below, we
briefly discuss each of these ideas and its relevance to our problem.

Structural Recovery, Sparsity, and Smoothness. When T � 1, the
optimization problem in Eq. 2 reduces to a static case, where we
estimate a single network based on N1 iid samples. This problem has
been heavily studied in recent literature [see supporting informa-
tion (SI)]. Our discussion thus starts from this base case.

It is well known that for both continuous-valued networks after
a GGM and discrete-valued networks after a MRF, estimation of
model parameters (which bear the structural information) can be
cast as a graphical regression problem in which, for every node Xi,
one defines it as a response over predictors corresponding to the
remaining p � 1 nodes X�i via a linear or logistic function. To
estimate a discrete network modeled by a MRF, the loss function
of the graphical logistic regression is not exactly equivalent to the
likelihood function of the original MRF but corresponds to a
pseudolikelihood, P̂(X��) � �i�1

p P(Xi�XN(i)), where N(i) is the
Markov blanket of node i, i.e., the neighboring nodes of node i (11).
In the binary pairwise MRF, the local likelihood P̂(Xi�X�i,�i) has a
logistic-regression form. Thus, the problem of learning � degen-
erates to solving p logistic regression problems each defined on an
individual node with respect to all of the other nodes in the graph.
This gives rise to the first term of the TESLA objective in Eq. 2.

Because of presence of noise, and in the common situation where
p �� n, it is well known that traditional regression methods do not
offer a model selection power and tend to overfit data. The
immediate consequence of this pitfall on graph estimation is a dense
resulting graph that contains a large amount of spurious edges. The
lasso method proposed by Tibshirani (15), which solves an l1 norm
regularized least-square linear regression, has a parsimonious prop-
erty, and exhibits model-selection consistency (i.e., recovers the set
of true nonzero regression coefficients asymptotically) in noisy
settings even when p �� n. When applied in the graphical regression
context, it becomes what is known as the graph-lasso algorithm. It
has been shown that the vanishing lasso coefficient estimates
identify asymptotically the neighborhood of every node in the graph
(10) and thus lead to a consistent estimation of the structure of a
continuous-valued network under a GGM. For discrete-valued
graphs, Wainwright et al. (11) have shown that applying the l1
norm-regularized logistic regression over each node with respect to
all other nodes can also lead to consistent neighborhood selection
over every node and hence converges to the true graph structure
asymptotically, under a MRF. In the sprit of graph-lasso, we refer
to this algorithm as graph-LLR, which motivates the second term,
denoted as Lshrink, in Eq. 2.

If, rather than estimating a single graph, one wants to estimate,
say, 2 graphs G1 and G2 that are topologically close to each other,
some constraints need to be applied to their corresponding
parameter matrices �1 and �2. Under the graph-lasso or graph-
LLR scheme, this is equivalent to coupling 2 regression problems
Xi

1 � f(X�i
1 ; �i

1) and Xi
2 � f(X�i

2 ; �i
2) by penalizing the discrep-

ancy between �i
1 and �i

2, for every i. A similar problem that
focuses on encouraging low variance or blocky structure within
a coefficient vector � (rather than between 2 �s with elementwise
correspondence as considered in this article) has recently re-
ceived remarkable attention. Several extensions have been pro-
posed over the l1 penalty to enforce smoothness in addition to
sparsity over elements in �. In the fused-lasso method proposed
in ref. 14, a fusion penalty in the form of Lsmooth � ¥l�2

p ��l � �l�1�
was used in addition to the lasso penalty over the regression loss.
In this penalty, the ordering of the predictors is used as a proxy
for coupling predictors of similar coefficients, and the ordering
is supplied by using domain knowledge to the model. This
penalty, together with the lasso penalty, has been shown to result
in sequences of zero (or nonzero) parameters in �, thus enforcing
both smoothness and sparsity. It is easy to see that a penalty of
the form Lshrink � Lsmooth can be not only applied to elements
within a single � but also to corresponding elements across
different �s, whereby both sparsity within the regression function
and smoothness across �s can be enforced. The Lsmooth now
represents a total variation (TV) penalty, which motivates the
third term in Eq. 2.

To summarize, to estimate a sequence of T time-varying net-
works, at each time point (or epoch) t, we defined a graph-LLR
problem over samples x1:Nt

t . We used the negative pseudologlikeli-
hood based on a logistic regression as a surrogate to the intractable
log-likelihood function under a MRF, and used an l1 norm penalty
over each column of �t (the regression coefficient vectors of nodes
in Gt) to achieve a shrinkage effect on the neighbors of each node.
Then, to incorporate temporal dependencies between time-specific
graphs that resulted from the graph-LLR, we furthermore intro-
duced a fusion penalty Lsmooth � �� t � � t�1�1 over the difference
between every pair of � t�1 and � t, the regression coefficient vectors
corresponding to the same node at 2 consecutive time points (or
epochs), to bias our estimate to graphs that evolve in a smooth
fashion. It is noteworthy that this term can be interpreted as the
‘‘edge-stability’’ potential in the more general htERGM model
proposed earlier (7). But the TESLA formulation decouples the
learning problem in ref. 7, which is computationally intractable, into
a set of p separate regularized regression problems, 1 for each node,
as made explicit in Eq. 2.

Convex Optimization Algorithm. The problem in Eq. 1 is a convex
optimization problem with nonsmooth constraints. We can instead
solve the following equivalent problem by introducing new auxiliary
variables, ui

t and v
i

t:

min
�i

1,. . .,�i
T

ut
1,. . .,ui

T;vi
2,. . .,vi

T

�
t�1

T

��xt; � i
t� � �1 �

t�1

T

1
ui
t � �2 �

t�2

T

1
vi
t [3]

s.t. �uij
t � � ij

t � uij
t , t � 1, . . . , T , @j � V \ i ,

s.t. �vij
t � � ij

t � � ij
t�1 � vij

t , t � 2, . . . , T , @j � V \ i ,

where 1 denotes a vector with all components set to 1, so 1Tui
t is the

sum of the components of ui
t and likewise for 1Tvi

t. To see the
equivalence of the problem in Eq. 3 with the one in Eq. 2, we note
that at the optimal point of Eq. 3, we must have uij

t � �� ij
t � and

similarly, vij
t � �� ij

t � � ij
t�1�, in which case the objectives in Eq. 3 and

Eq. 2 are equivalent (a similar transformation scheme has been
applied to solving the l1-regularized logistic regression in ref. 16).
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Eq. 3 is again a convex optimization problem but now with a smooth
objective and linear constraint functions, so it can be solved by
standard convex optimization methods, such as the interior point
methods (also referred to as barrier methods) (16). In fact, high-
quality solvers using interior-point methods are available to directly
handle the problem in Eq. 3 efficiently for medium- to large-scale
networks (up to a few thousands of nodes and a few hundreds of
samples). In this article, we used the CVX optimization package
(http://stanford.edu/boyd/cvx). In SI, we detail a criteria for select-
ing the hyperparameters using the BIC score.

Experimental Results
Now we demonstrate TESLA on recovering synthetic time-varying
networks and several real-world evolving sociocultural and biolog-
ical networks from time series of node states. We used a variety of
network layout software for visualizing the recovered networks (see
SI for more details).

Simulation Results. Based on a simple edge birth–death model
defined on a 3-tuple (p, d, r), we simulated time series of rewiring
networks and their corresponding node states and empirically
evaluated TESLA on its performance in recovering the time-
varying networks from samples of node states. Here, p denotes the
number of nodes in the network, d denotes the maximum degree
of nodes in the first network, and r determines the number of
randomly added/deleted edges to/from the network at each change
point. We began by randomly generating edges in the first network

such that each node has a maximum of d edges. The MRF weights
of the edges were then sampled uniformly from interval [�1, �0.5]
� [0.5,1]. We then added and removed r edges every 10 epochs (see
SI for more details). We generated a sequence of 100 networks, 1
for each time epoch and then Nt samples of nodal states at each
epoch using Gibbs sampling. Performance was evaluated by the
F-measure, which is defined as the harmonic mean of precision and
recall. We compared TESLA with a static graph-LLR that pools all
samples in the time series and estimates a single time-invariant
network. The regularization parameters (�1,�2) for TESLA and �1
for the static method were selected from the set {0.001,
0.005, . . . , 0.002} for �1 and {0.1, 0.3, . . . , 2} for �2 using the BIC
score (see SI).

Fig. 1 shows that TESLA dominates the static approach in
network recovery under a wide range of conditions. As expected,
the performance went down as we increased the degree of the
networks while fixing the available samples. However, TESLA
performs relatively more stably as the rate of changes of the
networks is increased because of its ability to adapt �2. In addition,
the performance improves as more samples become available.
Moreover, the precision-recall curve in Fig. 1D shows that TESLA
significantly outperforms the static method in the high-precision
and even precision-recall areas as highlighted.

U.S. Senate Network. We analyzed the voting record of 642 bills
brought to U.S. Senate of the 109th Congress (2005–2006)
(www.senate.gov). Each of the 100 senators can be regarded as a
node in a latent evolving social network in the senate, and the votes
on every bill represent a time-specific random sample of the binary
states of all nodes in this network. Using TESLA, we hope to
discover how the relationships between senators change over time.
Previously, this dataset was analyzed in ref. 12, where the time
stamps of the bills were ignored, and a static network was estimated.

We grouped the voting records into 12 consecutive time epochs
where each epoch spans 2 months. Fig. 2 shows the estimated
network at epoch 2 (March 2005), epoch 7 (January 2006), and
epoch 10 (August 2006). Democratic senators are shown as rect-
angular nodes, Republican senators are shown as ellipsoid nodes,
and Independent senators are shown as diamonds. As we can see,
the network is divided into 2 big components, approximately along
party lines. We highlight 3 senators that are of particular interest at
the boundary between the 2 parties: Senator Jim Jeffords (I),
Senator Lincoln Chafee (R), and Senator Bill Nelson (D) and track
their neighborhood over time.

Senator Jeffords is an Independent who was originally a liberal-
to-moderate Republican. From the inferred evolving network, we
can see that his record overall is more connected to Democratic
senators, although in approximately January 2006, his voting pat-
tern changed slightly to have more connections with his own party.
In fact, it is a known fact that Senator Jeffords continued to vote
with Republicans on many major pieces of legislation that hap-
pened to appear around this period. Moreover, although Senator
Bill Nelson is affiliated with the Democratic party, he is one of the
most conservative democratic senators and his views are more
correlated with the Republicans, as was discovered by TESLA.

Fig. 1. Simulation results. (A–C) The effect of varying one simulation dimen-
sion while fixing the others. (D) The precision-recall curve for a single simu-
lation run (degree � 5, no. of samples � 5, and rate � 10).

Fig. 2. The dynamic networks of 100 U.S. senators of the 109th Congress. Rectangular, ellipsoid, and diamond nodes denote Democrats, Republicans, and
Independents, respectively.
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Another interesting observation can be made on Senator Chafee.
He is a Republican; however, as shown in Fig. 2, his views are
progressively changing toward the Democrats, as measured by the
relative number of connections he has with both parties. In fact,
Senator Chafee left the Republic party and became an Independent
afterward. Finally, we also highlight Senator Obama (who is now
the President of the U.S.) in Fig. 2, and it is clear that he was always
connected to only Democratic senators.

Author-Keyword Academic Social Network. The NIPS12 dataset
(www.cs.toronto.edu/roweis/data.html) contains the proceedings of
the Neural Information Processing Systems (NIPS) conference
from the years 1987–1999, which allows us to analyze the dynamics
of the academic social network over authors and keywords. As an
illustrative case study, we selected the top 36 authors based on
publication counts, which resulted in a total of 431 papers; then we
selected 73 relevant words from these papers; finally we divided the
data into 13 epochs using the time stamp of each paper. Thus, each
article in our dataset is a sample from a (time-specific) network with
109 dimensions. To visualize the result, we select 6 keyword nodes:
‘‘Gaussian,’’ ‘‘classifier,’’ ‘‘likelihood,’’ ‘‘approximation,’’ ‘‘error,’’
and ‘‘variational’’ and track their subnetworks containing neigh-
boring authors and keywords up to the first neighbors to avoid
overcrowding the figures. See SI for the illustration of the network.

One should observe the smooth transition between the networks
from 1987 to 1988 and from 1998 to 1999. Second, the size of the
neighborhood of a word is a good indication of the contextual
diversity of the usage of this word. For instances, in early years, the
word ‘‘likelihood’’ had a limited context in ‘‘Gaussian’’ settings;
however, over the years, this behavior changed, and at the years
1998 and 1999, ‘‘likelihood’’ started to appear in different contexts
like ‘‘speech,’’ ‘‘Bayesian,’’ ‘‘mixture,’’ etc.; thus, its neighborhood
expanded over the years. On the other hand, words like ‘‘Gaussian’’
were always popular in different settings and get more popular over
the years, and, as such, the model smoothly expanded its neigh-
borhood as well. It is also interesting to analyze the word ‘‘varia-
tional,’’ where in early years it was tightly coupled with the word
’‘‘Bayesian,’’ and over the years, its neighborhood was dominated by
‘‘Jordan’’ and ‘‘Ghahramani,’’ who were very active researchers in
this area at this time; then, over the year 1999, the neighborhood of
the word ‘‘variational’’ expanded to include the word ‘‘EM,’’ as in
‘‘variational EM.’’ Also, note how ‘‘Hinton’’ was always connected
to terms related to Boltzmann machines like ‘‘distribution’’ and
‘‘field’’ in the 1980s and ‘‘weights’’ in 1998. Finally, note the

interesting relationship between the word ‘‘kernel’’ and both
‘‘Scholkopf’’ and ‘‘Smola.’’

Evolving Gene Networks During Drosophila Development. The mi-
croarray time course from ref. 17 records the expression levels of
4,028 sequence-verified, unique genes measured at 66 time points
spanning the embryonic, larval, pupal, and adulthood period during
the life cycle of D. melanogaster. We detail the preprocessing of
these data in SI. Using TESLA, we reconstructed 23 time-varying
gene networks, 1 per 3 time points, spanning the embryonic (time
points 1–11), larval (time points 12–14), pupal (time points 15–20),
and adulthood stages (time points 21–23). It is beyond the scope of
this article to fully present and discuss the results of this analysis;
instead, to gain a glimpse of the time-specific snapshots and
temporal evolution patterns of gene networks in a living organism
during its full developmental course, we show in Fig. 3 a display of
the transient interactions between functional groups of genes
during this process and provide more analyses in SI.

During the life cycle of D. melanogaster, many genes are
expected to play different roles at different times and interact
with different proteins of different functions. According to Flybase
(http://flybase.bio.indiana.edu), the 4,028 genes in our dataset can
be categorized into 3 primary gene ontology (GO) groups: cellular
component, molecular function, and biological process. They can be
further divided into 43 secondary gene ontology groups. Fig. 3
shows the interactions between these ontology groups that are
evolving over time. It is found that, through all of the stages of
developmental process, genes belonging to the following GO
groups: binding function, transcription regulator activity, and or-
ganelle function, are most active. In particular, the group of genes
involved in binding functions plays the central role as the hub of the
networks of interactions between ontology groups. Genes related to
transcriptional regulatory activity and organelles functions exhibit
persistent interaction with the group of genes related to binding
functions. Other groups of genes that often interact with the binding
genes are those related to functions such as developmental process,
response to stimulus, and biological regulation.

Large topological changes can be observed from the temporal
rewiring patterns between these gene ontology groups. The most
diverse interactions between gene ontology groups occur at the
beginning of embryonic stage and near the end of adulthood stage.
In contrast, near the end of embryonic stage (time point 10), the
interactions between genes are largely restricted to those from the
following 4 gene ontology groups: transcriptional regulator activity,

Fig. 3. The temporally rewiring patterns of interactions among gene ontology groups during D. melanogaster development. The 4,028 measured genes are
grouped according to the 43 ontology groups; the weight of an edge between 2 ontology groups counts the number of connections between genes across these
2 groups. The width of an edge in the visualization is proportional to its weight. For clarity, only edges with weights �5 are displayed. Each ontology group is
coded in clockwise order with a color shown in the legend on the upper left corner. Moreover, we highlight the start of each stage by using its first letter.
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enzyme regulator activity, binding, and organelle. However, despite
these interesting empirical observations, we would like to empha-
size that this dataset has been criticized for missing important
developmental genes (e.g., the gaps genes and many pair-rule
genes), and is thus perhaps unsuitable for drawing stronger bio-
logical conclusions about the mechanisms underlying network
evolution. Indeed, our purpose for showing these empirical results
is not to suggest any biological findings, but to illustrate a promising
utility of TESLA in reverse-engineering time-varying network in
large-scale realistic problems.

Discussion and Future Work
In this article, we investigated a class of network structure inference
problems that is of practical relevance and importance in network
analysis in diverse contexts ranging from biology to social sciences.
Rather than treating the networks as observable invariant entities,
we view them as latent, dynamically rewiring metastructures behind
the observed high-dimensional longitudinal data. We proposed an
efficient and highly scalable algorithm called TESLA to infer such
time-evolving networks, by solving a set of temporally smoothed
l1-regularized logistic regression problems via existing convex op-
timization techniques; and we demonstrated TESLA in several
empirical analyses that involve reverse-engineering either a syn-
thetic network, or the real-world time-evolving U.S. Senate net-
work, NIPS author-keyword network, and fruit fly gene network.
There are several directions for future work. First, although stan-
dard off-the-shelf interior point methods were used successfully in
this work, developing a customized solver along the method pro-
posed in ref. 16 is an important future work that could potentially
scale up the size of the networks targeted by TESLA by an order
of magnitude. On the theoretical side, although it was shown that
the solution to the fused lasso problem is asymptotically value-

consistent (14) under the assumption that the model dimension is
fixed; it is still an open problem to characterize the solution when
the model dimension is allowed to grow and to determine at which
rate the sample size should grow with respect to the network size
and evolution rate to achieve model-selection consistency in a
time-varying network. Although in a recent article Zhou et al. (6)
proved that maximizing a regularized likelihood function with
weighted samples results in a value-consistent estimation of the
covariance matrices associated with a time-varying GGM, their
result does not directly apply to TESLA, for which we would like to
establish guarantees on model-selection consistency under the
more flexible TV-penalized logistic loss for an evolving MRF.
Finally, characterizing the uncertainty and statistical significance
of structure recovery under finite-sample-size scenarios remains
an important issue that has received significant attention in
existing work on static structure recovery. For example, Mein-
shausen et al. (18) proposed a randomization scheme for com-
puting the P values of structure recovery in high-dimensional
linear regression. In ref. 19, the concept of false discovery rate
was used to characterize the number of nonspurious edges in a
learned network. Extending these results to time-varying, high-
dimensional problems addressed by TESLA remains an open
problem: Theories are needed to calculate the P value of
transient links, and appropriate multiple-hypothesis testing may
be needed to adjust these P values.
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