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ABSTRACT

Modeling relational data is an important problem for mod-
ern data analysis and machine learning. In this paper we
propose a Bayesian model that uses a hierarchy of prob-
abilistic assumptions about the way objects interact with
one another in order to learn latent groups, their typical
interaction patterns, and the degree of membership of ob-
jects to groups. Our model explains the data using a small
set of parameters that can be reliably estimated with an
efficient inference algorithm. In our approach, the set of
probabilistic assumptions may be tailored to a specific ap-
plication domain in order to incorporate intuitions and/or
semantics of interest. We demonstrate our methods on sim-
ulated data and we successfully apply our model to a data
set of protein-to-protein interactions.
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1. INTRODUCTION

Modeling relational data is an important problem for mod-
ern data analysis and machine learning. Many data sets
contain interrelated observations. For example, scientific
literature connects papers by citation, web graphs connect
pages by links, and protein-protein interaction data connect
proteins by physical interaction records. Such data violate
the classical exchangeability assumptions made in machine
learning and statistics; moreover, the relationships between
data are often of interest as observations themselves. One
may try to predict citations of newly written papers, predict
the likely links of a web-page, or cluster proteins based on
patterns of interaction between them.

There is a history of probabilistic models for relational
data analysis in Statistics. Part of this literature is rooted
in the stochastic block modeling ideas from psychometrics
and sociology. These ideas are due primarily to Holland and
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Leinhardt, e.g., [12], and later elaborated upon by others,
e.g., see [8, 23, 20, 11]. In machine learning, Markov random
networks have been used for link prediction [21] and the
traditional block models from Statistics have been extended
with nonparametric Bayesian priors [13].

In this paper, we develop a mixed membership model
for analyzing patters of interaction between data. Mixed
membership models for soft classification have emerged as
a powerful and popular analytical tool for analyzing large
databases involving text [2], text and references [4, 7], text
and images [1], multiple disability measures [6, 15], and ge-
netics information [19, 18, 24]. These models use a simple
generative model, such as bag-of-words or naive Bayes, em-
bedded in a hierarchical Bayesian framework involving a la-
tent variable structure; this induces dependencies and intro-
duces statistical control over the estimation of what might
otherwise be an extremely large set of parameters.

We propose a Bayesian model that uses a hierarchy of
probabilistic assumptions about how objects interact with
one another in order to learn latent groups, their typical in-
teraction patterns, and the degree of membership of objects
to groups. Given data, we find an approximate posterior dis-
tribution with an efficient variational inference algorithm. In
our approach, the set of probabilistic assumptions may be
tailored to a specific application domain in order to incor-
porate semantics of interest. We demonstrate our methods
on simulated data, and we successfully apply the model to
a data set of protein-protein interactions.

2. THE MODEL

In this section, we describe a probabilistic model of in-
teraction patterns in a group of objects. Each object can
exhibit several patterns that determine its relationships to
the others. We will use protein-protein interaction modeling
as a working example; however, the model can be used for
any relational data where the primary goal of the analysis is
to learn latent group interaction patterns and mixed group
membership of a set of objects.

Suppose we have observed the physical interactions be-
tween N proteins '. We represent the interaction data by
an N X N binary adjacency matrix r where r; ; = 1 if the
ith protein interacts with the jth protein. Usually, an inter-
action between a pair of proteins is indicative of a unique

'Such information can be obtained experimentally with
“yeast two-hybrid” tests and others means, and in practice
the data may be noisy. For simplicity, we defer explicit treat-
ment of observation noise, although plugging in appropriate
error processes is possible.



biological function they both involve; it may be possible to
infer the functional classes of the study proteins from the
protein interactions.

In a complex biological system, many proteins are func-
tionally versatile and can participate in multiple functions
or processes at different times or under different biological
conditions. Thus, when modeling functional classes of the
proteins, it is natural to adopt a flexible model which al-
lows multiple scenarios under which a protein can interact
with its partners. For example, a signal transduction protein
may sometimes interact with a cellular membrane protein as
part of a signal receptor; at another time, it may interact
with the transcription complex as an auxiliary transcription
factor. By assessing the similarity of observed protein-to-
protein interaction patterns, we aim to recover the latent
function groups and the degree with which the proteins take
part in them.

In the generative process, we model the observed adja-
cency matrix as a collection of Bernoulli random variables.
For each pair of objects, the presence or absence of an in-
teraction is drawn by (1) choosing a latent class for each
protein from a protein-specific distribution and (2) draw-
ing from a Bernoulli distribution with parameter associated
with the pair of latent classes. A protein represents several
functional groups through its distribution of latent classes;
however, each protein participates in one function when de-
termining its relationship to another.

For a model with K groups, the parameters are K-dimensional

Dirichlet parameters «, a K x K matrix of Bernoulli param-
eters 1, and p € [0, 1] which is described below. Each 6; is a
Dirichlet random variable (i.e., a point on the K —1 simplex)
and each z;;1 and z;52 are indicators into the K groups. The
generative process of the observations, r(yx Ny, is as follows:

1. For each object i =1,...,N :
1.1. Sample ; ~ Dirichlet (c).
2. For each pair of objects (4, 7) € [1, N] x [1, N]:

2.1. Sample group z; j1 ~ Multinomial (6;,1)
2.2. Sample group z; j2 ~ Multinomial (8;,1)

2.3. Sample r;; ~ Bernoulli ( pnz; ., ,2,, + (1 —
p)do)

The parameter p controls how often a zero is due to noise
and how often it occurs as a function of the constituent
proteins’ latent class memberships in the generative process.
In turn, this leads to ones in the matrix being weighted more
as p decreases, and allows for the model to pick up sparsely
interconnected clusters. For the rest, the model uses three
sets of latent variables. The 8;s are sampled once for the
entire collection of observations; the z; ;15 and z; j2s are
sampled once for each protein-protein interaction variable
Ti,5-

The generative process described above leads to a joint
probability distribution over the observations and the latent
variables,
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The marginal probability of the observations is not tractable
to compute,
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We carry out approzimate inference and parameter estima-
tion to deal with this issue.

The only input to this model is the number of groups. The
goal is to learn the posterior distribution of the membership
proportions of each protein and the group interaction prob-
abilities. We will focus on the interpretability of these quan-
tities, e.g., consistent functional annotations of the proteins
within groups. Note that there are several ways to select the
number of groups. For example, [13] uses a nonparametric
Bayesian prior for a single-membership block model.

In our fully generative approach, it is possible to integrate
outside information about the objects into the hierarchy of
probabilistic assumptions. For example, we can include out-
side information about the proteins into the generative pro-
cess that includes the linkage. In citation data, document
words can be modeled along with how the documents cite
each other.

3. INFERENCE AND ESTIMATION

In this section we present the elements of approximate
inference essential for learning the hyper-parameters of the
model and inferring the posterior distribution of the degrees
of membership for each object.

In order to learn the hyper-parameters we need to be able
to evaluate the likelihood, which involves a non-tractable
integral as we stated above—see equation. In order to infer
the degrees of membership corresponding to each object, we
need to compute the posterior degrees of membership given
the hyper-parameters and the observations

p(0,7|a,m)
p(rlec,m) )

Using variational methods, we can find a lower bound of the
likelihood and approximate posterior distributions for each
object’s membership vector.

The basic idea behind variational methods is to posit a
variational distribution on the latent variables ¢(8, z), which
is fit to be close to the true posterior in Kullback-Leibler
(KL) divergence. This corresponds to maximizing a lower
bound, L [’7, o; a,mn }, on the log probability of the obser-
vations given by Jensen’s inequality:
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partially update 'yt+1, 'yH'l

until convergence
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1. initialize ’7?9 = % for all 4, g

2. repeat

3. fori=1to N
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until convergence

Figure 1: Left: The two-layered variational inference for v and ¢. The inner layer consists of Step 5. The
function f is described in details in the right panel. Right: Inference for the variational parameters (¢;;1, ¢ij2)
corresponding to the basic observation r; ;. This is the detailed description of Step 5. in the left panel. The
functions f; and f> are updates for ¢;;14 and ¢;;2n described in the text of Section 3.1.

where the expectations are taken with respect to ¢(0, z). We
choose a fully factorized variational distribution such that
this optimization is tractable.

3.1 Variational Inference

The fully factorized variational distribution gq is as follows.

N N
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The lower bound for the log likelihood L[y, ¢; ¢, n] can
be maximized using exponential family arguments and co-
ordinate ascent [22]; this leads to the following updates for
the variational parameters (¢ 1, ¢s,j,2), for each pair (i, j):

Z Yi.g)
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K
% H nn 3 Pig.2h H(1 _ h)(l*ri,j)¢i,j,2,h
h=1
K
bij2n < exp { P (¥j,n) w(z V5.h)
h=1
K
% H 77” d Piglg H(1 _ h)(lff'i,j)%,j,l,g
g=1

for g,h = 1,..., K, and to the following updates for the
variational parameters ~;, for each i:

N N
g =t + E $ij1.g t+ E $5i,2,9-
j=1 j=1

The vectors ¢;,j,1 and ¢;,j,2 are normalized to sum to one.
The complete algorithm to perform variational inference in
the model is described in detail in Figure 1. Variational in-
ference is carried out for fixed values of n and a, in order
to maximize the lower bound for the likelihood. Then we

maximize the lower bound with respect to n and ac. We iter-
ate these two steps (variational inference and maximization)
until convergence. The overall procedure is a variational
expectation-maximization (EM) algorithm.

3.2 Remarks

The variational inference algorithm presented in Figure
1 is not the naive variational inference algorithm. In the
naive version of the algorithm, we initialize the variational
Dirichlet parameters «; and the variational Multinomial pa-
rameters ¢;; to non-informative values, then we iterate un-
til convergence the following two steps: (i) update ¢;;1 and
ij2 for all pairs (3, j), and (ii) update ; for all objects . In
such algorithm, at each variational inference cycle we need
to allocate NK + 2N?K numbers.

The nested variational inference algorithm trades time for
space thus allowing us to deal with large graphs; at each
variational cycle we need to allocate N K+2K numbers. The
increased running time is partially offset by the fact that
the algorithm can be parallelized and leads to empirically
observed faster convergence rates, as we show in Figure 3.
This algorithm is also better than MCMC variations (i.e.,
blocked and collapsed Gibbs samplers) in terms of memory
requirements and/or convergence rates.

It is also important to note that the variational Dirichlet
parameters v and the Bernoulli parameters n are closely
related in this model: it is necessary to keep the ~s across
variational-EM iterations in order to better inform the M-
step estimates of 17. Thus, we smooth the v parameters in
between EM iterations instead of resetting them to a non-
informative value, 2N/K in our model. Using a damping
parameter € we obtain: 754 = (1 —€) 7, + ¢ 22X

3.3 Parameter Estimation

Using the optimal lower bound L[v*, ™ ; a, ] as a tractable
surrogate for the likelihood we here look for (pseudo) em-
pirical Bayes estimates for the hyper-parameters. [3]

Such maximization amounts to maximum likelihood esti-
mation of the Dirichlet parameters o and Bernoulli param-
eter matrix 7 using expected sufficient statistics, where the
expectation is taken with respect to the variational distri-
bution. Finding the MLE of a Dirichlet requires numerical
optimization. [17] For each Bernoulli parameter, the ap-
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Figure 2: Error rates on simulated protein-protein interaction networks, the lower the better, for spec-
tral clustering with local scaling (LSC) versus latent mixed-membership (LMM). From left to right:
the adjacency matrices contain 100, 300 and 600 proteins and 4, 10 and 20 latent functional groups,
respectively. From top to bottom: the matrices were generated using Dirichlet parameter a =
0.05(stringent membership), 0.25(more diffused membership), respectively. The proteins are re-ordered to
make explicit the structure of the group interactions. The number of proteins per cluster averages 30 over
all matrices. The Bernoulli probabilities in 7 are either 0.9 or 0.1. Random guesses about single-membership

of proteins to clusters correspond to error rates of 0.75,0.9 and 0.95, respectively.

proximate MLE is:

N N
= Dim1 D1 Pilg Pig2,n Ti
9,k — N N
’ Dic1 2je1 Pidtig ig2n

for every index pair (g,h) € [1, K] x [1, K].

We also smooth the probabilities of interactions between
any member of group a and any member of group b, that is
7a,b, Dy assuming 74, ~ Beta (81, 82) for each pair of groups
(a,b) € [1,K] x [1,K]. Variational inference is modified
appropriately.

4. EXAMPLES AND EXPERIMENTS

We first tested our model in a controlled setting. We sim-
ulated non-contrived adjacency matrices mimicking protein-
protein interactions with 100 proteins and four groups, 300
proteins and 10 groups, and 600 proteins and 20 groups.
In our experiment, the signal-to-noise ratio is decreasing
with the size of the problem, for a fixed Dirichlet param-

eter @ < 1. 2 The data are display in Figure 4, where the
S/N ratio is roughly 0.5, 0.4 and 0.3 for the both the top
and bottom rows, from left to right.

In Figure 4 we compare our model to spectral cluster-
ing with local scaling [25] that is particularly suited for re-
covering the structure of the interactions in the case when
proteins take part in a single function. Note that spectral
clustering (or normalized cuts) minimizes the total transi-
tion probability due to 1-step random walk of objects be-
tween clusters. Each object is assumed to have a unique
cluster membership. Our model, however, is more flexible.
It allows object to have different cluster membership while
interacting with different objects. The simulations with the

2That is, a fixed & < 1 leads to a number of active func-
tions for each protein that increases linearly with the total
number of latent functions, but the number of interactions
sampled among functional groups decreases with the square
of the total number of latent function, and causes an overall
decrease of the informative part of the observed matrix 7.
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Figure 3: In the first two panels (left and center) we compare the running time of the naive variational
inference (solid line) against the running time of our enhanced (nested) variational inference algorithm
(dashed line). The rightmost panel shows how the log likelihood is indicative of the latent number of
functions; in the example shown the peak corresponds to the correct number of functions.

Dirichlet parameter o = 0.05 are meant to provide mostly
unique membership; spectral clustering performs well and
our model has a slightly better performance. As proteins
participate to more functions, that is, a increases to 0.25 in
our simulations, spectral clustering is not an adequate so-
lution anymore. Our model, on the other hand, is able to
recover the mixed membership to a large degree, and per-
forms better than spectral clustering.

In a more general formulation of our model we accommo-
date a collection of observations, e.g., protein-protein inter-
action patterns measured by different laboratories and under
possible different conditions, or daily summaries of email ex-
changes. We used this general model to understand how the
model takes advantage of the information available. Empir-
ical results show that it is better to have a larger adjacency
matrix rather than having a collection of small matrices, in
order to overcome a fixed signal-to-noise ratio.

In Figure 3 compare the running time of our enhanced
variational-EM algorithm to the naive implementation. Our
algorithm is more efficient in terms of space and converges
faster. Further, it can be parallelized given that the updates
for each interaction (%, j) are independent of one another.

4.1 Case Study: Protein-Protein Interactions

Protein-protein interactions (PPI) form the physical ba-
sis for formation of complexes and pathways which carry out
different biological processes. A number of high-throughput
experimental approaches have been applied to determine the
set of interacting proteins on a proteome-wide scale in yeast.
These include the two-hybrid (Y2H) screens and mass spec-
trometry methods. For example, mass spectrometry is used
to identify components of protein complexes [9, 10]. High-
throughput methods, though, may miss complexes that are
not present under the given conditions, for example, tag-
ging may disturb complex formation and weakly associated
components may dissociate and escape detection.

The MIPS [16] database was created in 1998 based on evi-
dence derived from a variety of experimental techniques and
does not include information from high-throughput datasets.
It contains about 8000 protein complex associations in yeast.
We analyze a subset of this collection containing 871 pro-
teins, the interactions amongst which were hand-curated.
In Table 1 we summarize the main functions of the protein
in our sub-collection, where we retained the function names
in [14] where possible. Note that, since most proteins par-

ticipate in more than one function, Table 1 contains more
counts (2119) than proteins (871), for an average of ~ 2.4
functions per protein. Note that the relative importance of
each functional category in our sub-collection, in terms of
the number of proteins involved, is different from the rela-
tive importance of the functional categories over the entire
MIPS collection, as reported in [14].

Table 1: Functional Categories. In the table we re-
port the functions proteins in the MIPS collection
participate in. Most proteins participate in more
than one function (= 2.4 on average) and, in the
table, we added one count for each function each
protein participates in.

# Category Size
1 Metabolism 125
2  Energy 56
3 Cell cycle & DNA processing 162
4 Transcription (tRNA) 258
5 Protein synthesis 220
6 Protein fate 170
7  Cellular transportation 122
8 Cell rescue, defence & virulence 6
9 Interaction w/ cell. environment 18
10  Cellular regulation 37
11 Cellular other 78
12 Control of cell organization 36
13 Sub-cellular activities 789
14  Protein regulators 1
15 Transport facilitation 41

4.1.1 Recovering the Ground Truth

Our data consists of 871 proteins participating in 255
functions. The functions are organized into a hierarchy, and
the 15 functions in Table 1 are those at the top level of the
hierarchy. In order to recover what we consider are the true
mixed-membership vectors 8; corresponding to each protein,
we simply normalized the number of times each protein par-
ticipated in any sub-function of one of the 15 primary func-
tions. The Dirichlet parameter o corresponding to the true
mixed-membership is ~ 0.0667. Most of the proteins in our
data participate in two to four functions. In Figure 4 we
show the true mixed-membership probabilities for 841 pro-
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Figure 4: Mixed-membership scores estimated from hand-curated protein-protein interactions: most proteins
participate in at least two functions. The figure shows 841 panels arranged in a 29 by 29 grid. Each panel
plots the 6; of the corresponding protein in the MIPS collection. We measure probability on the Y axis and
the functional group on the X axis. The functions are numbered from 1 to 15 as in Table 1.

teins.

4.1.2 Evaluating the Performance

In order to evaluate the performance of the competing
methods in predicting the (possibly) multiple functional an-
notations of proteins we devised a very simple measure of
accuracy. Briefly, we added the number of functional anno-
tations correctly predicted for each proteins, divided by the
total number of functional annotations.

Note that, given their exchangeable nature, the latent
functional groups are not identifiable in our model. On the
other hand, in order to compute the accuracy above we need
to decide which latent cluster correspond to which functional
class. We resolved the ambiguity by finding the one permu-
tation that maximized the accuracy on the training data.
We then used that permutation in order to compare pre-
dicted functional annotations to the ground truth, for all
proteins.

In order to compute the accuracy of spectral clustering
with local scaling, we implemented softened a soft version

of it; we used the cluster predictions and the relative dis-
tances between proteins and the centroids of the clusters
to obtain normalized scores (probabilities) of membership
of each protein to each cluster. These mixed-membership
scores enabled us to compute the accuracy measure.

4.1.3 Testing Functional Interaction Hypothesis

In order to compute the accuracy measure proposed above
we need to decide which functional annotations are signifi-
cantly different from zero. We used a simple statistical test
to find significant functional associations: we pool all mixed-
membership probabilities 8; together and we select the 10%
most likely protein-function pairs, (7,6;;), as being signif-
icant. That is, under the assumption that most protein-
function pairs are not significant, we choose the 10% most
likely functional annotations to be the significant ones.

On a different note, the latent mixed-membership model is
a useful tool to explore hypothesis about the nexus between
latent protein interaction patterns and the functions they
are able to express. For example, it is reasonable to assume
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Figure 5: Predicted (red) versus true (black) mixed-membership probabilities for four example proteins.

that proteins that share a common functional annotation
tend to interact with one another more often than with pro-
teins with no functional annotations in common. In order
to test this hypothesis we can fix the function interaction
matrix 1 to be the identity matrix. This leads to accura-
cies of 43.49% for the latent mixed-membership model and
of 41.67% for spectral clustering. That is, we were able to
recover 504 and 483 protein-function pairs correctly out of
1159 significant, true functional annotations, for the latent
mixed-membership model and (softened) spectral clustering
with local scaling respectively.

4.1.4 Unsupervised Learning Experiment

In order to test the behavior of our model on real data
in a situation where no information about PPI is available,
we tried to recover the mixed-membership probabilities 6;,
and the function interaction matrix 1 corresponding to the
hand-curated data, in a completely unsupervised fashion.
We were able to recover 502 functional annotations out of
1159, which corresponds to an accuracy of 43.31%, better
than spectral clustering at 41.67%.

The number of correctly identified functional annotations
is comparable to the number obtained in the previous para-
graph (43.49, corresponding to 504 correct annotations) un-
der the assumption that proteins that share a common func-
tion are more likely to interact than those which do not.
There is also a difference in the estimated interaction pat-
terns between paris of latent groups, 1, which is not diago-
nal but rather has few positive entries arranged around two
positive elements of the diagonal.

4.1.5 PPI Prediction Experiment

It is reasonable to assume that a collection of PPI may
inform us on the functions protein are able to express. [5]

In order to get a feel for the prediction error associated
with our model, we split the proteins into a training set
and a testing set of about the same size. We then slightly
modify our model in order to predict the functional mixed-
membership probabilities of new proteins, i.e., those in the
testing set. In particular, we use available information to
learn the function interaction matrix 1, which encodes the
interaction patterns between pairs of proteins as they ex-
press a corresponding pair of functions. We also consider
known the functional annotations of the proteins in the
training data in terms of their corresponding mixed member-
ship probabilities 8;. In order to estimate 1 we considered all
protein pairs in the training set, and estimated the strength
of the interactions between pairs of expressed functions by
composing the corresponding membership probabilities of
the proteins involved, under assumption of independence.
In the testing phase, we fixed 1, and the 8; for the proteins

in the training set and fit our model in order to infer the
mixed- membership probability vectors of the proteins in
the testing set. Alternatives are possible, where the infor-
mation available is used to calibrate priors for the elements
of 1, rather than fixing its values.

We were able to recover 523 functional annotations out
of 1159, which for an accuracy of 45.12%. For examples of
predicted mixed membership probabilities see Figure 5.

4.1.6 High-Throughput Experimental PPI

In the future we plan to explore PPI generated with high-
throughput experimental methods: the tandem-affinity pu-
rification (TAP) and high-throughput mass spectrometry
(HMS) complex data. [10, 9] We will use all MIPS hand-
curated PPI to learn the parameters of our model, in order
to provide more reliable (predicted) functional annotations
for the proteins in both the TAP and HMS collections. The
TAP collection contains 1363 proteins, 469 of which are con-
tained in the MIPS hand-curated collection, whereas the
HMS collection contains 1578 proteins, and shares 330 of
them with the MIPS hand-curated collection.

5. DISCUSSION AND CONCLUSIONS

We have presented the latent mixed-membership model
(LMM) for relational data with stochastic and heteroge-
neous interactions among objects. In particular, the mixed-
membership assumption is very desirable for modeling real
data. Given a collection of interaction patterns, our model
yields posterior estimation of the multiple group member-
ship of objects, which align closely to real world scenarios
(e.g., multi-functionality of proteins). Further, our model
estimates interaction probabilities between pairs of latent
groups.

In simulations, our model out-performs spectral cluster-
ing both in cases when objects have single membership and
in cases when objects have mixed-membership. In this latter
case, the differential performance of latent mixed-membership
model over spectral clustering (with local scaling) is remark-
able, since spectral clustering lacks a device for capturing
mixed membership. The parameter p of LMM enables to
recover clusters whose objects are sparsely interconnected,
by assigning more weight to the observed edges, i.e., the ones
in the observed adjacency matrix r. On the contrary, spec-
tral clustering methods assign equal weight to both ones and
zeros in the adjacency matrix 7, so that the classification is
driven by the zeros in cases where the number of zeros is
overwhelming—this may be a not desirable effect, thus it is
important to be able to modulate it, e.g., with p.

In the case study we applied our model to the task of pre-
dicting the functional annotation of proteins by leveraging
protein-protein interaction patterns. We showed how our



model provides a valuable tool to test hypothesis about the
nexus between PPI and functionality. We showed how com-
pletely unsupervised inference leads to results (in terms of
accuracy of the functional annotation of proteins) that are
comparable to those of reasonable assumptions about how
PPI leads to functionality. We also showed a way to perform
cross-validation experiments in this setting, to demonstrate
how it is possible to partially learn our model and make use
of reliable information (about PPI) in order to infer the func-
tionality of unlabeled proteins. Our results confirm previous
findings that information about PPI alone does not lead to
accurate functional annotation (in absolute terms) of un-
labeled proteins. More information is needed. We plan to
integrate high dimensional representation of proteins (static,
non-relational) in order to boost the accuracy of functional
annotation in future research.

Overall, recovering latent mixed-membership of proteins
to clusters that relate to functionality provides a promising
approach to learn the generative/mechanistic aspects under-
lying such data, which can be valuable for seeking deeper in-
sight of the data, as well as for serving as informative priors
for future learning tasks.
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