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ABSTRACT

How does online content propagate on social networks? Bil-
lions of users generate, consume, and spread tons of infor-
mation every day. This unprecedented scale of dynamics
becomes invaluable to reflect our zeitgeist. However, most
present diffusion extraction works have only touched indi-
vidual user level and cannot obtain comprehensive clues.
This paper introduces a new approach, i.e., COmmunity
Level Diffusion (COLD), to uncover and explore temporal
diffusion. We model topics and communities in a unified la-
tent framework, and extract inter-community influence dy-
namics. With a well-designed multi-component model struc-
ture and a parallel inference implementation on GraphLab,
the COLD method is expressive while remaining efficient.
The extracted community level patterns enable diffusion
exploration from a new perspective. We leverage the com-
pact yet robust representations to develop new prediction
and analysis applications. Extensive experiments on large
social datasets show significant improvement in prediction
accuracy. We can also find communities play very different
roles in diffusion processes depending on their interest. Our
method guarantees high scalability with increasing data size.
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1. INTRODUCTION

A longstanding question in communication media research
is Lasswell’s 5W maxim: “Who says What to Whom in What
channel with What effect?” [15, 33]. In the prevalent online
social networks, such as Twitter, Facebook and Weibo, bil-
lions of users share messages and interact with others. User
activities exhibit rich temporal dynamics. Understanding
these dynamics can reveal unique insight into our society.
As a first and critical step, what popular topics do users
talk and how do they spread the topics?
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Recently, there have been extensive studies in this direc-
tion [11, 7, 13, 27]. On one hand, most information diffu-
sion extraction works focus on individual-level interactions
and structural topologies [19, 27, 22], where the influence
between individual users and the bridging nodes (structural
hole) spanning network structures are used to model the dif-
fusion process. On the other hand, temporal modeling meth-
ods are developed to capture aggregated temporal trends of
online content [24, 16].

These variety of diffusion extraction methods have enjoyed
impressive success but still have large drawbacks. First,
the structural methods largely ignore topical differences and
cannot capture the rich diversity of information patterns.
Moreover, the highly volatile user behaviors usually render
it difficult to accurately uncover diffusion patterns for in-
dividual level approaches. Finally, the aggregation methods
fail to reveal detailed dissemination processes.

Can we unify these different lines, and obtain a rich spec-
trum of online temporal diffusion? This paper offers a new
perspective. We propose to extract community level diffu-
sion, i.e., modeling diffusion patterns of topics across differ-
ent communities. Community is a collection of users with
more intense interactions amongst its members than the rest
of the global network [17]. It provides the basis for user en-
gagement in social networks. Meanwhile, the “Strength of
Weak Ties” theory! [9] has suggested a critical role of inter-
community interactions in online diffusion. In this work, we
extract communities’ temporal dynamics as well as influence
between communities, and provide a coarse-grained diffusion
representation. The compact community level extraction
captures the backbone of information spreading, improves
temporal modeling, and finally better predicts and analyzes
the diffusion.
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Figure 1: Overview of Community Level Diffusion.

Figure 1 shows an overview of the community level diffu-
sion problem. The input is an interaction network among
users, along with user-generated content over time. Our goal

"Weak social ties are responsible for the majority of the
information spreading through human networks.



is to uncover the information dynamics across communities,
including the communities’ varying interest in different top-
ics (topic proportion),

Community level diffusion extraction is challenging. Com-
munities and topics are both hidden. Pipeline approaches
to extract these two factors in sequence fail to capture their
interdependence. Though in recent years an array of tech-
niques [39, 21, 12] have been developed for jointly leverag-
ing these two critical factors, they all fall short of suitably
modeling the correlation between them. Besides the task
of simultaneously extracting community and topics, we are
even required to include vibrant temporal factors.

To tackle the difficulties, this paper develops a latent
model, COLD (COmmunity Level Diffusion), to extract com-
munities, topics, and community level topic dynamics in a
unified way. We model community and topic as latent vari-
ables, and set up a generative process for observed network,
text, and time to accurately characterize the topic diffusion
at community level. An efficient sampling-based inference
algorithm and its parallel implementation are designed.

Based on the extraction, we design an effective diffusion
prediction method. Extensive experiments on large datasets
show our approach greatly improves the prediction accu-
racy. We further use COLD to investigate rich social dy-
namics from the new community level perspective, and re-
veal meaningful diffusion patterns, such as the interest shift
of communities and the time lag of topic spreading. Finally,
we demonstrate how the new representation and improved
prediction can lead to novel real-world applications such as
influential community identification for viral marketing.

Our latent model brings up several innovations. We model
users in overlapping communities with various affiliation de-
grees to capture users’ personalities. Each community is as-
sociated with a mixture of topics, indicating its diverse inter-
est with varying levels. This improves over previous one-to-
one topical community limitations. We also associate each
topic with community-specific temporal distributions, which
is able to distinguish different dynamic processes within dif-
ferent communities.

To summarize, we make the following contributions:

1. Novel Perspective. We identify the problem of com-
munity level diffusion. It brings up new insights into the
information dissemination process. To the best of our knowl-
edge, such a new angle has not been studied before.

2. Comprehensive Model. We propose a latent model
to uncover the hidden topics and communities as well as cap-
ture the community-specific temporal diffusion. It exhibits
improved capacity to model information dynamics.

3. Scalable Inference. We decouple the model into
several components, based on which an efficient inference
algorithm is developed. We further set up a scalable parallel
implementation.

4. Inspiring Prediction & Exploration. An effective
diffusion prediction approach is developed which leverages
community level patterns and shows significant superiority.
We also study the real-world applications of COLD in viral
marketing.

The rest of this paper is organized as follows: §2 reviews
related literature. §3 formulates the problem and introduces
the model. §4 describes the inference method and parallel
implementation. §5 illustrates the model analysis and de-
velops a new prediction approach. §6 evaluates the solution.
And finally, we conclude this work in §7.

2. RELATED WORK

Information Diffusion. Online information diffusion
has received increasing interests over the recent years [11].
One fundamental problem is to estimate the influence strength
(or diffusion probabilities) between users [19, 27]. However,
the large volume of existing works have only focused on in-
dividual level, i.e., extracting user-to-user influence directly
from the volatile individual behaviors. This can be limited
and fragile to noises. In contrast, our approach proposes to
model diffusion at community level, a new granularity that
provides compact yet robust representations.

The extracted influence strength can be used in down-
stream applications such as future propagation prediction
[31, 8] and influential spreader identification [29, 7, 13], and
eventually promote viral marketing and social network man-
agement. We develop an effective prediction method based
on the new community level patterns and improve the pre-
vious work significantly.

Temporal Modeling. Another line of research captures
temporal trends of content [35, 24, 32]. Topics Over Time
(TOT) [32] is a latent generative model over the text and
time stamps of documents. These works only reveal the ag-
gregated topical trends, while ignoring the diversity of differ-
ent users’ temporal behaviors. By comparison, our work dis-
tinguishes temporal dynamic patterns across different com-
munities, and provides a more thorough and versatile view.

Community Detection. Communities are natural groups
formed by users with close connections and similar inter-
est [17]. A mixed membership stochastic block model is
introduced in [1] where each user has a probability dis-
tribution over communities. A growing number of recent
works [26, 36] incorporate both the network structure and
content to improve community detection performance, e.g.,
Link-PLSA-LDA [25], RTM [3], and PMTLM [39]. In these
models, content and links are both generated by the same
latent variables. Thus communities are limited to have one-
to-one correspondence with topics. Our model decomposes
these two factors, which opens up an array of meaningful
and desired extraction such as community interest over vary-
ing topics and popularity variation of topics across different
communities.

3. COMMUNITY LEVEL DIFFUSION
EXTRACTION METHOD

The central task is to extract community level diffusion
patterns from social records (§3, §4), and utilize them to
promote novel diffusion prediction and analysis (§5).

In this section, we first formulate the diffusion modeling
problem from the new community level perspective. We
then propose COLD (COmmunity Level Diffusion), a com-
prehensive latent variable model, to address the problem.

3.1 Problem Formulation
The notations used in this paper are listed in Table 1.

Definition 1. (Interaction Network). Consider a so-
cial network G = (U,€). U is a set of U users. The link
set £ denotes interactions between users and can be derived
from various types of user interactions such as following,
retweeting and commenting. A directed link (i,4") € £ rep-
resents there exists communication from user i to 7', e.g., i’
once retweeted 4.



Symbol  Description

U,T,C;, K number of users, time slices, communities, and
topics
D;,E; number of posts by user ¢, and links from user ¢
d;;  the jth post by user i
t;;  the time stamp of post d;;
w;j;  the lth word in post d;;
c;; ~community associated with post d;;
z;;  topic associated with post d;;
e;;»  indicator of the existence of link (7,1')
84,5, ~ communities associated with user ¢ and 4’ in link
(i,1)
7t;  multinomial distribution over communities spe-
cific to user
6. multinomial distribution over topics specific to
community ¢
¢, multinomial distribution over words specific to
topic k
Y. multinomial distribution over time specific to
topic £ and community ¢
Neer  general influence strength (diffusion probability)
from community c to ¢’
Ckeer  influence strength on topic k from community c to
c/
Ao, A1 Beta priors on n

Table 1: Notations Used in This Paper.

Each user ¢ € U is associated with a set of D; posts,
denoted as D;, where each post d;; contains a bag of words
from a given vocabulary, along with a posting time stamp
tij. We use & to denote the set of links from ¢ to other
users, and define F; = |&;] .

Community is a collection of users with more intense in-
teractions amongst its members than the rest of the global
network. It can be characterized not only by interaction
link structures, but also the content (i.e. posts) generated
by its members. While existing works on community mod-
eling generally assume one community corresponds to one
interest/topic, we associate each community with a topic
distribution representing its different topical interests and
give the following new definition.

Definition 2. (Community). A community ¢ € {1,...,C}

has two components: a multinomial distribution over top-
ics 6., where each component 6., represents the probability
that a post from the community is related with the corre-
sponding topic k; and a probability vector . where each
component 7. is the mean of a Bernoulli distribution rep-
resenting the diffusion probability from a user in community
c to a user in community ¢’

In social networks, users usually bear multiple roles and
are influenced by different community contexts [34]. We
therefore employ the mized-membership approach: each user
i is associated with a multinomial distribution over commu-
nities 7r;, where m;. indicates her affiliation degree to com-
munity c.

Definition 3. (Topic). A topic k € {1,..., K} is a multi-
nomial distribution over the vocabulary, denoted as ¢x.

A topic has changing popularity over time. We represent
it as a temporal distribution. Besides, a topic can exhibit
very different temporal dynamics within different communi-
ties, which leads to the following definition:

Definition 4. (Community-level Temporal Variation).

At community level, a temporal topic k is associated with a

set of C' multinomial distributions ¥x = {¥r1, Y2, ..., Yrc},
each of which represents the changing popularity of topic k
within the corresponding community, i.e., a multinomial dis-
tribution over time slices.

Different communities are expected to play different roles
in topic dissemination process. This can be modeled by
influence strength between communities:

Definition 5. (Community-level Influence Strength).
For each topic k, the community-level influence strength is
represented as the diffusion probabilities between any two
communities ¢ and ¢, denoted as (e

Note that we aim to model topic-sensitive influence be-
tween communities. The topics and communities are both
latent factors to be extracted, and we are also required to
uncover their correlations over time, i.e., community-level
temporal variations and influence strength on topics.

The perspective of community level diffusion is quite dif-
ferent from prior works which study diffusion at individual
level and largely ignore the effects of community structure.
The new granularity provides a compact yet accurate repre-
sentation, but also brings about unique complexity in mod-
eling and computing. Next we develop our new model by
describing its general structure as well as three properly de-
coupled components.

3.2 Model Structure

COLD is a generative model jointly over text, time and
network. It uncovers latent communities and topics, and
infers community-level dynamics in a unified way.

Although some of its building blocks are inspired by re-
cent successful attempts, including the Mixed Membership
Stochastic Blockmodel (MMSB) [1] over networks, and Top-
ics over Time (TOT) [32] over text and time, COLD sig-
nificantly goes beyond those on more comprehensive input
features and powerful modeling ability. Compared to previ-
ous joint text and link models, COLD better fits the social
network setting by accurate community interest recovering
and refined user post treatment.
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Figure 2: An illustration Showing the User Behaviors Ex-
plained by Community-specific Context. The color of each
component corresponds to that of Figure 3.

COLD aims to model two basic types of user behaviors,
i.e., posting (which generates text) and social interaction
(which forms links), together. Figure 2 illustrates the user
behavior modeling. Specifically, each user may assume dif-
ferent community memberships when taking these behav-
iors, and each behavior is further explained by community-
specific context. That is, for the behavior of posting, the
words and time stamp of the post are assumed to be gen-
erated by community-specific mixture of topics (i.e. 6.);
while for the behavior of social interaction, the link is gov-
erned by the community-specific interaction strengths with
other communities (i.e. 7).



Figure 3 shows the graphical structure of COLD. By jointly
considering the two types of user behaviors with properly
separated generative process, COLD naturally combines con-
tent and network data while still keeping the model tractable.
Both community interest over topics and topic dynamics
within communities can be inferred from the timestamped
posts specific to particular communities.

_J User membership component

Text-time component Network component

Figure 3: Graphical Model Representation of COLD. The
latent variable s}, is represented as dashed circle since it is
drawn from 7r;; which is not shown in the graphical model.

3.3 Individual Components

Figure 3 shows three components together form COLD:
the text-time component uncovers the semantic topics, and
captures topic temporal variations; the network component
accounts for the link structure; and the user membership
component models user membership to communities, which
also serves to seamlessly unify the other two components.

User membership component. Users in social net-
work usually have multiple community memberships. We
associated each user ¢ with a community probability vector
;. Each post d;; € D; is assigned to a community c;;, de-
noting the community membership of user ¢ when she writes
the post. In addition, each link e;;» € &; is associated with
two communities s;» and s.;,, one for each of the two users i
and i’ respectively, denoting their community memberships
when user 4 builds relationship with 4’.

The community membership vector 7 captures the per-
sonality of individual user, which can be utilized for pre-
dicting message propagation between users (§5).

Text-time component. Each post di; € D; contains
a bag of words {wij1,...,wija,;} where |di;| denotes the
length of the post. In traditional topic models such as latent
Dirichlet allocation (LDA) [2], a document is associated with
a mixture of topics and each word has a topic label. This
is reasonable for long documents such as academic papers.
However, on social media like micro-blog, a post is usually
short, and thus is most likely to be about a single topic [5].
We therefore associate with d;; a single latent topic variable
zij drawn from 6., to indicate its topic. The words are then
sampled from the corresponding word distribution ¢.,;.

To model the temporal information of posts, we first dis-
cretize the time by dividing the entire time span of all users’
posts into T' time slices, then use a multinomial distribution

Pk over time slices to model the temporal variation spe-
cific to each topic k and each community c. Thus, a post
d;; is generated at the time ¢;; drawn from 1j’z1‘jcm- More-
over, compared to Topics over Time (TOT) [32] which uses
a Beta distribution to model time variations and only allows
a unimodal distribution over time for each topic, our use of
multinomial distribution can capture multimodal variations.
It is more flexible and expressive in capturing real-life topics
which usually rise and fall for many times.

Network component. We use pairwise community
Bernoulli distributions 17 to model the presence and absence
of links between pairs of users. For each link (,4), a boolean
indicator e;;; is drawn from Nsyrs!, which represents the

relationship strength between community s;;; and s;/.

Social network is typically sparse, thus we only model
positive links: the variables s;,s};, exist if and only if
(1,7") € €. As in [12], the negative links (i,7") ¢ &; are im-
plicitly modeled in a Bayesian fashion: we use a Beta(\o, A1)
prior on each 7../, and set Ao = n~ln(nneg/02) and \; = 0.1,
where nneg = U(U — 1) — 3. |€i] is the number of negative
links and & is a tunable weight. In this way, we reduce large
amount of computation and achieve linear complexity on
network modeling, as explained later in §4.2.

3.4 Generative Process

The generative process is summarized in Alg 1. Consider
a user ¢ who posts and interacts with others. When she
publishes a post d;j, she first selects the community mem-
bership ¢;; by her community distribution 7r;, then selects
a topic by the community’s topic distribution 8.,,. With
the chosen topic, words are generated from the topic’s word
distribution, and time stamp from the temporal distribution
of that community and topic. On the other hand, when she
interacts another user i, a community is sampled for each
of them by their own community distributions, and the link
is formed by community-community influence strength.

Algorithm 1 Generative Process for COLD
1. For each topic k=1,2,..., K,

(a) Sample the distribution over words, ¢|8 ~ Dir(8).
(b) For each community c=1,2,..., C,

i. Sample the distribution over time stamps,
Wiele ~ Dir(e).
2. For each community ¢ =1,2,..., C,
(a) Sample the distribution over topics, 6.|a ~ Dir(c).
(b) For each community ¢/ =1,2,..., C,
i. Sample community-community link probability,
Neer | A0, A1 ~ Beta(Ag, A1).
3. For each user 1 =1,2,...,U
(a) Sample the distribution over communities, m;|lp ~
Dir(p).
(b) For each post j =1,2,...,
i. Sample community indicator, ¢;;|m; ~ Mul(7r;).
ii. Sample topic indicator, z;;|6c,; ~ Mul(fc,;).
iii. For each word [ =1,2,...,
A. Sample word, wyji|¢z,; ~ Mul(¢pz,; ).
iv. Sample time stamp, t;;[1z;;c;; ~ Mul(Pz,;c;;)-
(c¢) For each link (i,4') € &;,
i. Sample community indicator, s;;/|m; ~ Mul(7;).
ii. Sample community indicator,s’, |7w; ~ Mul(7; ).
iii. Sample link, e;;/|n, , o ~ Ber(n, o ).
197 7440 i 7440




3.5 Discussion

COLD is designed to reveal the rich spectrum of online
temporal diffusion across communities. Such a highly ex-
pressive model had not been explored due to its inherent
complexity in modeling and computing. Here we discuss
the modeling choices for handling the complexity.

Previous works on text and link modeling [39, 12, 3, 25]
have assumed one-to-one correspondence between communi-
ties and topics. Such modeling is limited since the rich cor-
relation between communities and topics are ignored. We
decouple these two factors, which not only improves both
community and topic extraction (§6), but also opens up an
array of meaningful and desired extraction. For instance, we
can explore communities’ varying topical interest by associ-
ating each community with a mixture of topics; we are also
enabled to distinguish topic’s temporal variation across com-
munities, which, compared to previous aggregation meth-
ods [24, 32], leads to new insights in user attention shift
(85.3).

However, the decomposition also leads to C'-C'- K param-
eters in the topic-sensitive community-level diffusion (Cxeer),
which can be prohibitive for inference. We therefore employ
a two-stage approach by first inferring the general inter-
community influence 7. and the community interest 0.,
then deriving (r.r as combination of these intermediate
parameters (§5.1). The formulation effectively reduces the
complexity to C-(C'+ K), and still exhibits strong predictive
power in diffusion prediction (§5.2).

It is also worth noting that previous text-link methods
are typically proposed for the document citation network,
which, in the social network setting, requires to view each
user’s post collection as a huge document. A latent topic is
then selected for each word of the “document”. In contrast,
COLD models individual posts separately, which helps to
preserve the correlation among words in each post—we can
associate a single topic to each post as a whole. This has not
only overcome the heavy noise in social network-style text,
but also decreased the inference complexity.

Finally, as discussed above, the carefully-designed Bayesian
prior avoids explicit modeling of the negative links. Hence
the computation for network modeling is drastically reduced
given that social networks are typically very sparse.

4. INFERENCE & IMPLEMENTATION

This section develops an efficient inference method for
COLD. We first present the basic inference algorithm us-
ing a sampling method. It scales linearly w.r.t. the data
size, which is still intolerant for growing large social data.
To ensure its scalability, we further design a parallel imple-
mentation based on GraphLab.

4.1 Approximate Inference

Exact inference for COLD model is difficult due to the in-
tractable normalizing constant of the posterior distribution
(see the appendix for more details), we therefore exploit col-
lapsed Gibbs sampling [10] for approximate inference. As
a widely used Markov chain Monte Carlo (MCMC) algo-
rithm, Gibbs Sampling iteratively samples latent variables
(i.e. {e,s,2} in COLD) from a Markov chain, whose sta-
tionary distribution is the posterior. The samples can there-
fore be used to estimate the distributions of interest (i.e.

{m,0,m,0,9}).

At each iteration of our Gibbs sampler, for each post d;;
by user i, we sample both the corresponding community in-
dicator ¢;; and the topic indicator z;;; for each link (i,4’),
we sample the corresponding community indicators s;;» and
s}.,. Here we directly give the sampling formulas, and pro-
vide the detailed derivation in the appendix (Appx A).

Sampling community indicator c;; for post d;; ac-
cording to,

Peij =clzij =k, tij = t,c—ij,8,2—i5,t—ij,.)
W hp n® a1 e )
()+C'p n()-i-Ka n()-i-TE

where n(c) denotes the number of posts and links of user 7 as-

signed to community c; n( ) is the number of posts assigned

to community ¢ and generated by topic k; ngc) denotes the
number of times that time stamp t is generated by commu-
nity ¢ and topic k. Marginal counts are represented with
dots; e.g., n denotes the total number of time stamps gen-
erated by communlty c and topic k. All the counters are
calculated with the post d;; excluded.

Sampling community indicators s, and s, for link
(,4"). Recall that we only model s;; and s, for positive
links e;; = 1:

P(siyr =c¢,shy = lejr =1,8_4,¢,e,.)

<C) +p . ’I’L(C ) +p Neer + A1 (2)

()+Cp n()-i-Cp Nee + Ao+ A1’

where n.. is the number of positive links, with (4,7") ex-
cluded, whose communities indicators are {c,c’}.

Sampling topic indicator z;; for post d;; according
to:

P(zij = kleij = ctij = t,c_ij, 2 iij t_ij,.)

n ta n) +e Hu 11_[ 7( D tq+h) G
ne € ) ¢ ’
K T n
+ (0% n +Te Hq A ( () + q+ Vﬁ)
where nf? is the number of times word v occurs in the post

dij; n,g”) denotes the number of times word v is assigned to
topic k. Note that n ")
d;; excluded.

After a sufficient number of sampling iterations as de-
scribed above, we obtain a set of samples. The unknown
distributions can then be computed by integrating across
the samples [10].

and nlg) are calculated with the post

4.2 Time Complexity

We now analyze the time complexity of our inference algo-
rithm. It is shown that the devised algorithm scales linearly
in terms of the size of data, i.e., the number of words and
positive links.

In each iteration, the communities of user posts are first
sampled. Since all the counters (e.g. n( )) involved in Eq.(1)
can be cached and updated in constant time for each c;;
being sampled, Eq.(1) can be calculated in constant time.
Thus, sampling all ¢ takes linear time w.r.t. the number
of posts. Next, we sample community indicators s using
Eq.(2). Since we have implicitly modeled negative links in
Bayesian prior (i.e., the Beta prior for 7..), we only need
to sample s;; and s, for positive links e;» = 1. Hence the



complexity is reduced from quadratic (w.r.t. the number of
users) to linear (w.r.t. the number of links). It significantly
saves computation cost due to the sparseness of networks.
Finally, sampling all z by Eq.(3) is linear in the number of
words.

Though linear computational complexity might not seem
prohibitive, it limits the applicability of the model for grow-
ing data. We further give a parallel implementation of the
inference algorithm to scale up our model to large social
dataset.

4.3 Parallel Implementation

We implement a parallel COLD inference algorithm on the
distributed GraphLab system [23]. GraphLab is a vertex-
centric programming framework, expressing computational
dependencies with a distributed graph. It has demonstrated
superior performance over popular parallel systems, e.g.,
MapReduce and Spark, for many machine learning algo-
rithms.
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Figure 4: Abstraction of the Distributed Gibbs Sampler.

GraphLab implements the gather-apply-scatter (GAS) model

which abstracts the program into three phases. In the gather
phase, each vertex aggregates data from its neighborhood,
and uses the result to update its own associated data in
the apply phase. In the scatter phase, each vertex triggers
neighboring vertex or modifies adjacent edge data.

The parallelization of our collapsed Gibbs Sampler is achieved

by drawing new assignments in Egs.(1-3) simultaneously.
We first define the graph abstraction of our algorithm as
shown in Figure 4. Specifically, we construct a bipartite
graph connecting each user with each time stamp. An edge
between a user ¢ and a time stamp ¢ contains the words of
posts generated by user ¢ at time ¢, as well as the commu-
nity and topic indicators for the posts. We then incorporate
the network data by connecting corresponding user vertices,
where each edge contains the community indicators of two
users.

The counters in Egs.(1-3) are either maintained globally
or in vertices. Global counters are aggregated from the ver-
tices periodically, while counters in vertices are updated dur-
ing the gather and apply phases. The program samples new
assignments in the scatter phase. Alg 2 shows the GAS pro-
cedures of COLD Gibbs Sampler. We monitor the conver-
gence of the algorithm by periodically computing the likeli-
hood of training data [10].

The designed graph abstraction and GAS decomposition
ensure most of the state maintenance to be processed lo-

Algorithm 2 Vertex Program (GAS) of COLD Gibbs Sampler

: Gather (v, €)
1 if wv.type = user then
if e.type = user_time_edge then
return counts of each comm acc. to e.{c;;}
else if e.type = user_user_edge then
return counts of each comm acc. to e.s;; or e.s;.i,
end if
: else if wv.type = time then
: return counts of each comm-topic pair acc. to e.{zij, cij}
: end if

1

2

3

4

5

6

7

8

9

10

11

12: Apply (v, gather_result)

13: if v.type = user then

14 update v.n;. by gather_result
15: else if v.type = time then
16:  update v.n.i; by gather_result
17: end if

18:

19: Scatter (v, €)

20: if e.type = user_time_edge then

21 for all doc j ine do

22 sample e.c;; by Eq.(1) and e.z;; by Eq.(3)
23 end for

24: else if e.type = user_user_edge then

25:  sample e.s;;y and e.s!, by Eq.(2)

26: end if

cally, while global counters are generally only related to la-
tent spaces which are low-dimensional. This maximizes the
parallelism of the algorithm. Meanwhile, the data, as well as
computation tasks, is partitioned into fine granularity and
evenly distributed to each vertex and edge (Figure 4). Such
an abstraction can promote better load balance among clus-
ter nodes in the distributed setting.

Finally, as we avoid directly modeling the absence of links,
a tremendous amount of communication is saved. Equipped
with all the above features, our inference implementation
leads to satisfying efficiency and scalability on large real
data, as shown latter in our empirical study.

S. DIFFUSION PREDICTION & ANALYSIS

Modeling information diffusion at community level can
provide insights into social dynamics at a brand new gran-
ularity. This section first illustrates the compact diffusion
patterns extracted by COLD, based on which novel predic-
tion methods and diffusion analysis are designed.

5.1 Community Level Diffusion

Here we demonstrate how our approach can be utilized to
reveal topic dynamics and diffusion across communities.

In COLD, 1. models the general influence strength of a
community ¢ on another community ¢, while 0., and 0.,
captures the interest levels on topic k of community ¢ and
community ¢, respectively. As discussed in § 3.5, we can
combine these intermediate factors to infer the topic-specific
influence strength of ¢ on ¢’:

Chee! = GCkec’kncc’ . (4)

An example excerpted from our empirical study is shown
in Figure 5, which demonstrates the extracted community
level diffusion. The word cloud of topic Movie The Journey
to the West and its diffusion path across different communi-
ties are included. Each community is represented as a “pie
chart™style node showing its top-5 interested topics (acc.
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Figure 5: Community-level Diffusion of Topic Movie The
Journey to the West—a record-breaking box-office hit in
China. We refer to the topic as Journey West for short.

to @), with the dominant ones manually labeled by concise
names. The time line near each community node shows the
temporal variation (i.e. ) of the topic specifically inside
that community. The spike (time stamp R) of each line co-
incides with the release date of the movie. Interestingly, the
spikes in communities Literature, Sports and Music are huge.
In contrast, though community Mowie-Oscars exhibited in-
creasing activities at that time, the degree is not remark-
able. We investigate the seemingly unintuitive phenomenon
in §5.3.

The thickness of edges represents the influence strength
between communities at this topic (i.e. ¢). We can clearly
see that the community most interested in Movie and Oscar
is the most influential one on topic Journey West. We for-
mally discuss in §6.6 how COLD can be applied to identify
most influential communities which is critical in viral mar-
keting. The community Traffic is not active on the topic. By
investigating the data we found this is because the majority
of its members are traffic police official accounts.

The community level diffusion not only reveals compact
yet meaningful overview of the topic diffusion process, but
also forms the bases for the accurate diffusion prediction and
in-depth analyses of social media dynamics, as shown next.

5.2 Prediction Method

A common task of diffusion analysis is to predict whether
a message will propagate from one individual to another [11].
Taken retweeting as the example, given the content wq of a
message d, its publisher 4, and another user i’ (e.g. a follower
of i), the objective is to estimate the probability that i’ will
retweet d from i.

Motivated by the above COLD model and the identi-
fied diffusion patterns, we develop our diffusion prediction
method. Unlike traditional diffusion prediction methods
which attempts to extract user-to-user diffusion probability
directly from individual’s interaction history, our solution
conducts a two-step strategy: we first get the community-
level diffusion probability as described in Eq.(4), and then
combine personality of individuals through user-specific com-
munity memberships.

Our solution takes advantage of the community members’
collective behavior patterns which are stable and predictable
over time. User-specific community memberships can also
be accurately captured based on both text and network fea-
tures. In contrast, traditional methods can be ineffective
due to the volatility of individual’s actions and the sparsity
of individual’s records. We present the details of our method
as follows.

Given a user-user-post triple (i,i',d), we estimate the
probability that the post d will be spread from user ¢ to
user i’. Based on the topic modeling component in COLD,
we first infer the underlying topics of the post through its
text and its publisher’s interest:

P(k|d,i) < P(wgq|k)P(k|i)

o< [ [ #hwa, - > micOck, (5)
1

ceTopComm(i)

where P(k|i) is the topical preferences of user i; TopComm(¢)
is the set of top communities of user ¢ according to 7r;. Prior
study has shown that a user on social media is typically ac-
tive in a small number of communities [34], indicating that
just the top few (e.g. 5 to 10) communities are sufficient
enough to characterize the user’s interest. We thus fix the
size of TopComm as a small constant value (i.e. 5 in our
setting).

Next, for one topic k, the influence of user i on user i’
at topic k can be inferred by combining user community
memberships and community-level influence strengths:

P(i,i'|k) = § TicTit ol Shee! -
¢ € TopComm(i) (6)
’

€

c TopComm(i’)

By combining Eq.(5) and (6), we obtain the final user-to-
user diffusion probability of post d from user i to i’

P(i,i',d) = P(k|d,i)P(i,|k). )
k

Though seeming costly by combining several components
together, we can actually get the result efficiently by of-
fline filtering. In practice, we pre-collect the top communi-
ties of each user and then get her topic preferences. These
are processed offline. In online determining of diffusion for
user pairs, we simply collect the intermediate representation
and calculate the final value, which only requires a weighted
linear combination (Eq.(7)). The online computation com-
plexity is O(K|wg4|), making the prediction very efficient, as
further validated in Section 6.4.

Unlike most traditional diffusion prediction methods, the
proposed approach also accounts for the semantics of spread-
ing messages by comprehensive topic modeling as shown
above, and is able to distinguish different diffusion processes
across topics. The advantage and improved performance of
COLD'’s prediction method will be illustrated in the exper-
imental study.



5.3 Diffusion Patterns

Here we reveal several interesting and useful characters of
diffusion based on the extracted community-level represen-
tations. We focus on the rich interplay between user interest
and temporal dynamics.

Correlation between Community Interest and Topic
Fluctuation. Users’ concern usually changes over time,
which is reflected by the popularity trends of topics. Here
we study the connection between topics’ temporal trends
(i.e. 1) and communities’ topical focus (i.e. 6). Specifically,
how do topics with varying interest levels fluctuate within
communities? What is the difference between the variation
patterns of topics with high weights and those with low?
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Figure 6: Topic Fluctuation and Community Interest. (X-
axis is log scale.)

We use the variance of topic’s community-specific tem-
poral distribution k. to measure the fluctuation intensity
of topic popularity. The scatter diagram in Figure 6 dis-
plays its relation with community’s topic preference degree
Ock. We also include the cumulative distribution function
for the distribution of all communities’ interest strengths.
Topic popularity tends to fluctuate heavily throughout the
time period within those communities with moderate inter-
est in that topic. It generally exhibits higher variance when
the topic has a proportion between 0.01% and 1% in com-
munity’s interest distribution. In contrast, the popularity
usually keeps steady in other communities which exhibit ex-
tremely low and high preference.

We can conclude that temporal topics are usually more
dynamic in medium-interested communities. Members’ at-
tention on these topics tends to rise and fall intensely over
time; in contrast, their engagement in communities’ domi-
nant topics is more stable.

Popularity lag between different communities. The
influence strengths between communities have revealed the
diffusion paths of topics. We then try to determine the time
lag of topic propagating across communities. Specifically,
how much time does it take for a topic diffusing from its
initiators to others?

Figure 5, along with the above study, shows that different
communities have varying temporal popularity on a specific
topic. We can generally classify two categories of commu-
nities, i.e., communities with high preference for the topic
and those with medium interest. Take the topic Oscars2013
for example, the Movie and Literature communities (Fig-
ure 5) have the highest preference and others’ are lower. We
recognize the top 10 communities with largest probability
on this topic as the highly-interested ones, yielding a set of

communities whose average probability on the topic is 4.1%.
Medium-interested communities are the remaining commu-
nities except those with extremely low probability (threshold
is set to 0.01%), which have an average probability 0.37%.
Due to the scale of social data, these thresholds are not low.

We then plot the median topic dynamic curve [16] for these
two categories of communities. Specifically, for each commu-
nity category, we align all of its community-specific temporal
distributions of Oscars2013 so that the peak popularity is
equal to 1; we then at each time stamp plot the median
probability over these aligned curves. Figure 7 shows the
two categories’ peak-time curves for topic Oscars2013.
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Figure 7: Time Lag between Highly and Medium-interested

Communities on Topic Oscars2013.

We find that the topic popularity in the highly-interested
communities rises earlier than the medium-interested com-
munities. Moreover, the popularity in highly-interested com-
munities lasts longer. It has a durable popularity. Investi-
gating this time lag phenomenon on other topics, we also
find similar results. Due to the space limit, we omit them.

The diffusion path and time lag confirm the usefulness of
community level diffusion analysis and can be valuable in
a variety of applications such as viral marketing, which we
study in §6.6.

6. EMPIRICAL DEMONSTRATION

We conduct extensive experiments on large real datasets
to evaluate the extraction and prediction performance of
the proposed approach. The empirical study is divided into
multiple stages. We first quantitatively evaluate the model’s
capability to extract topics and communities. We then test
the diffusion prediction of the proposed approach, where
the temporal modeling accuracy and the diffusion prediction
performance are reported. Besides, efficiency and scalability
of our model are validated by measuring the running time
of model training, parallel extension, and online prediction.
We also systematically study the sensitivity of model param-
eters. At last, we demonstrate novel real-world applications
supported by our method.

All experiments are conducted on a cluster of Linux ma-
chines, each with eight 2.4GHz CPU cores and 48G memory.
Data is stored in a RAID5 SAS storage server.

6.1 Setup

Datasets.  Two real-world datasets are crawled from
Sina Weibo?, one of the most popular micro-blog platforms.
We uniformly at random sample temporal messages from its
streaming API. The messages are distributed nearly evenly

Zhttp://weibo.com



in a three-month period from Dec 2012 through Feb 2013.
Both datasets choose hour as the basic time interval.

Dataset 1. After removing stop words and low active
users (with fewer than 20 posts), we create a dataset con-
sisting of about 53K users, 11M posts and 91M words. The
vocabulary size of these messages is 89K. Interaction net-
work is derived from retweeting interactions between users,
i.e., a link from user i to i’ exists if i’ once retweeted i’s post.
2.7M links are observed.

Dataset 2. To evaluate the scalability of our approach, we
also generate a larger dataset obtained in a similar manner
as the first dataset. It consists of about 0.52M users, 10M
links, 14M posts and 112M words.

Baselines. We compare the proposed COLD approach
with several latest competitors. As there exists no prior
approach capable of modeling communities and topic dy-
namics at the same time, we carefully select appropriate
state-of-the-art methods to cover different aspects of diffu-
sion modeling methods.

Table 2 lists the characters of these methods. Be aware
that though some methods can be tuned to be used in several
tasks, they are inadequate or uncompetitive compared with
others; thus we omit them in this paper.

features tasks
. . topic comm temp diff

fext  social time ext detec modl pred
PMTLM [39]] e . . °
MMSB [1] . .
EUTB [37] . . . . .
Pipeline . . . . ° .
WTM [31] ° . °
TT [20] ° ° . .
COLD ° ° . ° . . .

Table 2: Feature and Task Comparison of Different Methods

Methods (1-2) models text and network features. Meth-
ods (3-5) aim at modeling temporal dynamics by integrating
text and temporal features. At last, we include two dif-
fusion prediction methods, which are used to compare the
performance of direct individual diffusion modeling against
community level modeling.

1. Poisson Mixed-Topic Link Model (PMTLM).
PMTLM [39] defines a generative process for both text and
links between users. Text generation follows the LDA [2]
model, and links are modeled as a Poisson distribution. In
PMTLM, links and text are generated by the same latent
factor, which means one community is bounded to one topic
(the latent factor is treated as community when generating
links, and topic when generating text).

2. Mixed Membership Stochastic Block model
(MMSB) [1] uses pairwise Bernoulli distributions to model
links, and infers a distribution over communities for each
user.

3. Enhanced User-Temporal Model with Burst-
weighted Smoothing (EUTB) [37] assumes a topic is
generated either by a user or a time stamp. It models the
topic distributions for both users and time stamps. With
network regularization and burst-weighted smoothing, EUTB
performs best in time stamp prediction task among a set of
competitors.

4. COLD without Link (COLD-NoLink). As a sub-
part of COLD without network component, COLD-NoLink
can be used to test the contributions of network features.

5. Pipelined Approach of Community-level Tem-
poral Dynamics (Pipeline). We first use MMSB model
to assign each user to two most probable communities. Then
we extract topic variation in particular communities by run-
ning TOT [32] on the posts generated by their members.
This approach does not include interdependence between
network and content.

6. Whom to Mention (WTM) [31] proposes a rank-
ing method aimed at finding top users who would retweet
a post and make contribution to its further diffusion. Fea-
tures including user interest match, content-dependent user
relationship and user influence are adopted.

7. Topic-level Influence (TI) [20] is a probabilistic gen-
erative model capturing influence between users at different
topics. Both direct and indirect user influences are consid-
ered when predicting whether a user will retweet a friend’s
post.

6.2 Latent Factor Extraction

We report the model’s capacity in extracting latent fac-
tors, showing its accurate modeling ability in both topic and
community identification.

Topic Extraction. For an intuitive understanding of
the extracted topics, we present four example word clouds
in Figure 8. Meaningful subjects can be observed.
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Figure 8: Word Clouds of Extracted Topics.

We next quantitatively evaluate COLD’s topic extraction
capacity by perplezity [2]. As a widely used metric in text
modeling, perplexity measures how well a probability model
predicts a sample. It can be interpreted as being propor-
tional to the distance (formally, the cross-entropy) between
the word distribution learned by the model and the actual
distribution in test set [4]. Thus lower scores are better, in-
dicating the model distribution is closer to the actual one.
For a test set of M posts,

, >ali logp(wa)
perplezity(Diest) = exp { - == },
Zd:l Ng

where Ny is the length of the test post d, and p(wg) is
the probability of the words in the post; for COLD, it is
computed as:

= Z Tic Z Ock H ¢kwdl s
c k 1

where i is the post author.

We use a 5-fold cross validation testing, i.e., at each time
interval, 80% of the posts as the train set, while the remain-
ing 20% posts and all links as test set. Figure 9 shows the
perplexity values under varying number of topics. It reveals



that COLD (K = 100, C' = 100) has the lowest perplexity,
indicating best topic discovery performance among all the
competitors. Perplexity scores for EUTB and COLD are
close, and both significantly outperform PMTLM. PMTLM’s
topics are tangled with communities in the same latent fac-
tor, weakening their fitness in modeling text.

In contrast, COLD comprehensively models communities
and topics while explaining text well. Compared to EUTB,
COLD not only models the dynamic content, but further
captures social influence between users by incorporating net-
work features. Therefore, the proposed method delievers
improved advantages in topic extraction.
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Figure 9: Perplexity Scores. (The less, the better.)

Community Detection. We then continue to evaluate
the quality of the extracted communities. An example of the
mixed-membership communities is visualized in Figure 16.
We can see most users are clustered at the pentagon’s cor-
ners and sides/diagonal lines, indicating that most of them
have primary communities for engagement.

For quantitative evaluation, since no ground truth is avail-
able on Weibo network (which is the most common situation
on social networks), we use link prediction, a widely-used
quantitative measurement in the mixed-membership com-
munity setting without community labels [28].

Link prediction [18] is defined to estimate the probability
of a link between two users. The probability of a link from
user i to i’ is measured by:

Py = § § TisTil s/ Nss! -
s g

Since there is no pre-defined threshold for link existence,
we turn to area under the receiver operating characteristic
curve (AUC)? as the prediction accuracy. Given a rank of
all non-observed links, the AUC value can be interpreted as
the probability that a randomly chosen true positive link is
ranked above a randomly chosen true negative link. In 5-
fold cross validation, each time we use 20% of the positive
links and randomly select 1% of the negative links to evalu-
ate AUC; models are trained on the remaining links and all
posts.

Figure 10 shows the AUC values for the three models.
COLD (K = 100, C = 100) outperforms all other meth-
ods. Moreover, PMTLM and COLD are significantly more
accurate than MMSB, showing that incorporating content
feature benefits network structure modeling. COLD is also
slightly better than PMTLM, with the comprehensive mod-
eling ability.

Shttp://en.wikipedia.org/wiki/Roc_curve
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Figure 10: Link Prediction Performance (AUC).

The above two latent extraction experiments show the
proposed COLD is versatile enough to simultaneously cap-
ture the critical characters in temporal diffusion. Though
PMTLM performs almost as well as COLD in network mod-
eling, the low topic extraction quality hinders its ability in
modeling communities and topics at the same time. It re-
veals that, a single latent variable is not expressive enough
to capture the diverse structures underlying the rich hetero-
geneous text and network context. COLD decouples these
two critical factors and suitably models their correlations,
ensuring both flexibility and accuracy.

6.3 Diffusion Prediction

Here we demonstrate the significant superiority of COLD
over existing methods in terms of diffusion modeling and
prediction.

Temporal Modeling. Time stamp prediction [32] is to
estimate the occurring time stamp of a previously unseen
document. Given the words in a post d and its author user 7,
we choose its time stamp as the candidate giving maximum
likelihood:

£d = arg mtax Z Tic ; gckwkct 1:[ ¢kwdl .
c

Here 5-fold cross validation is used. The best results
are obtained by setting K = 100 for the four models, and
C = 100 for COLD and COLD-NoLink. Figure 11 shows the
prediction accuracy for different models as a function of tol-
erance range, i.e., the maximum allowed difference between
the real and predicted time stamps. COLD performs best
among all competitors. COLD-NoLink outperforms EUTB,
showing that the superiority of our approach derives not only
from the the integration of network feature, but also from
the fine-grained representation by distinguishing temporal
topic dynamics across different communities.

It is notable that Pipeline, despite taking into account
community specific topic dynamics, has poor performance.
The reason is that it exploits network and content informa-
tion separately, and ignores the interdependence between
them. This experiment further justifies the advantage of
the unified way which COLD uses to model dynamic social
data.

Diffusion Prediction. The prediction task is to estimate
whether a post d by a user ¢ will be retweeted by another
user i'. We use the averaged AUC values [6]. Specifically,
given a tuple RT7;:q4 = (4, d, uid,ﬁid), where U;q4 is the set of
i’s followers who retweeted d from i while ;4 is the rest of
i’s followers who ignored d, its AUC is computed by treating
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Figure 11: Time Stamp Prediction Accuracy.

the set {(i,4',d)|i" € Uia} as positive examples and the set
{(i,7',d)|i’ € U;a} as negative examples. We then average
the AUC values for all the tuples in test set. Here 5-fold
cross validation is used by randomly holding out 20% tuples
(with non-empty U;q and U;q) from the dataset as the test
set each time.

Figure 12 gives the averaged AUC values for the three
competitors. COLD (K = 100, C' = 100) outperforms all
other methods. Both TI and WTM attempt to model diffu-
sion probability directly based on individual records, which
can be prohibited by the volatility of individual behaviors as
well as the sparsity of individual data. In contrast, COLD
adopts a new paradigm by taking the advantage of the sta-
bility and predictability of collective behaviors of community
members; user-specific characters are captured by user dis-
tribution over communities which can be accurately modeled
by leveraging both text and network features.
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Figure 12: Diffusion Prediction Performance (AUC).

6.4 Efficiency

Parallel Scaling. We deploy our inference algorithm on
the distributed GraphLab system to tackle the challenge of
large data size. We study its scalability on the larger dataset
with 0.52M users, 10M links and 14M posts. Training time
is reported under different machine and data settings in Fig-
ure 13.

Figure 13(a) shows that the required time increases lin-
early as the data size grows. This confirms that by implicitly
modeling negative links in Bayesian prior, our proposed col-
lapsed Gibbs Sampler scales linearly with the size of dataset,
as analyzed in §4.2.

The results in Figure 13(b) demonstrate satisfying effi-
ciency of our distributed implementation on GraphLab. The
running time decreases significantly with growing size of dis-
tributed GraphLab nodes. We reduce the training time for
10M links and 14M posts from hundred hours to just a few.

This clearly shows the advantage of parallel processing. The
model structure of COLD is loosely coupled enough to guar-
antee the parallel processing, showing advantage in growing
social data size.
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Figure 13: Training Time of COLD on Parallel GraphLab.

Training time. Figure 14 shows the running time of
different methods on the whole dataset. Note that while
COLD jointly models text, network and time information,
the baselines generally only account for a limited portion
of the data. Though the basic implementation of COLD is
costly, the parallel implementation guarantees the efficiency
very well. It is feasible in actual deployment.
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Figure 14: Training Time (C=K=100). “COLD (8)” is the
distributed implementation on 8 nodes.

Prediction Time. Figure 15 presents the online diffu-
sion prediction time of different methods after model train-
ing.

Our proposed method has lowest cost. In contrast, the
baseline methods, i.e., TT and WTM are usually costly. This
can be attributed to their lack of compact representation of
user’s profile. Specifically, TI’s prediction is based on the
influence of a user’s multi-hop friends which can be a large
set and require much processing time. For WTM, due to
the absence of topic modeling, computing content-dependent
features can be costly. Different from these methods, our
proposed approach is able to characterize user’s profile by
extracted communities’ representations, which can be effi-
ciently computed by only a few operations.

6.5 Parameter Sensitivity

Though seeming complex, hyper-parameters for Bayesian
priors, as discussed later, generally have negligible impact.
COLD model is largely affected by two parameters, i.e., com-
munity number C' and topic number K. We test the sen-
sitivity in different tasks. The empirical results show that
K primarily impacts topic modeling, while C' has an effect
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Figure 15: Time Cost of Different Prediction Methods.

mainly on community extraction. They together exert in-
fluence on diffusion prediction accuracy. The performance
is stable under a broad range of parameter settings, indicat-
ing little tuning is required in actual deployment. Due to
the space limitations, we defer the experimental results of
parameter effects to the appendix (Appx B).

It is worth pointing out that Dirichlet hyper-parameters
have low impact on model performance, and can be set
as fixed values following the common strategy [5, 38] (i.e.,
p =50/C,a = 50/K,B = € = 0.01), while \¢g and \; are
set as described in §3 for modeling negative links. Empirical
studies also show our model is insensitive to these hyperpa-
rameters, which we omit due to space limitations.

6.6 Application of COLD

The improved diffusion prediction and the compact com-
munity level representation can not only help in traditional
diffusion analysis, but also open up various novel applica-
tions at community scale. Here we demonstrate a concrete
application to show how COLD can be applied to identify
influential users and communities, which can be crucial in
viral marketing and social network management [11].

Mining the influential nodes on social network has been
studied extensively. Most existing works [29, 13, 8] usually
assume pre-defined influence strength between users and fo-
cus on the information cascade simulation. Hence COLD is
complementary, and can be directly applied, to these works
by providing accurate influence strength estimation.

Moreover, COLD also enables us to go beyond the tradi-
tional user level and study the most influential communities.
Selecting communities as the initial target has been increas-
ingly employed due to its economy (e.g. by creating fan-
pages on Facebook) [30, 7] and effectiveness (e.g. by word-of-
month among closely-connected members) [14]. Therefore,
influential community identification enjoys practical values.

Analogous to measuring user’s influence degree [19], we
compute the influence degree of each community by setting
the single community as the seedset and applying the well-
known Independent Cascade [8] model on the extracted com-
munity level diffusion graph (e.g. Figure 5). Figure 16 shows
the 4 most influential communities on topic Sports, as well
as the aggregated other communities, by the 5 corners of a
pentagon. Every user ¢ is displayed as a point whose posi-
tion is determined by her community membership 7, i.e., a
mi-weighted convex combination of the 5 pentagon corners.
For better understanding of the result, we also compute the
influence degree of users, which is reflected by the size of
the points in the figure. The characteristics of communities
can then be obtained by analyzing their influential mem-
bers. We can see that most of the influential users are from

ther communities

Women's Tennis
Association OA

s &z ™ China Dongguan
Basketball Club
78,

N Juventus
Football Club

AHong Kong

=" NBA Chicago
. Bull Basketball
fan zone

A super FC
/ Barcelona
Football fan

Figure 16: The Most Influential Communities on Topic
Sports. Points at the pentagon’s corners represent single-
membership users, while points on the sides and diagonal
lines represent users with mixed-membership in 2 communi-
ties. Only the top 20k influential users are shown (thus the
points around “other communities” are few). Top-3 influ-
ential members of community 84 and 89 are labeled, where
“OA” stands for “Official Account”. Best viewed in color.

community 84 (blue) and 89 (green), which are the top-2
influential communities. Figure 16 further labels the top-3
users of each community. Interestingly, the top members of
C-84 are usually the official accounts of sports organizations,
while those of C-89 are personal or unofficial ones, indicating
distinct interaction patterns of these two influential types.

7. CONCLUSION

This paper addressed the problem of community-level dif-
fusion analysis. We presented COLD (COmmunity Level
Diffusion), a generative latent model jointly over network,
text and time, to simultaneously uncover the hidden topics,
communities, and inter-community influence.

With the well-designed model structure and parallel in-
ference, COLD is effective and scalable. Based on the ex-
tracted community level representations, we developed an
effective diffusion prediction approach. We also applied the
model on real large datasets and performed temporal diffu-
sion analysis. Meaningful patterns were discovered. COLD
can be further used in influential community identification
to promote viral marketing.

The community level diffusion analysis is a novel angle,
and opens up several promising future directions. For exam-
ple, the mechanism behind the coarse-grained diffusion and
user engagement are beneficial for better temporal analysis
and user targeting. More efficient and compact summariza-
tion techniques are also vital for dynamic and noisy data sce-
narios. We would like to extend current extraction method
for advanced prediction and diffusion problems.
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APPENDIX

A. INFERENCE VIA COLLAPSED GIBBS
SAMPLING

Here we describe the inference algorithm for COLD based on
collapsed Gibbs Sampling.

Given an interaction network G = (U, &) with a set of posts
D, and the pre-defined hyperparameters p, o, 3,¢ and A, COLD
specifies the following full posterior distribution:

P(Tr70777’ ¢7¢7czs7z‘M787D7pza76’ €, A) &
(P(‘“'|P)P(9|a)P(77\A)P(¢|5)P(¢|E)P(07 s|m)P(z|6,c) 8)
P(’LU'D'dLZ)P(tDl’l,[&C,Z)P(eg"f], S)>7

where wp is the words in the post set; tp is the time stamps of
the posts; eg is the set of positive links; the constant of propor-
tionality is the marginal likelihood of the observed data.

The task of posterior inference for COLD is to determine the
probability distribution of the hidden variables given the observed
words, time stamps and network. However, exact inference is
intractable due to the difficulty of calculating the normalizing
constant in the above posterior distribution.

We use collapsed Gibbs Sampling, a well-established Markov
chain Monte Carlo (MCMC) technique for approximate infer-
ence. In collapsed Gibbs Sampling, the multinomial distribu-
tions ® = {m,0,n,¢p,9} are first marginalized (collapsed), a
Markov chain over the latent indicators {e,s,z} is then con-
structed, whose stationary distribution is the posterior. We ob-
tain samples of latent variables from the Markov chain. Point
estimates for the collapsed distributions € can then be computed
given the samples, and predictive distributions are computed by
averaging over multiple samples.

Sampling Procedure. Gibbs Sampler repeatedly samples
each latent variable conditioned on the current states of other
hidden variables and observations; a configuration of latent states
of the system is then obtained. Next we provide the derivation of
the sampling formulas (Egs.(1-3)).

By marginalizing out ® in Eq.(8), we obtain:

P(e,s,z|.)

x P(e, s|p)P(z|e,a) P(w|z, B)P(t|c, z,¢) P(e|s, A)
- /P(ﬂ'|p)P(c,s|7r)d7-r/P(9|a)P(z|0,c)d0

9)
[ PP, o [ P@IPED, . 2)d

- [ P Peln, s)an.

The conditional of c¢;; can be computed by dividing the joint
distribution of all variables by the joint of all variables except c;;
(denoted as c_;j):

P(Cij = C|C,Z'j7 8,Z7t, )

_ P(¢s,2])

B P(C_i]',S,Zl.) (10)
P(c, s|p) P(z|c,a) P(tle, z,€)

P(c_ij,sl|p) ’ P(zlc_ij,a) ’ P(tle_ij, z,€)

We now derive the first fraction of Eq.(10), i.e

_ [ P(wlp)P(c, s|m)dm
[ P(xlp)P(c_ij, s|m)dm’ (11

P(c, s|p)
P(c—ij, slp)

As we assume each c is generated from a multinomial distribu-
tion 7r, and the hyper-parameter for conjugate Dirichlet prior is
p, we have:

/P(ﬂ'|p)P(c,s|7r)d7r
n{®
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Combining the above equation with Eq.(11) leads to:

Ple,slp) T +prnl) . +Cp)

i, —1ij
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where the count with subscript —ij denotes a quantity with the
current instance (i.e. post d;;) excluded. Here we use the iden-
tity I'(x 4+ 1) = aI'(z). The second and third fractions of Eq.(10)
can be derived analogously. The Dirichlet-Multinomial conju-
gates ensure the tractability of the integrals. Specifically, the
second fraction can be written as:

n®)

P(z|e, o 2 to
P(z(|c‘_;j,)a) = (C)Y ”4_ Ka (13)
while the third fraction as:
P(tle,z,¢)  ma i te )
P(tle_ij,z,€) n{) .+ Te

Finally, by combining Eqgs.(12-14) we obtain the sampling for-
mula as in Eq.(1). Note that we omit the subscripts —ij in Eq.(1)
for clarity. Eq.(2) and Eq.(3) are derived in a similar manner.

Distribution Estimation. After a sufficient number of sam-
pling iterations, we obtain a set of samples. For any single sample,
we can estimate the unknown distributions as follows:

()

o= i TP
c ng) +Cp’
n£k> +«
o = —5———,
ne’ + Ka
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Nee! =

Nee! + Mo —l—)\l7

while ¢ and v can be estimated similarly. The final predictive
distributions are obtained by integrating across all the samples.

B. RESULTS ON PARAMETER SENSITIV-
ITY

K on Topic Extraction. Figure 17 shows the topic per-
plexity values under different parameter settings. Given a fixed
C, the perplexity decreases with the increasing number of topics,
and levels off after K is larger than 100. On the other hand, under
any fixed K, the result remains stable as C' varies, indicating that
the number of communities is less important than the number of
topics for text modeling. In COLD, text is generated by mixture
of topics, hence the number of topics directly impacts the capacity
of modeling text. In contrast, although there exists correlations
between content and network, the influence of communities on
text modeling is indirect.
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Figure 17: #Community C' and #Topic K Impacts on Topic
Extraction.
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Figure 18: #Community C and #Topic K Impacts on Link
Prediction.

C on Community Extraction. Figure 18 shows the impacts
of C and K w.r.t. the quality of COLD in community modeling.
The AUC value at first increases as C' increases, and there is an
intermediate value of C (i.e. 100) at which COLD performs best.

After that the AUC value decreases as C continues to increase.
In contrast, the result fluctuates slightly without a clear pattern
as K varies. The result is expected as links are directly generated
by mixture of communities. The effect of topic number is not
significant.
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Figure 19: #Community C and #Topic K Impacts on Dif-
fusion Prediction.

Joint Impacts on Diffusion Prediction. Figure 19 shows
the diffusion prediction performance under different parameter
settings. We find that the prediction AUC values are affected
by both C' and K, e.g., the performance gets better when K
and C increases from 20 to 100, respectively. The joint effect
indicates that communities and topics are both critical factors in
modeling diffusion process. Besides, the clear trends w.r.t. K
and C provide a useful guidance for model selection, e.g., a wide
range of K values (from 20 to 100 for this data) would provide
good performance.
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