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Abstract

We present a method to discover robust and
interpretable sociolinguistic associations from
raw geotagged text data. Using aggregate de-
mographic statistics about the authors’ geo-
graphic communities, we solve a multi-output
regression problem between demographics
and lexical frequencies. By imposing a com-
posite `1,∞ regularizer, we obtain structured
sparsity, driving entire rows of coefficients
to zero. We perform two regression studies.
First, we use term frequencies to predict de-
mographic attributes; our method identifies a
compact set of words that are strongly asso-
ciated with author demographics. Next, we
conjoin demographic attributes into features,
which we use to predict term frequencies. The
composite regularizer identifies a small num-
ber of features, which correspond to com-
munities of authors united by shared demo-
graphic and linguistic properties.

1 Introduction

How is language influenced by the speaker’s so-
ciocultural identity? Quantitative sociolinguistics
usually addresses this question through carefully
crafted studies that correlate individual demographic
attributes and linguistic variables—for example, the
interaction between income and the “dropped r” fea-
ture of the New York accent (Labov, 1966). But
such studies require the knowledge to select the
“dropped r” and the speaker’s income, from thou-
sands of other possibilities. In this paper, we present
a method to acquire such patterns from raw data. Us-
ing multi-output regression with structured sparsity,

our method identifies a small subset of lexical items
that are most influenced by demographics, and dis-
covers conjunctions of demographic attributes that
are especially salient for lexical variation.

Sociolinguistic associations are difficult to model,
because the space of potentially relevant interactions
is large and complex. On the linguistic side there
are thousands of possible variables, even if we limit
ourselves to unigram lexical features. On the demo-
graphic side, the interaction between demographic
attributes is often non-linear: for example, gender
may negate or amplify class-based language differ-
ences (Zhang, 2005). Thus, additive models which
assume that each demographic attribute makes a lin-
ear contribution are inadequate.

In this paper, we explore the large space of po-
tential sociolinguistic associations using structured
sparsity. We treat the relationship between language
and demographics as a set of multi-input, multi-
output regression problems. The regression coeffi-
cients are arranged in a matrix, with rows indicating
predictors and columns indicating outputs. We ap-
ply a composite regularizer that drives entire rows
of the coefficient matrix to zero, yielding compact,
interpretable models that reuse features across dif-
ferent outputs. If we treat the lexical frequencies
as inputs and the author’s demographics as outputs,
the induced sparsity pattern reveals the set of lexi-
cal items that is most closely tied to demographics.
If we treat the demographic attributes as inputs and
build a model to predict the text, we can incremen-
tally construct a conjunctive feature space of demo-
graphic attributes, capturing key non-linear interac-
tions.



The primary purpose of this research is ex-
ploratory data analysis to identify both the most
linguistic-salient demographic features, and the
most demographically-salient words. However, this
model also enables predictions about demographic
features by analyzing raw text, potentially support-
ing applications in targeted information extraction
or advertising. On the task of predicting demo-
graphics from text, we find that our sparse model
yields performance that is statistically indistinguish-
able from the full vocabulary, even with a reduction
in the model complexity an order of magnitude. On
the task of predicting text from author demograph-
ics, we find that our incrementally constructed fea-
ture set obtains significantly better perplexity than a
linear model of demographic attributes.

2 Data
Our dataset is derived from prior work in which
we gathered the text and geographical locations of
9,250 microbloggers on the website twitter.
com (Eisenstein et al., 2010). Bloggers were se-
lected from a pool of frequent posters whose mes-
sages include metadata indicating a geographical lo-
cation within a bounding box around the continen-
tal United States. We limit the vocabulary to the
5,418 terms which are used by at least 40 authors; no
stoplists are applied, as the use of standard or non-
standard orthography for stopwords (e.g., to vs. 2)
may convey important information about the author.
The dataset includes messages during the first week
of March 2010.

O’Connor et al. (2010) obtained aggregate demo-
graphic statistics for these data by mapping geoloca-
tions to publicly-available data from the U. S. Cen-
sus ZIP Code Tabulation Areas (ZCTA).1 There
are 33,178 such areas in the USA (the 9,250 mi-
crobloggers in our dataset occupy 3,458 unique ZC-
TAs), and they are designed to contain roughly
equal numbers of inhabitants and demographically-
homogeneous populations. The demographic at-
tributes that we consider in this paper are shown
in Table 1. All attributes are based on self-reports.
The race and ethnicity attributes are not mutually
exclusive—individuals can indicate any number of
races or ethnicities. The “other language” attribute

1http://www.census.gov/support/cen2000.
html

mean std. dev.
race & ethnicity

% white 52.1 29.0
% African American 32.2 29.1
% Hispanic 15.7 18.3

language
% English speakers 73.7 18.4
% Spanish speakers 14.6 15.6
% other language speakers 11.7 9.2

socioeconomic
% urban 95.1 14.3
% with family 64.1 14.4
% renters 48.9 23.4
median income ($) 42,500 18,100

Table 1: The demographic attributes used in this research.

aggregates all languages besides English and Span-
ish. “Urban areas” refer to sets of census tracts or
census blocks which contain at least 2,500 residents;
our “% urban” attribute is the percentage of individ-
uals in each ZCTA who are listed as living in an ur-
ban area. We also consider the percentage of indi-
viduals who live with their families, the percentage
who live in rented housing, and the median reported
income in each ZCTA.

While geographical aggregate statistics are fre-
quently used to proxy for individual socioeconomic
status in research areas such as public health (e.g.,
Rushton, 2008), it is clear that interpretation must
proceed with caution. Consider an author from a ZIP
code in which 60% of the residents are Hispanic:2

we do not know the likelihood that the author is His-
panic, because the set of Twitter users is not a rep-
resentative sample of the overall population. Polling
research suggests that users of both Twitter (Smith
and Rainie, 2010) and geolocation services (Zick-
uhr and Smith, 2010) are much more diverse with
respect to age, gender, race and ethnicity than the
general population of Internet users. Nonetheless,
at present we can only use aggregate statistics to
make inferences about the geographic communities
in which our authors live, and not the authors them-
selves.

2In the U.S. Census, the official ethnonym is Hispanic or
Latino; for brevity we will use Hispanic in the rest of this paper.



3 Models

The selection of both words and demographic fea-
tures can be framed in terms of multi-output regres-
sion with structured sparsity. To select the lexical
indicators that best predict demographics, we con-
struct a regression problem in which term frequen-
cies are the predictors and demographic attributes
are the outputs; to select the demographic features
that predict word use, this arrangement is reversed.
Through structured sparsity, we learn models in
which entire sets of coefficients are driven to zero;
this tells us which words and demographic features
can safely be ignored.

This section describes the model and implemen-
tation for output-regression with structured sparsity;
in Section 4 and 5 we give the details of its applica-
tion to select terms and demographic features. For-
mally, we consider the linear equation Y = XB+ε,
where,

• Y is the dependent variable matrix, with di-
mensions N × T , where N is the number of
samples and T is the number of output dimen-
sions (or tasks);

• X is the independent variable matrix, with di-
mensions N × P , where P is the number of
input dimensions (or predictors);

• B is the matrix of regression coefficients, with
dimensions P × T ;

• ε is a N × T matrix in which each element is
noise from a zero-mean Gaussian distribution.

We would like to solve the unconstrained opti-
mization problem,

minimizeB ||Y −XB||2F + λR(B), (1)

where ||A||2F indicates the squared Frobenius norm∑
i

∑
j a

2
ij , and the function R(B) defines a norm

on the regression coefficients B. Ridge regres-

sion applies the `2 norm R(B) =
∑T

t=1

√∑P
p b

2
pt,

and lasso regression applies the `1 norm R(B) =∑T
t=1

∑P
p |bpt|; in both cases, it is possible to de-

compose the multi-output regression problem, treat-
ing each output dimension separately. However, our
working hypothesis is that there will be substantial

correlations across both the vocabulary and the de-
mographic features—for example, a demographic
feature such as the percentage of Spanish speakers
will predict a large set of words. Our goal is to select
a small set of predictors yielding good performance
across all output dimensions. Thus, we desire struc-
tured sparsity, in which entire rows of the coefficient
matrix B are driven to zero.

Structured sparsity is not achieved by the lasso’s
`1 norm. The lasso gives element-wise sparsity, in
which many entries of B are driven to zero, but each
predictor may have a non-zero value for some output
dimension. To drive entire rows of B to zero, we re-
quire a composite regularizer. We consider the `1,∞
norm, which is the sum of `∞ norms across output
dimensions: R(B) =

∑T
t maxp bpt (Turlach et al.,

2005). This norm, which corresponds to a multi-
output lasso regression, has the desired property of
driving entire rows of B to zero.

3.1 Optimization

There are several techniques for solving the `1,∞
normalized regression, including interior point
methods (Turlach et al., 2005) and projected gradi-
ent (Duchi et al., 2008; Quattoni et al., 2009). We
choose the blockwise coordinate descent approach
of Liu et al. (2009) because it is easy to implement
and efficient: the time complexity of each iteration
is independent of the number of samples.3

Due to space limitations, we defer to Liu et al.
(2009) for a complete description of the algorithm.
However, we note two aspects of our implementa-
tion which are important for natural language pro-
cessing applications. The algorithm’s efficiency is
accomplished by precomputing the matrices C =
X̃TỸ and D = X̃TX̃, where X̃ and Ỹ are the stan-
dardized versions of X and Y, obtained by subtract-
ing the mean and scaling by the variance. Explicit
mean correction would destroy the sparse term fre-
quency data representation and render us unable to
store the data in memory; however, we can achieve
the same effect by computing C = XTY −N x̄Tȳ,
where x̄ and ȳ are row vectors indicating the means

3Our implementation is available at http://sailing.
cs.cmu.edu/sociolinguistic.html.



of X and Y respectively.4 We can similarly compute
D = XTX−N x̄Tx̄.

If the number of predictors is too large, it may
not be possible to store the dense matrix D in mem-
ory. We have found that approximation based on the
truncated singular value decomposition provides an
effective trade-off of time for space. Specifically, we
compute XTX ≈

USVT
(
USVT

)T
= U

(
SVTVSTUT

)
= UM.

Lower truncation levels are less accurate, but are
faster and require less space: for K singular val-
ues, the storage cost is O(KP ), instead of O(P 2);
the time cost increases by a factor of K. This ap-
proximation was not necessary in the experiments
presented here, although we have found that it per-
forms well as long as the regularizer is not too close
to zero.

3.2 Regularization

The regularization constant λ can be computed us-
ing cross-validation. As λ increases, we reuse the
previous solution of B for initialization; this “warm
start” trick can greatly accelerate the computation
of the overall regularization path (Friedman et al.,
2010). At each λi, we solve the sparse multi-output
regression; the solution Bi defines a sparse set of
predictors for all tasks.

We then use this limited set of predictors to con-
struct a new input matrix X̂i, which serves as the
input in a standard ridge regression, thus refitting
the model. The tuning set performance of this re-
gression is the score for λi. Such post hoc refitting
is often used in tandem with the lasso and related
sparse methods; the effectiveness of this procedure
has been demonstrated in both theory (Wasserman
and Roeder, 2009) and practice (Wu et al., 2010).
The regularization parameter of the ridge regression
is determined by internal cross-validation.

4 Predicting Demographics from Text

Sparse multi-output regression can be used to select
a subset of vocabulary items that are especially in-
dicative of demographic and geographic differences.

4Assume without loss of generality that X and Y are scaled
to have variance 1, because this scaling does not affect the spar-
sity pattern.

Starting from the regression problem (1), the predic-
tors X are set to the term frequencies, with one col-
umn for each word type and one row for each author
in the dataset. The outputs Y are set to the ten demo-
graphic attributes described in Table 1 (we consider
much larger demographic feature spaces in the next
section) The `1,∞ regularizer will drive entire rows
of the coefficient matrix B to zero, eliminating all
demographic effects for many words.

4.1 Quantitative Evaluation

We evaluate the ability of lexical features to predict
the demographic attributes of their authors (as prox-
ied by the census data from the author’s geograph-
ical area). The purpose of this evaluation is to as-
sess the predictive ability of the compact subset of
lexical items identified by the multi-output lasso, as
compared with the full vocabulary. In addition, this
evaluation establishes a baseline for performance on
the demographic prediction task.

We perform five-fold cross-validation, using the
multi-output lasso to identify a sparse feature set
in the training data. We compare against several
other dimensionality reduction techniques, match-
ing the number of features obtained by the multi-
output lasso at each fold. First, we compare against
a truncated singular value decomposition, with the
truncation level set to the number of terms selected
by the multi-output lasso; this is similar in spirit to
vector-based lexical semantic techniques (Schütze
and Pedersen, 1993). We also compare against sim-
ply selecting the N most frequent terms, and the N
terms with the greatest variance in frequency across
authors. Finally, we compare against the complete
set of all 5,418 terms. As before, we perform post
hoc refitting on the training data using a standard
ridge regression. The regularization constant for the
ridge regression is identified using nested five-fold
cross validation within the training set.

We evaluate on the refit models on the heldout
test folds. The scoring metric is Pearson’s correla-
tion coefficient between the predicted and true de-
mographics: ρ(y, ŷ) = cov(y,ŷ)

σyσŷ
, with cov(y, ŷ) in-

dicating the covariance and σy indicating the stan-
dard deviation. On this metric, a perfect predictor
will score 1 and a random predictor will score 0. We
report the average correlation across all ten demo-
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Figure 1: Average correlation plotted against the number
of active features (on a logarithmic scale).

graphic attributes, as well as the individual correla-
tions.

Results Table 2 shows the correlations obtained
by regressions performed on a range of different vo-
cabularies, averaged across all five folds. Linguistic
features are best at predicting race, ethnicity, lan-
guage, and the proportion of renters; the other de-
mographic attributes are more difficult to predict.
Among feature sets, the highest average correlation
is obtained by the full vocabulary, but the multi-
output lasso obtains nearly identical performance
using a feature set that is an order of magnitude
smaller. Applying the Fischer transformation, we
find that all correlations are statistically significant
at p < .001.

The Fischer transformation can also be used to
estimate 95% confidence intervals around the cor-
relations. The extent of the confidence intervals
varies slightly across attributes, but all are tighter
than ±0.02. We find that the multi-output lasso and
the full vocabulary regression are not significantly
different on any of the attributes. Thus, the multi-
output lasso achieves a 93% compression of the fea-
ture set without a significant decrease in predictive
performance. The multi-output lasso yields higher
correlations than the other dimensionality reduction
techniques on all of the attributes; these differences
are statistically significant in many—but not all—
cases. The correlations for each attribute are clearly
not independent, so we do not compare the average
across attributes.

Recall that the regularization coefficient was cho-
sen by nested cross-validation within the training
set; the average number of features selected is
394.6. Figure 1 shows the performance of each
dimensionality-reduction technique across the reg-
ularization path for the first of five cross-validation
folds. Computing the truncated SVD of a sparse ma-
trix at very large truncation levels is computationally
expensive, so we cannot draw the complete perfor-
mance curve for this method. The multi-output lasso
dominates the alternatives, obtaining a particularly
strong advantage with very small feature sets. This
demonstrates its utility for identifying interpretable
models which permit qualitative analysis.

4.2 Qualitative Analysis

For a qualitative analysis, we retrain the model on
the full dataset, and tune the regularization to iden-
tify a compact set of 69 features. For each identified
term, we apply a significance test on the relationship
between the presence of each term and the demo-
graphic indicators shown in the columns of the ta-
ble. Specifically, we apply the Wald test for compar-
ing the means of independent samples, while mak-
ing the Bonferroni correction for multiple compar-
isons (Wasserman, 2003). The use of sparse multi-
output regression for variable selection increases the
power of post hoc significance testing, because the
Bonferroni correction bases the threshold for sta-
tistical significance on the total number of compar-
isons. We find 275 associations at the p < .05 level;
at the higher threshold required by a Bonferroni cor-
rection for comparisons among all terms in the vo-
cabulary, 69 of these associations would have been
missed.

Table 3 shows the terms identified by our model
which have a significant correlation with at least one
of the demographic indicators. We divide words in
the list into categories, which order alphabetically
by the first word in each category: emoticons; stan-
dard English, defined as words with Wordnet entries;
proper names; abbreviations; non-English words;
non-standard words used with English. The cate-
gorization was based on the most frequent sense in
an informal analysis of our data. A glossary of non-
standard terms is given in Table 4.

Some patterns emerge from Table 3. Standard
English words tend to appear in areas with more
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full 5418 0.260 0.337 0.318 0.296 0.384 0.296 0.256 0.155 0.113 0.295 0.152
multi-output lasso

394.6

0.260 0.326 0.308 0.304 0.383 0.303 0.249 0.153 0.113 0.302 0.156
SVD 0.237 0.321 0.299 0.269 0.352 0.272 0.226 0.138 0.081 0.278 0.136
highest variance 0.220 0.309 0.287 0.245 0.315 0.248 0.199 0.132 0.085 0.250 0.135
most frequent 0.204 0.294 0.264 0.222 0.293 0.229 0.178 0.129 0.073 0.228 0.126

Table 2: Correlations between predicted and observed demographic attributes, averaged across cross validation folds.

English speakers; predictably, Spanish words tend
to appear in areas with Spanish speakers and His-
panics. Emoticons tend to be used in areas with
many Hispanics and few African Americans. Ab-
breviations (e.g., lmaoo) have a nearly uniform
demographic profile, displaying negative correla-
tions with whites and English speakers, and posi-
tive correlations with African Americans, Hispanics,
renters, Spanish speakers, and areas classified as ur-
ban.

Many non-standard English words (e.g., dats)
appear in areas with high proportions of renters,
African Americans, and non-English speakers,
though a subset (haha, hahaha, and yep) display
the opposite demographic pattern. Many of these
non-standard words are phonetic transcriptions of
standard words or phrases: that’s→dats, what’s
up→wassup, I’m going to→ima. The relationship
between these transcriptions and the phonological
characteristics of dialects such as African-American
Vernacular English is a topic for future work.

5 Conjunctive Demographic Features

Next, we demonstrate how to select conjunctions of
demographic features that predict text. Again, we
apply multi-output regression, but now we reverse
the direction of inference: the predictors are demo-
graphic features, and the outputs are term frequen-
cies. The sparsity-inducing `1,∞ norm will select a
subset of demographic features that explain the term
frequencies.

We create an initial feature set f (0)(X) by bin-
ning each demographic attribute, using five equal-
frequency bins. We then constructive conjunctive
features by applying a procedure inspired by related
work in computational biology, called “Screen and
Clean” (Wu et al., 2010). On iteration i:

• Solve the sparse multi-output regression prob-
lem Y = f (i)(X)B(i) + ε.

• Select a subset of features S(i) such that m ∈
S(i) iff maxj |b(i)m,j | > 0. These are the row
indices of the predictors with non-zero coeffi-
cients.

• Create a new feature set f (i+1)(X), including
the conjunction of each feature (and its nega-
tion) in S(i) with each feature in the initial set
f (0)(X).

We iterate this process to create features that con-
join as many as three attributes. In addition to the
binned versions of the demographic attributes de-
scribed in Table 1, we include geographical infor-
mation. We built Gaussian mixture models over the
locations, with 3, 5, 8, 12, 17, and 23 components.
For each author we include the most likely cluster
assignment in each of the six mixture models. For
efficiency, the outputs Y are not set to the raw term
frequencies; instead we compute a truncated sin-
gular value decomposition of the term frequencies
W ≈ UVDT, and use the basis U. We set the trun-
cation level to 100.

5.1 Quantitative Evaluation
The ability of the induced demographic features to
predict text is evaluated using a traditional perplex-
ity metric. The same test and training split is used
from the vocabulary experiments. We construct a
language model from the induced demographic fea-
tures by training a multi-output ridge regression,
which gives a matrix B̂ that maps from demographic
features to term frequencies across the entire vocab-
ulary. For each document in the test set, the “raw”
predicted language model is ŷd = f(xd)B, which
is then normalized. The probability mass assigned
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- - - + - + + +
;) - + - +
:( -
:) -
:d + - + - +
as - + -
awesome + - - - +
break - + - -
campus - + - -
dead - + - + + +
hell - + - -
shit - +
train - + +
will - + -
would + -
atlanta - + - -
famu + - + - - -
harlem - +
bbm - + - + + +
lls + - + - -
lmaoo - + + - + + + +
lmaooo - + + - + + + +
lmaoooo - + + - + + +
lmfaoo - + - + + +
lmfaooo - + - + + +
lml - + + - + + + + -
odee - + - + + +
omw - + + - + + + +
smfh - + + - + + + +
smh - + + +
w| - + - + + + +
con + - + +
la - + - +
si - + - +
dats - + - + -
deadass - + + - + + + +
haha + - -
hahah + -
hahaha + - - +
ima - + - + +
madd - - + +
nah - + - + + +
ova - + - +
sis - + +
skool - + - + + + -
wassup - + + - + + + + -
wat - + + - + + + + -
ya - + +
yall - +
yep - + - - - -
yoo - + + - + + + +
yooo - + - + +

Table 3: Demographically-indicative terms discovered by
multi-output sparse regression. Statistically significant
(p < .05) associations are marked with a + or -.

term definition
bbm Blackberry Messenger
dats that’s
dead(ass) very
famu Florida Agricultural

and Mechanical Univ.
ima I’m going to
lls laughing like shit
lm(f)ao+ laughing my (fucking)

ass off
lml love my life
madd very, lots
nah no
odee very

term definition
omw on my way
ova over
sis sister
skool school
sm(f)h shake my (fuck-

ing) head
w| with
wassup what’s up
wat what
ya your, you
yall you plural
yep yes
yoo+ you

Table 4: A glossary of non-standard terms from Ta-
ble 3. Definitions are obtained by manually inspecting
the context in which the terms appear, and by consulting
www.urbandictionary.com.

model perplexity
induced demographic features 333.9
raw demographic attributes 335.4
baseline (no demographics) 337.1

Table 5: Word perplexity on test documents, using
language models estimated from induced demographic
features, raw demographic attributes, and a relative-
frequency baseline. Lower scores are better.

to unseen words is determined through nested cross-
validation. We compare against a baseline language
model obtained from the training set, again using
nested cross-validation to set the probability of un-
seen terms.

Results are shown in Table 5. The language mod-
els induced from demographic data yield small but
statistically significant improvements over the base-
line (Wilcoxon signed-rank test, p < .001). More-
over, the model based on conjunctive features signif-
icantly outperforms the model constructed from raw
attributes (p < .001).

5.2 Features Discovered

Our approach discovers 37 conjunctive features,
yielding the results shown in Table 5. We sort all
features by frequency, and manually select a sub-
set to display in Table 6. Alongside each feature,
we show the words with the highest and lowest log-
odds ratios with respect to the feature. Many of these
terms are non-standard; while space does not permit
a complete glossary, some are defined in Table 4 or
in our earlier work (Eisenstein et al., 2010).



feature positive terms negative terms
1 geo: Northeast m2 brib mangoville soho odeee fasho #ilovefamu foo coo fina

2 geo: NYC mangoville lolss m2 brib wordd bahaha fasho goofy #ilovefamu
tacos

4 geo: South+Midwest renter ≤ 0.615 white ≤ 0.823 hme muthafucka bae charlotte tx odeee m2 lolss diner mangoville

7 Afr. Am. > 0.101 renter > 0.615 Span. lang. > 0.063 dhat brib odeee lolss wassupp bahaha charlotte california ikr en-
ter

8 Afr. Am. ≤ 0.207 Hispanic > 0.119 Span. lang. > 0.063 les ahah para san donde bmore ohio #lowkey #twitterjail
nahhh

9 geo: NYC Span. lang. ≤ 0.213
mangoville thatt odeee lolss
buzzin

landed rodney jawn wiz golf

12 Afr. Am. > 0.442 geo: South+Midwest white ≤ 0.823
#ilovefamu panama midterms
willies #lowkey knoe esta pero odeee hii

15 geo: West Coast other lang. > 0.110 ahah fasho san koo diego granted pride adore phat pressure

17 Afr. Am. > 0.442 geo: NYC other lang. ≤ 0.110 lolss iim buzzin qonna qood foo tender celebs pages pandora

20 Afr. Am. ≤ 0.207 Span. lang. > 0.063 white > 0.823 del bby cuando estoy muscle knicks becoming uncomfortable
large granted

23 Afr. Am. ≤ 0.050 geo: West Span. lang. ≤ 0.106 leno it’d 15th hacked government knicks liquor uu hunn homee

33 Afr. Am. > 0.101 geo: SF Bay Span. lang. > 0.063 hella aha california bay o.o aj everywhere phones shift re-
gardless

36 Afr. Am. ≤ 0.050 geo: DC/Philadelphia Span. lang. ≤ 0.106 deh opens stuffed yaa bmore hmmmmm dyin tea cousin hella

Table 6: Conjunctive features discovered by our method with a strong sparsity-inducing prior, ordered by frequency.
We also show the words with high log-odds for each feature (postive terms) and its negation (negative terms).

In general, geography was a strong predictor, ap-
pearing in 25 of the 37 conjunctions. Features 1
and 2 (F1 and F2) are purely geographical, captur-
ing the northeastern United States and the New York
City area. The geographical area of F2 is completely
contained by F1; the associated terms are thus very
similar, but by having both features, the model can
distinguish terms which are used in northeastern ar-
eas outside New York City, as well as terms which
are especially likely in New York.5

Several features conjoin geography with demo-
graphic attributes. For example, F9 further refines
the New York City area by focusing on communities
that have relatively low numbers of Spanish speak-
ers; F17 emphasizes New York neighborhoods that
have very high numbers of African Americans and
few speakers of languages other than English and
Spanish. The regression model can use these fea-
tures in combination to make fine-grained distinc-
tions about the differences between such neighbor-
hoods. Outside New York, we see that F4 combines
a broad geographic area with attributes that select at
least moderate levels of minorities and fewer renters
(a proxy for areas that are less urban), while F15
identifies West Coast communities with large num-

5Mangoville and M2 are clubs in New York; fasho and coo
were previously found to be strongly associated with the West
Coast (Eisenstein et al., 2010).

bers of speakers of languages other than English and
Spanish.

Race and ethnicity appear in 28 of the 37 con-
junctions. The attribute indicating the proportion of
African Americans appeared in 22 of these features,
strongly suggesting that African American Vernac-
ular English (Rickford, 1999) plays an important
role in social media text. Many of these features
conjoined the proportion of African Americans with
geographical features, identifying local linguistic
styles used predominantly in either African Amer-
ican or white communities. Among features which
focus on minority communities, F17 emphasizes the
New York area, F33 focuses on the San Francisco
Bay area, and F12 selects a broad area in the Mid-
west and South. Conversely, F23 selects areas with
very few African Americans and Spanish-speakers
in the western part of the United States, and F36 se-
lects for similar demographics in the area of Wash-
ington and Philadelphia.

Other features conjoined the proportion of
African Americans with the proportion of Hispan-
ics and/or Spanish speakers. In some cases, features
selected for high proportions of both African Amer-
icans and Hispanics; for example, F7 seems to iden-
tify a general “urban minority” group, emphasizing
renters, African Americans, and Spanish speakers.
Other features differentiate between African Ameri-



cans and Hispanics: F8 identifies regions with many
Spanish speakers and Hispanics, but few African
Americans; F20 identifies regions with both Span-
ish speakers and whites, but few African Americans.
F8 and F20 tend to emphasize more Spanish words
than features which select for both African Ameri-
cans and Hispanics.

While race, geography, and language predom-
inate, the socioeconomic attributes appear in far
fewer features. The most prevalent attribute is the
proportion of renters, which appears in F4 and F7,
and in three other features not shown here. This at-
tribute may be a better indicator of the urban/rural
divide than the “% urban” attribute, which has a
very low threshold for what counts as urban (see
Table 1). It may also be a better proxy for wealth
than median income, which appears in only one of
the thirty-seven selected features. Overall, the se-
lected features tend to include attributes that are easy
to predict from text (compare with Table 2).

6 Related Work

Sociolinguistics has a long tradition of quantitative
and computational research. Logistic regression has
been used to identify relationships between demo-
graphic features and linguistic variables since the
1970s (Cedergren and Sankoff, 1974). More re-
cent developments include the use of mixed factor
models to account for idiosyncrasies of individual
speakers (Johnson, 2009), as well as clustering and
multidimensional scaling (Nerbonne, 2009) to en-
able aggregate inference across multiple linguistic
variables. However, all of these approaches assume
that both the linguistic indicators and demographic
attributes have already been identified by the re-
searcher. In contrast, our approach focuses on iden-
tifying these indicators automatically from data. We
view our approach as an exploratory complement to
more traditional analysis.

There is relatively little computational work on
identifying speaker demographics. Chang et al.
(2010) use U.S. Census statistics about the ethnic
distribution of last names as an anchor in a latent-
variable model that infers the ethnicity of Facebook
users; however, their paper analyzes social behav-
ior rather than language use. In unpublished work,
David Bamman uses geotagged Twitter text and U.S.

Census statistics to estimate the age, gender, and
racial distributions of various lexical items.6 Eisen-
stein et al. (2010) infer geographic clusters that are
coherent with respect to both location and lexical
distributions; follow-up work by O’Connor et al.
(2010) applies a similar generative model to demo-
graphic data. The model presented here differs in
two key ways: first, we use sparsity-inducing regu-
larization to perform variable selection; second, we
eschew high-dimensional mixture models in favor of
a bottom-up approach of building conjunctions of
demographic and geographic attributes. In a mix-
ture model, each component must define a distribu-
tion over all demographic variables, which may be
difficult to estimate in a high-dimensional setting.

Early examples of the use of sparsity in natu-
ral language processing include maximum entropy
classification (Kazama and Tsujii, 2003), language
modeling (Goodman, 2004), and incremental pars-
ing (Riezler and Vasserman, 2004). These papers all
apply the standard lasso, obtaining sparsity for a sin-
gle output dimension. Structured sparsity has rarely
been applied to language tasks, but Duh et al. (2010)
reformulated the problem of reranking N -best lists
as multi-task learning with structured sparsity.

7 Conclusion

This paper demonstrates how regression with struc-
tured sparsity can be applied to select words and
conjunctive demographic features that reveal soci-
olinguistic associations. The resulting models are
compact and interpretable, with little cost in accu-
racy. In the future we hope to consider richer lin-
guistic models capable of identifying multi-word ex-
pressions and syntactic variation.
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