


biological function they both involve; it may be possible to
infer the functional classes of the study proteins from the
protein interactions.

In a complex biological system, many proteins are func-
tionally versatile and can participate in multiple functions
or processes at di�erent times or under di�erent biological
conditions. Thus, when modeling functional classes of the
proteins, it is natural to adopt a 
exible model which al-
lows multiple scenarios under which a protein can interact
with its partners. For example, a signal transduction protein
may sometimes interact with a cellular membrane protein as
part of a signal receptor; at another time, it may interact
with the transcription complex as an auxiliary transcription
factor. By assessing the similarity of observed protein-to-
protein interaction patterns, we aim to recover the latent
function groups and the degree with which the proteins take
part in them.

In the generative process, we model the observed adja-
cency matrix as a collection of Bernoulli random variables.
For each pair of objects, the presence or absence of an in-
teraction is drawn by (1) choosing a latent class for each
protein from a protein-speci�c distribution and (2) draw-
ing from a Bernoulli distribution with parameter associated
with the pair of latent classes. A protein represents several
functional groups through its distribution of latent classes;
however, each protein participates in one function when de-
termining its relationship to another.

For a model with K groups, the parameters areK-dimensional
Dirichlet parameters �, a K�K matrix of Bernoulli param-
eters �, and � 2 [0; 1] which is described below. Each �i is a
Dirichlet random variable (i.e., a point on the K�1 simplex)
and each zij1 and zij2 are indicators into the K groups. The
generative process of the observations, r(N�N), is as follows:

1. For each object i = 1; : : : ; N :

1.1. Sample �i � Dirichlet (�).

2. For each pair of objects (i; j) 2 [1; N ] � [1; N ]:

2.1. Sample group zi;j;1 � Multinomial (�i; 1)

2.2. Sample group zi;j;2 � Multinomial (�j ; 1)

2.3. Sample ri;j � Bernoulli
�

� �zi;j;1;zi;j;2
+ (1 �

�) �0

�

The parameter � controls how often a zero is due to noise
and how often it occurs as a function of the constituent
proteins’ latent class memberships in the generative process.
In turn, this leads to ones in the matrix being weighted more
as � decreases, and allows for the model to pick up sparsely
interconnected clusters. For the rest, the model uses three
sets of latent variables. The �is are sampled once for the
entire collection of observations; the zi;j;1s and zi;j;2s are
sampled once for each protein-protein interaction variable
ri;j .

The generative process described above leads to a joint
probability distribution over the observations and the latent
variables,

p(r; �; z1; z2j�;�) =

N
Y

i=1

p(�ij�)

N
Y

j=1

p(zi;j;1j�i) �

� p(zi;j;2j�j ) p(ri;j jzi;j ; �):

The marginal probability of the observations is not tractable
to compute,

p(rj�;�) =

Z

�

Z

Z

N
Y

i=1

p(�ij�)
N

Y

j=1

p(zi;j;1j�i) �

� p(zi;j;2j�j ) p(ri;j jzi;j ; �) dz d�:

We carry out approximate inference and parameter estima-
tion to deal with this issue.

The only input to this model is the number of groups. The
goal is to learn the posterior distribution of the membership
proportions of each protein and the group interaction prob-
abilities. We will focus on the interpretability of these quan-
tities, e.g., consistent functional annotations of the proteins
within groups. Note that there are several ways to select the
number of groups. For example, [13] uses a nonparametric
Bayesian prior for a single-membership block model.

In our fully generative approach, it is possible to integrate
outside information about the objects into the hierarchy of
probabilistic assumptions. For example, we can include out-
side information about the proteins into the generative pro-
cess that includes the linkage. In citation data, document
words can be modeled along with how the documents cite
each other.

3. INFERENCE AND ESTIMATION
In this section we present the elements of approximate

inference essential for learning the hyper-parameters of the
model and inferring the posterior distribution of the degrees
of membership for each object.

In order to learn the hyper-parameters we need to be able
to evaluate the likelihood, which involves a non-tractable
integral as we stated above|see equation. In order to infer
the degrees of membership corresponding to each object, we
need to compute the posterior degrees of membership given
the hyper-parameters and the observations

p(�jr;�;�) =
p(�; rj�;�)

p(rj�;�)
; (1)

Using variational methods, we can �nd a lower bound of the
likelihood and approximate posterior distributions for each
object’s membership vector.

The basic idea behind variational methods is to posit a
variational distribution on the latent variables q(�; z), which
is �t to be close to the true posterior in Kullback-Leibler
(KL) divergence. This corresponds to maximizing a lower
bound, L

�


;� ; �;�
�

, on the log probability of the obser-
vations given by Jensen’s inequality:
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N
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1. initialize 
0
ig = 2N

K
for all i; g

2. repeat
3. for i = 1 to N
4. for j = 1 to N
5. get variational �t+1

ij1 and �t+1
ij2 = f(rij ;


t
i ;


t
j ;�

t)

6. partially update 

t+1

i , 

t+1

j and �t+1

7. until convergence

1. initialize �0
ij1g = �0

ij2h = 1
K

for all g; h
2. repeat
3. for g = 1 to K
4. update �s+1

ij1g / f1(�s
ij2;
;�)

5. normalize �s+1
ij1 to sum to 1

6. for h = 1 to K
7. update �s+1

ij2h / f2(�s
ij1;
;�)

8. normalize �s+1
ij2 to sum to 1

9. until convergence

Figure 1: Left: The two-layered variational inference for 
 and �. The inner layer consists of Step 5. The
function f is described in details in the right panel. Right: Inference for the variational parameters (�ij1;�ij2)
corresponding to the basic observation ri;j. This is the detailed description of Step 5. in the left panel. The
functions f1 and f2 are updates for �ij1g and �ij2h described in the text of Section 3.1.

where the expectations are taken with respect to q(�; z). We
choose a fully factorized variational distribution such that
this optimization is tractable.

3.1 Variational Inference
The fully factorized variational distribution q is as follows.

q(�; zj
;�) =
N

Y

i=1

q(�ij
i)
N

Y

j=1

q(zi;j;1j�i;j;1) q(zi;j;2j�i;j;2)

=

N
Y

i=1

Dirichlet (�ij
i) �

�

N
Y

j=1

�

Mult (zi;j;1j�i;j;1)Mult (zi;j;2j�i;j;2)
�

The lower bound for the log likelihood L[
;� ; �;�] can
be maximized using exponential family arguments and co-
ordinate ascent [22]; this leads to the following updates for
the variational parameters (�i;j;1;�i;j;2), for each pair (i; j):
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for g; h = 1; : : : ;K, and to the following updates for the
variational parameters 
i, for each i:


�

i;g = �t +
N

X

j=1

�i;j;1;g +
N

X

j=1

�j;i;2;g:

The vectors �i;j;1 and �i;j;2 are normalized to sum to one.
The complete algorithm to perform variational inference in
the model is described in detail in Figure 1. Variational in-
ference is carried out for �xed values of � and �, in order
to maximize the lower bound for the likelihood. Then we

maximize the lower bound with respect to � and �. We iter-
ate these two steps (variational inference and maximization)
until convergence. The overall procedure is a variational
expectation-maximization (EM) algorithm.

3.2 Remarks
The variational inference algorithm presented in Figure

1 is not the na��ve variational inference algorithm. In the
na��ve version of the algorithm, we initialize the variational
Dirichlet parameters 
i and the variational Multinomial pa-
rameters �ij to non-informative values, then we iterate un-
til convergence the following two steps: (i) update �ij1 and
�ij2 for all pairs (i; j), and (ii) update 
i for all objects i. In
such algorithm, at each variational inference cycle we need
to allocate NK + 2N2K numbers.

The nested variational inference algorithm trades time for
space thus allowing us to deal with large graphs; at each
variational cycle we need to allocate NK+2K numbers. The
increased running time is partially o�set by the fact that
the algorithm can be parallelized and leads to empirically
observed faster convergence rates, as we show in Figure 3.
This algorithm is also better than MCMC variations (i.e.,
blocked and collapsed Gibbs samplers) in terms of memory
requirements and/or convergence rates.

It is also important to note that the variational Dirichlet
parameters 
 and the Bernoulli parameters � are closely
related in this model: it is necessary to keep the 
s across
variational-EM iterations in order to better inform the M-
step estimates of �. Thus, we smooth the 
 parameters in
between EM iterations instead of resetting them to a non-
informative value, 2N=K in our model. Using a damping
parameter � we obtain: ~
i;g = (1 � �) 
�

i;g + � 2N

K
.

3.3 Parameter Estimation
Using the optimal lower bound L[
�;�� ; �;�] as a tractable

surrogate for the likelihood we here look for (pseudo) em-
pirical Bayes estimates for the hyper-parameters. [3]

Such maximization amounts to maximum likelihood esti-
mation of the Dirichlet parameters � and Bernoulli param-
eter matrix � using expected su�cient statistics, where the
expectation is taken with respect to the variational distri-
bution. Finding the MLE of a Dirichlet requires numerical
optimization. [17] For each Bernoulli parameter, the ap-
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Figure 2: Error rates on simulated protein-protein interaction networks, the lower the better, for spec-
tral clustering with local scaling (LSC) versus latent mixed-membership (LMM). From left to right:
the adjacency matrices contain 100, 300 and 600 proteins and 4, 10 and 20 latent functional groups,
respectively. From top to bottom: the matrices were generated using Dirichlet parameter � =
0:05(stringent membership); 0:25(more di�used membership), respectively. The proteins are re-ordered to
make explicit the structure of the group interactions. The number of proteins per cluster averages 30 over
all matrices. The Bernoulli probabilities in � are either 0.9 or 0.1. Random guesses about single-membership
of proteins to clusters correspond to error rates of 0:75; 0:9 and 0:95, respectively.

proximate MLE is:

��

g;h =

PN

i=1

PN

j=1 �i;j;1;g �i;j;2;h ri;j

PN

i=1

PN

j=1 �i;j;1;g �i;j;2;h

;

for every index pair (g; h) 2 [1; K] � [1; K].
We also smooth the probabilities of interactions between

any member of group a and any member of group b, that is
�a;b, by assuming �a;b � Beta (�1; �2) for each pair of groups
(a; b) 2 [1; K] � [1; K]. Variational inference is modi�ed
appropriately.

4. EXAMPLES AND EXPERIMENTS
We �rst tested our model in a controlled setting. We sim-

ulated non-contrived adjacency matrices mimicking protein-
protein interactions with 100 proteins and four groups, 300
proteins and 10 groups, and 600 proteins and 20 groups.
In our experiment, the signal-to-noise ratio is decreasing
with the size of the problem, for a �xed Dirichlet param-

eter � < 1. 2 The data are display in Figure 4, where the
S/N ratio is roughly 0.5, 0.4 and 0.3 for the both the top
and bottom rows, from left to right.

In Figure 4 we compare our model to spectral cluster-
ing with local scaling [25] that is particularly suited for re-
covering the structure of the interactions in the case when
proteins take part in a single function. Note that spectral
clustering (or normalized cuts) minimizes the total transi-
tion probability due to 1-step random walk of objects be-
tween clusters. Each object is assumed to have a unique
cluster membership. Our model, however, is more 
exible.
It allows object to have di�erent cluster membership while
interacting with di�erent objects. The simulations with the

2That is, a �xed � < 1 leads to a number of active func-
tions for each protein that increases linearly with the total
number of latent functions, but the number of interactions
sampled among functional groups decreases with the square
of the total number of latent function, and causes an overall
decrease of the informative part of the observed matrix r.
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Figure 3: In the �rst two panels (left and center) we compare the running time of the na��ve variational
inference (solid line) against the running time of our enhanced (nested) variational inference algorithm
(dashed line). The rightmost panel shows how the log likelihood is indicative of the latent number of
functions; in the example shown the peak corresponds to the correct number of functions.

Dirichlet parameter � = 0:05 are meant to provide mostly
unique membership; spectral clustering performs well and
our model has a slightly better performance. As proteins
participate to more functions, that is, � increases to 0.25 in
our simulations, spectral clustering is not an adequate so-
lution anymore. Our model, on the other hand, is able to
recover the mixed membership to a large degree, and per-
forms better than spectral clustering.

In a more general formulation of our model we accommo-
date a collection of observations, e.g., protein-protein inter-
action patterns measured by di�erent laboratories and under
possible di�erent conditions, or daily summaries of email ex-
changes. We used this general model to understand how the
model takes advantage of the information available. Empir-
ical results show that it is better to have a larger adjacency
matrix rather than having a collection of small matrices, in
order to overcome a �xed signal-to-noise ratio.

In Figure 3 compare the running time of our enhanced
variational-EM algorithm to the na��ve implementation. Our
algorithm is more e�cient in terms of space and converges
faster. Further, it can be parallelized given that the updates
for each interaction (i; j) are independent of one another.

4.1 Case Study: Protein›Protein Interactions
Protein-protein interactions (PPI) form the physical ba-

sis for formation of complexes and pathways which carry out
di�erent biological processes. A number of high-throughput
experimental approaches have been applied to determine the
set of interacting proteins on a proteome-wide scale in yeast.
These include the two-hybrid (Y2H) screens and mass spec-
trometry methods. For example, mass spectrometry is used
to identify components of protein complexes [9, 10]. High-
throughput methods, though, may miss complexes that are
not present under the given conditions, for example, tag-
ging may disturb complex formation and weakly associated
components may dissociate and escape detection.

The MIPS [16] database was created in 1998 based on evi-
dence derived from a variety of experimental techniques and
does not include information from high-throughput datasets.
It contains about 8000 protein complex associations in yeast.
We analyze a subset of this collection containing 871 pro-
teins, the interactions amongst which were hand-curated.
In Table 1 we summarize the main functions of the protein
in our sub-collection, where we retained the function names
in [14] where possible. Note that, since most proteins par-

ticipate in more than one function, Table 1 contains more
counts (2119) than proteins (871), for an average of � 2:4
functions per protein. Note that the relative importance of
each functional category in our sub-collection, in terms of
the number of proteins involved, is di�erent from the rela-
tive importance of the functional categories over the entire
MIPS collection, as reported in [14].

Table 1: Functional Categories. In the table we re-
port the functions proteins in the MIPS collection
participate in. Most proteins participate in more
than one function (� 2:4 on average) and, in the
table, we added one count for each function each
protein participates in.

# Category Size
1 Metabolism 125
2 Energy 56
3 Cell cycle & DNA processing 162
4 Transcription (tRNA) 258
5 Protein synthesis 220
6 Protein fate 170
7 Cellular transportation 122
8 Cell rescue, defence & virulence 6
9 Interaction w/ cell. environment 18

10 Cellular regulation 37
11 Cellular other 78
12 Control of cell organization 36
13 Sub-cellular activities 789
14 Protein regulators 1
15 Transport facilitation 41

4.1.1 Recovering the Ground Truth
Our data consists of 871 proteins participating in 255

functions. The functions are organized into a hierarchy, and
the 15 functions in Table 1 are those at the top level of the
hierarchy. In order to recover what we consider are the true
mixed-membership vectors �i corresponding to each protein,
we simply normalized the number of times each protein par-
ticipated in any sub-function of one of the 15 primary func-
tions. The Dirichlet parameter � corresponding to the true
mixed-membership is � 0:0667. Most of the proteins in our
data participate in two to four functions. In Figure 4 we
show the true mixed-membership probabilities for 841 pro-




