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Abstract— Although the human hand is a complex biome-
chanical system, only a small set of features may be necessary
for observation learning of functional grasp classes. We explore
how to methodically select a minimal set of hand pose features
from optical marker data for grasp recognition. Supervised
feature selection is used to determine a reduced feature set of
surface marker locations on the hand that is appropriate for
grasp classification of individual hand poses. Classifiers trained
on the reduced feature set of five markers retain at least 92% of
the prediction accuracy of classifiers trained on a full feature set
of thirty markers. The reduced model also generalizes better to
new subjects. The dramatic reduction of the marker set size and
the success of a linear classifier from local marker coordinates
recommend optical marker techniques as a practical alternative
to data glove methods for observation learning of grasping.

I. INTRODUCTION

The human hand has amazing flexibility as a manipulator,
but the complex movement can be challenging to measure,
model, and imitate. Manually-programming manipulation
tasks for a multi-fingered robotic system can be time-
consuming and result in inflexibility with respect to specific
task parameters. The cost of adding new behaviors could be
significantly reduced if the robot system has the ability to
learn from observing a human teacher. In observation learn-
ing, examples provided by a human demonstrator are used
to automatically synthesize grasps for a robot manipulator
[1, 2]. The observation method should provide the system
with a minimum set of features that can represent the type of
grasp performed by the demonstrator. It is also desirable that
the demonstrator be able to perform the action as naturally
as possible to provide a good quality example.

In previous approaches to grasp recognition for observa-
tion learning, the human demonstrator wears a data glove
while performing the example grasp [2–5]. Sensors attached
to the data glove may measure the finger joint angles or
the position of selected points on the hand. The direct
measurement of the glove configuration allows for the grasp
features to be detected easily. However, the data glove
obstructs the demonstrator’s contact with the object and may
prevent a natural grasp. Additionally, the accuracy of the
measured joint angles depends on how well the glove fits
the individual’s hand, and this aspect creates difficulties in
particular for demonstrators with smaller hands.
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Vision systems may also be used to observe the demon-
strated grasp. Several researchers have developed hand pose
estimation methods for vision-based gesture interfaces [6–
9]. These systems observe hand pose without a data glove
and allow for natural motion. Applying a vision strategy to
grasping observation, though, is challenging due to occlusion
of the fingers by the grasped object which complicates
segmentation of the hand from the rest of the image.

Another observation technique is marker-based motion
capture, where optical markers attached to the hand are used
to track the observed movement in a controlled environment
with calibrated cameras. The addition of surface markers
simplifies the detection of key interest points, without af-
fecting the natural grasping motion nor obstructing contact
with the object as data gloves may. Marker-based capture
of hand pose has been used previously for computer ani-
mation applications, where a full set of markers tracking all
finger segments is used to measure example grasps [10, 11].
Reconstructing the complete hand pose can still be difficult
because of incorrect marker correspondences and occlusions
that result from using a full set of markers to track all the
finger segments.

We propose to use a reduced marker protocol to simplify
the capture procedure and describe the hand configuration
in a low-dimensional space. This is based on the idea,
suggested by previous studies, that the recognition of a
discrete set of functional grasps may not require measuring
the complete configuration of the hand. The work of San-
tello et al. [12] and Mason et al. [13] found that mimed
reach-to-grasp motions can be represented by just a few
principal components in the joint angle space. Dejmal and
Zacksenhouse [4] also use principal component analysis
for recognizing discrete classes of manipulation movements
from data glove input. However, using principal components
to find the dominant synergies in the input feature space
requires that all input degrees of freedom be measured and
does not allow for simplification of a marker-based protocol.
In computer animation, Chai and Hodgins [14] and Liu et al.
[15] build locally-linear models of multiple behaviors to
reconstruct full-body motion from a small set of control
marker inputs. Liu et al. [15] select a reduced marker set
from a full optical marker set as we do, but the markers
are chosen as the features which maximize the variance in
the lower-dimensional space such that they can be used to
reconstruct the full-dimensional representation.

Previous work in the robotics community has investigated
grasp recognition using non-linear classification models.
Bernardin et al. [16] classify the entire reach-to-grasp move-
ment trajectory by training a hidden Markov model (HMM)
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on the 16 data glove joint angles and 13 tactile sensors on
the glove. Similarly, Ekvall and Kragic [3] also used a HMM
to classify grasping sequences observed from data glove
measurements of four positions on the back of the hand and
the fingertips. Another approach by Moussa and Kamel [17]
uses artificial neural networks for predicting manufacturing
grasps from the taxonomy proposed in Cutkosky [18] based
on features of the object and task rather than a demonstrated
hand pose. We find that a linear classifier is sufficient
to predict grasps from local marker coordinate positions
describing the hand pose for demonstrated grasps of several
objects.

The following sections present how we determine an
appropriate reduced marker protocol for grasp recognition.
Supervised feature selection is first used to identify a subset
of features from a full set of marker positions. The grasp
classifier is then trained on the reduced feature set resulting
from the feature selection experiments. We evaluate the
method on grasp data which includes examples from multiple
demonstrators on multiple objects.

II. PROBLEM DEFINITION

This study investigates feature selection of the surface
marker positions for the purpose of grasp classification. The
classification goal is to predict the grasp class for a single
hand pose given the positions of a specified set of markers.

The input feature vector x for a marker set with M
markers is a 3M column vector consisting of the three-
dimensional marker positions which represents the hand pose
at a single time sample. The marker positions are expressed
with respect to a local coordinate system attached to the
back of the hand (Fig. 1), such that the description of the
hand pose is invariant to the orientation and position of the
hand in the external coordinate system. The classification
output is the single predicted grasp Y , which can take one of
K possible grasp class values from the set {y1, y2, . . . , yK}
(Fig. 2).

The purpose of feature selection is to determine a subset
of markers that will support accurate decoding of the grasp
class.

III. METHOD

A. Grasp classification model

Our approach uses a linear logistic regression classifier
for evaluating candidate marker sets in supervised feature
selection and then for predicting grasp from the final trained
model. Although the fingers exhibit nonlinear kinematics
relative to the palm, the anatomic constraints on hand motion
will limit each surface marker to a continuous region of
reachable positions. The location of a single marker will be
further constrained to a sub-region within the overall reach-
able space depending on the type of grasp. Thus, we believe
that hand poses as represented by local marker coordinates
will be compactly clustered according to the grasp class,
such that a classifier with linear decision boundaries can be
successful for predicting grasp types from surface marker
data.

origin

local coordinate system

Fig. 1. A total of 31 markers are attached to the hand. Three markers on the
rigid portion of the back of the hand define the local coordinate system for
the marker positions. The origin marker is excluded in the feature selection
tests, such that the full marker set consists of the remaining 30 markers.
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Fig. 2. Six different functional grasps were considered for grasp classifi-
cation: (a) cylindrical grasp, (b) spherical (or circular) grasp, (c) lumbrical
grasp, (d) two-finger pinch (or pad-to-pad) grasp, (e) tripod (or three-jaw
chuck), and (f) lateral tripod grasp.

We give a brief overview of multiclass linear logistic
regression, which is used as our baseline classifier. Please
see, e.g., Bishop [19] for more details.

In multiclass logistic regression, the posterior probabilities
of a class yk given the input features are modeled by the
softmax function:

pk(x, A) = p(Y = yk|x) =
exp(aT

kx)∑K
j=1 exp(aT

jx)
, (1)

where the vectors in the matrix A = (a1, . . . ,aK) are the
model weights for the K classes.

The values of the weights are determined by maximum
conditional likelihood estimation from a training set (X, Y ).
For a data set with N independent and identically-distributed
examples, the log of the conditional data likelihood is

l(A) = ln p(Y |X, A) =
N∑

n=1

K∑
k=1

δ(Yn = yk) ln pk(xn, A).

(2)
Gradient ascent can be used to find weights which maxi-

mize the conditional data log likelihood, where the gradient
of the log likelihood with respect to the weight vectors is

∇aj
l(A) =

N∑
n=1

(δ(Yn = yj)− pj(xn, A))xn. (3)

Once the set of weights A is determined from the training
set, the grasp is predicted for a given hand pose by selecting
the class with the maximum posterior probability:

ypred ← arg max
yk

p(Y = yk|x). (4)

The ratio of the maximum class probability to the second
highest class probability provides a confidence measure for
the prediction:

c(x) =
maxyk

p(Y = yk|x)
maxyk 6=ypred

p(Y = yk|x)
. (5)
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B. Supervised feature selection

Given a baseline classification model, we then wish to
select a subset of input features which represents the hand
pose in a lower-dimensional space. To avoid considering
the exponential number of possible feature sets, sequential
wrapper algorithms evaluate the addition or removal of a
single feature at a time for locally-optimal feature selection
[see, e.g., 20]. In contrast to filter approaches, where a
subset is selected based on individual feature scores, wrapper
algorithms score possible feature sets and thus model the
interaction between features with respect to predicting the
target class. In this work, we will consider two versions
of greedy sequential wrappers. The forward method adds
features incrementally to a reduced feature set, and the
backward method discards features incrementally from a
larger set of available features (Figs. 3 and 4).

We make one modification to these standard algorithms
for marker-based techniques. Instead of evaluating individual
position coordinates, our methods will score the features
in subsets of three which correspond to the three position
coordinates of one marker. This reflects the usage in the
target application, where the goal is to reduce the number of
markers in the protocol, rather than simply predicting grasp
from a set of features that may include only one or two of
the three available coordinates from a single marker.

Thus at each stage of sequential feature selection, every

Input: M , desired size of final marker set
Input: X , full set of available features (triplets of marker coordinates)
Output: S, reduced marker set of size M

// let X(S) denote the set of position coordinates of markers in set S

1: S ←empty set
2: while size(S) < M do
3: for all m 6∈ S do
4: // for each remaining marker from the available set
5: score(m|S) ←accuracy of classifier Y = f(X(S ∪m))
6: // use cross-validation accuracy to score the combined set of the

current set with the candidate marker
7: end for
8: // select the best marker to add to the current set
9: s← arg maxm6∈S score(m|S)

10: S ← S ∪ s
11: end while
12: return S

Fig. 3. Algorithm for forward selection of marker features.

Input: M , desired size of final marker set
Input: X , full set of available features (triplets of marker coordinates)
Output: S, reduced marker set of size M

// let X(S) denote the set of position coordinates of markers in set S

1: S ←full set of available markers
2: while size(S) > M do
3: for all m ∈ S do
4: // for each marker in the current selected set S
5: score(m|S) ←accuracy of classifier Y = f(X(S −m))
6: // use cross-validation accuracy to score the current set excluding

the candidate marker
7: end for
8: // select the best marker to remove from the current set
9: s← arg maxm∈S score(m|S)

10: S ← S − s
11: end while
12: return S

Fig. 4. Algorithm for backward selection of marker features.

candidate marker consisting of a subset of three features
is scored conditioned on the current selected marker set.
The scoring criterion for our implementation is the classifier
prediction accuracy estimated from cross-validation on the
training set. In n-fold cross-validation, the training data is
divided into n validation data sets. For each validation set,
a classifier is trained from the examples not included in the
validation set, and then the classifier is tested on the examples
in the validation set. The cross-validation accuracy for a
given model size is the average accuracy of the n classifiers,
weighted by the number of examples in each validation set.
Although there are a number of possible scoring criterion
[19, 20], the classifier accuracy most directly relates to
the goal of selecting an optimal marker subset for grasp
classification.

The results of the sequential feature selection determine a
subset of markers whose coordinates comprise the reduced
feature set. Then a final classifier model is trained from a
specified set of training examples and evaluated on held out
test data.

IV. EXPERIMENTAL VALIDATION AND RESULTS

A. Grasp data set

Example grasps were measured using a full marker pro-
tocol with markers attached to all finger segments of the
demonstrator’s right hand. The three-dimensional positions
of 31 markers were recorded during the grasping action (Fig.
1). Three of these markers define a local coordinate system
on the rigid portion of the back of the hand [21]. The marker
used as the origin is excluded from the feature vector because
its local position is invariant. A single example representing
the hand pose at one time sample is thus a 90-dimensional
vector consisting of the local coordinates of 30 markers.

Each example was labeled as one of six grasp types,
selected from functional grasps for daily living [22] (Fig. 2).
Power grasps, characterized by large contact areas with the
object, included cylindrical grasp and spherical (or circular)
grasp. In addition, lumbrical grasp is used to hold flat or rect-
angular objects [22]. Precision grasps, for fine manipulation
by the fingertips, included two-finger pinch (or pad-to-pad)
grasp, tripod (or three-jaw chuck) grasp, and lateral tripod
grasp. The lateral tripod grasp is often used by humans for
holding writing or eating utensils [22].

The data set consists of grasps demonstrated on 46 objects,
which may each be grasped in multiple ways. Examples are
divided into two sets according to object (Table I). Object
set A consists of 38 objects corresponding to a total of 88
object-grasp pairs, and object set B consists of 8 objects
corresponding to 19 object-grasp pairs. For each object-grasp
pair, multiple examples with varying hand configuration and
contact points were collected from the demonstrator.

Example grasps were collected from multiple demonstra-
tors. Subjects 1 and 2 demonstrated grasps on all objects in
object sets A and B. Additional test examples were recorded
from Subject 3, who demonstrated grasps for object set B.
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B. Feature selection results

The training set used for feature selection consisted of
grasp examples from object set A performed by both subjects
1 and 2. Forward selection starts with an empty set of
markers, and each iteration of the algorithm augments the
current feature set by the marker whose inclusion results in
the best classifier accuracy. Backward selection starts with
the full set of 30 markers, and each iteration removes the
marker whose omission maintains the highest accuracy.

Both wrapper algorithms were evaluated using two-fold
cross validation on the training data set. Fig. 5 shows the
cross-validation accuracy of the two wrapper methods for

TABLE I
OBJECT-GRASP PAIRS FOR THE COLLECTED EXAMPLES IN THE

TRAINING AND TEST DATA SETS.

Grasp class

cyl sph lum pin tri lat
Set Object 1 2 3 4 5 6

A Mug × ×
Honey container × ×
Mallet ×
Spray bottle ×
Oats can × ×
Sunscreen × × ×
Phone ×
Milk jug × ×
Film container × × ×
Battery × × ×
Water bottle × ×
Juggling pin ×
Tennis ball × × ×
Foam ball × × ×
Softball × × ×
Puzzle cube × × ×
Jingle bell × ×
Large egg × × ×
Medium egg × × ×
Small bowl × ×
Gyro ball × × ×
Halogen bulb × ×
Compact disc × ×
Large plate × ×
Binder × ×
Calculator × × ×
Wallet × × ×
Cassette tape × × ×
Poker card × × ×
Paper × ×
Key ×
Coin × ×
Mouthwash cap × ×
Thin pencil × × ×
Highlighter × × ×
Eraser stick × × ×
Fork × ×
Knife × ×

B Chapstick × × ×
Jelly jar × ×
Small egg × × ×
Book ×
Plastic card × × ×
Button pin × ×
Thick pen × × ×
Spoon × ×

different marker set sizes. The prediction accuracy increases
rapidly for a few number of markers, but there is only
marginal increase for each added marker beyond five to
ten markers. The plateau in the performance suggests that
the number of markers could be reduced dramatically while
retaining correct predictions for a large portion of examples.
Using the full 30-marker set resulted in a maximum accuracy
of 91.5%, but with only five markers the model could still
correctly predict 86% of the grasp examples.

The cross-validation accuracy for forward selection and
backward selection differ at most by 0.5% for each marker
set size, but the specific rankings of the markers were not
identical. For most marker set sizes, the accuracy from
backward selection was higher than that from forward se-
lection. We thus chose a final reduced marker set with five
markers based on the backward selection results (Fig. 6).
Note that three of the selected markers are not positioned on
the fingertips. This should reduce the frequency of marker
occlusions, which often occur for fingertip markers when the
fingers wrap around the grasped object.

C. Evaluation of reduced marker set

The reduced marker set determined from sequential fea-
ture selection is evaluated for both single demonstrator and
multiple demonstrator settings. For the single demonstrator
setting, two final classifiers are trained for subject 1 and
subject 2 separately, using the reduced feature set and grasp
examples from object set A. In the multiple demonstrator
setting, a final classifier is trained on the combined examples
of subject 1 and subject 2, for grasps of object set A.
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Fig. 5. Feature selection results from forward and backward wrapper
methods. The plateau in the two-fold cross validation accuracy as the
number of markers increases suggests that the marker set can be reduced
to a small set of key marker positions.
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Fig. 6. The reduced marker set with five markers is determined from the
feature selection results. The three markers defining the local coordinate
system on the back of the hand are still required.
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In addition, a fourth classifier is trained on the combined
examples of subject 1 and subject 2 for all the grasps in both
object sets A and B. For each training set, one classifier is
trained using the reduced feature set of the selected M = 5
markers and another classifier is trained from the full marker
set of M = 30 markers.

The four classifiers were evaluated on five test sets. The
first and second test sets consist of grasps observed from
subject 1 and subject 2, respectively, of object set A. These
examples were not included in either the training set for
feature selection nor the training set for the final trained
classifier. The remaining three test sets consist of grasps of
object set B for each of the three subjects. For each pair
of a training set with a test set, the prediction accuracy is
computed for both the reduced M = 5 and full M = 30
classifiers. We compare the relative performance of the two
classifiers by the percent retainment which is the ratio of the
accuracy of the reduced marker set classifier to the accuracy
of the full marker set classifier.

D. Final classifier results

Overall, we found that the prediction accuracy was more
sensitive to whether the training examples included grasps
from the same subject than whether the examples included
grasps for the same objects (Tables II and III). For subjects
whose examples were included in the training set, the predic-
tion accuracy was between 80–93% for the reduced marker
set, corresponding to 92–97% retainment of the prediction
accuracy from using the full marker set.

When the classifier is trained on examples from only a
single demonstrator, the prediction accuracy for test grasps
from a new subject was decreased to 21–65% for the reduced
marker set classifier (Table II). However, in five of these
six cases, predicting the grasp from the reduced marker
set resulted in higher prediction accuracy than that from
prediction based on the full feature set, corresponding to a
retaininment ratio over 100%. This suggests that, although
the weights trained by the classifier may not be appropriate
for the new subject, the selected markers are still key features
for grasp prediction that may be generalized across subjects.

The prediction accuracy for grasps of a new demonstrator

TABLE III
FINAL CLASSIFIER RESULTS USING TRAINING EXAMPLES FROM

MULTIPLE DEMONSTRATORS. BOLD ENTRIES HIGHLIGHT CASES WHERE

THE TRAINING SET INCLUDED GRASPS FROM THE SAME SUBJECT

WHOSE GRASPS ARE IN THE TEST SET. PERCENT RETAINMENT

MEASURES THE RATIO OF THE ACCURACY FROM THE REDUCED MARKER

SET WITH M = 5 MARKERS TO THE ACCURACY FROM THE FULL

MARKER SET WITH M = 30 MARKERS.

Classification accuracy (percent) Training set with object set A
subjects 1 and 2

Test set M = 5 M = 30 retainment

object set A (same) subject 1 83.9 89.4 93.8
subject 2 90.3 93.5 96.6

object set B (new) subject 1 80.6 86.6 93.0
subject 2 92.0 95.9 96.0
subject 3 70.2 59.8 117.3

Training set with object
sets A and B

object set B (same) subject 3 70.2 63.9 109.8

improves when the training set for the classifier includes
examples from multiple subjects (Table III). The prediction
accuracy for the grasps observed from subject 3 increases
from 22% to 70% using only the reduced marker set clas-
sifier. Importantly, comparing the bold values in Table II
to those in Table III show that training the classifier on
examples from multiple users results in only a marginal
decrease in the prediction accuracy for grasps of subjects
whose examples were included in the training set. Further-
more, the retainment of over 100% for the subject 3 test sets
again shows that prediction is improved by using the reduced
marker set instead of the full marker set.

Analysis of the grasp prediction errors (Fig. 7) shows the
distribution of misclassified test examples for the classifier
trained on the combined examples from subjects 1 and 2
for object set A. Overall, the classifier most successfully
predicted cylindrical and pinch grasps for all three subjects.
For subject 1, grasps labeled as spherical and lateral tripod

TABLE II
FINAL CLASSIFIER RESULTS USING TRAINING EXAMPLES FROM A SINGLE DEMONSTRATOR. BOLD ENTRIES HIGHLIGHT CASES WHERE THE TRAINING

SET INCLUDED EXAMPLES FROM THE SAME SUBJECT WHOSE GRASPS ARE IN THE TEST SET. PERCENT RETAINMENT MEASURES THE RATIO OF THE

ACCURACY FROM THE REDUCED MARKER SET WITH M = 5 MARKERS TO THE ACCURACY FROM THE FULL MARKER SET WITH M = 30 MARKERS.

Classification accuracy (percent) Training set with object set A

subject 1 subject 2

Test set M = 5 M = 30 retainment M = 5 M = 30 retainment

object set A (same) subject 1 84.8 90.4 93.8 57.0 44.9 126.9
subject 2 44.6 36.3 122.8 90.6 94.7 95.7

object set B (new) subject 1 81.8 88.0 92.9 51.2 40.5 126.2
subject 2 45.1 41.8 107.9 92.9 97.0 95.8
subject 3 21.6 23.2 93.0 64.9 52.4 123.9
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Fig. 7. Prediction rates for the test set grasps for the classifier trained on examples of subjects 1 and 2 grasps for object set A (Table III). Each column
shows the percentages of test examples where one grasp class was correctly predicted (values on the diagonal) or misclassified (all off-diagonal values).
The results are separated by subject. (a) Classification rates for subject 1 test examples (combination of first and third test sets). (b) Classification rates for
subject 2 test examples (combination of second and fourth test sets). (c) Classification rates for subject 3 test examples (fifth test set).

grasps were misclassified most frequently (Figs. 7 and 8).
In particular, tripod grasp was often predicted incorrectly for
lateral tripod examples, which underscores the similarity be-
tween these three-finger precision grasps (Fig. 8b). Accuracy
across different grasp classes was more consistent for subject
2, with lumbrical grasp misclassified the most frequently
(Fig. 8c). Classification rates for subject 3 show the first
four grasps were correctly predicted in at least 80% of the
examples. However, the last two grasps were misclassified
for over 40% of examples, suggesting that there may be a
systematic difference in the way subject 3 performs the tripod
grasps compared to subjects 1 and 2 (Figs. 8d and 8e).

The confidence measure c(x) defined in (5) can be used
to improve the recognition procedure. We expect that predic-
tions with larger values of c(x) are more likely to be correct.
If c(x) is a small value, the example should be discarded. The
subject can repeat the demonstration, or in a system which
models temporal coherence, the grasp may be predicted from
the remaining hand poses in the grasp trajectory. Alter-
natively, multiple grasp classes with the highest posterior
probabilities could be returned as candidate predictions.
The threshold for accepting and discarding predictions, c∗,
is determined from the training data used in the feature
selection experiments by the equal error operating point
from receiver operating characteristic analysis [see, e.g.,
23], where the rate of discarded correct predictions (false
negatives) and the rate of accepted incorrect predictions
(false positives) are equal. This corresponded to c∗ = 4.88
and a prediction accuracy of 96.8% for the 73.5% of the
training examples with c(x) ≥ c∗. As can be seen in Table
IV, discarding examples according to the selected threshold
c∗ can increase the classification accuracy for the multiple
demonstrator setting to over 95% from 80–92% for subjects
who provided the training examples and to 83% from 70%
for a new subject.

V. DISCUSSION

In summary, supervised feature selection has been used to
methodically design a reduced marker protocol for observing

a b c d e

Fig. 8. Examples from grasp classes with high rates of misclassification. (a)
Subject 1 spherical grasp (Fig. 7a, column 2) was sometimes misclassified
as pinch grasp, possibly due to the index finger being bent less for grasps of
small objects. (b) Subject 1 lateral tripod grasp (Fig. 7a, column 6) is similar
to tripod grasp when there is a straightened instead of bent middle finger. (c)
Subject 2 lumbrical grasp (Fig. 7b, column 3) included a separation of the
index finger from the other fingers and was misclassified as cylindrical grasp
for some examples. (d) Subject 3 tripod grasp (Fig. 7c, column 5) sometimes
positioned the object closer to the palm of the hand and involved a wider
angle between the index and middle finger compared to the other subjects.
(e) Subject 3 lateral tripod grasp (Fig. 7c, column 6) exhibited a bent index
finger and straightened middle finger, compared to the straightened index
and bent middle finger in the lateral tripod grasps of subjects 1 and 2.

TABLE IV
CLASSIFICATION ACCURACY INCREASES WHEN PREDICTIONS WITH

CONFIDENCE MEASURES LOWER THAN THRESHOLD c∗ ARE DISCARDED.
SIZE OF THE TEST SUBSET IS REPORTED AS THE PERCENT OF EXAMPLES

FROM THE FULL TEST SET (TABLE III) WITH CONFIDENCE c(x) ≥ c∗ .

Classification accuracy (percent) Training set with object set A
subjects 1 and 2

Test set, c(x) ≥ c∗ M = 5 test subset size

object set A (same) subject 1 95.9 66.7
subject 2 95.8 81.6

object set B (new) subject 1 96.8 63.2
subject 2 97.1 79.7
subject 3 83.7 65.4

Training set with object set A and B

object set B (same) subject 3 83.3 64.8

demonstrated grasps. Evaluation of the selected reduced
marker set on grasp examples from multiple subjects showed
that using as few as five markers as input features retains over
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92% as much prediction accuracy from the full set of 30
markers. In particular, not only does grasp recognition from
five markers reduce the model dimensionality, but using the
reduced feature set can actually generalize better to a new
subject by improving the prediction accuracy compared to
the full marker set. We also found that inclusion of observed
examples from two subjects in the training set improved
the generalization of the grasp classifier to examples from a
new demonstrator and only marginally decreased prediction
accuracy for the included demonstrators compared to the
classifiers trained on a single subject’s examples. Further
investigation is required to determine how the generalization
to new demonstrators can be further improved as examples
from more subjects are included in training set.

Our approach identifies the number and placement of
markers for one choice of reduced marker set based on
sequential feature selection. We selected the markers accord-
ing to the order from the backward selection results, but
the forward selection cross-validation accuracy was within
0.5% of that for the backward selection for the same number
of markers. In limited testing of the alternative reduced
marker set from forward selection, as well as other sets of
five markers selected based on prior knowledge of grasps,
the cross-validation accuracies were similar to the presented
results. Thus, there may be several reduced marker sets that
are nearly equivalent with respect to grasp recognition.

Feature selection was investigated specifically in the con-
text of the selected linear logistic regression classifier, which
we found to be sufficient for achieving reasonable grasp
prediction accuracy. Preliminary experiments also evaluated
linear support vector machines as a possible classification
model using an available software implementation [24]. This
resulted in only a marginal difference in the prediction
accuracy for the full marker set classifier but required sig-
nificantly more training time, which prohibits the sequential
feature selection experiments that evaluate several possible
feature subsets. However, future work could investigate al-
ternative classifiers, both linear and nonlinear, with respect
to the final reduced marker set proposed here. Furthermore,
we have only considered the classification of a hand pose
at a single time point, and modeling temporal coherence or
evolution of the grasp may also improve recognition of the
demonstrator’s overall action or intent.

Other directions for future work might address the ro-
bustness of the method to the number of grasp classes
selected. The six classes of functional grasps considered in
this work describe broad categories of functional grasps. A
possible limitation is that the reduced feature set of local
marker coordinates, which will vary across subjects due to
different hand sizes, may be less successful for recognizing
a finer discretization of grasp classes that are distinguished
by only slight changes in the hand configuration. Despite
this, tracking a small number of key interest points on the
hand surface can provide a useful feature set for grasp
recognition, is possible without data glove measurement, and
could supplement machine vision systems for observation
learning.
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