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Abstract

The problem of inferring the population structure, linkage disequilibrium pattern, and chromo-
somal recombination hotspots from genetic polymorphism data is essential for understanding the
origin and characteristics of genome variations, with important applications to the genetic analysis
of disease propensities and other complex traits. Statistical genetic methodologies developed so far
mostly address these problems separately using specialized models ranging from coalescence and
admixture models for population structures, to hidden Markov models and renewal processes for
recombination; but most of these approaches ignore the inherent uncertainty in the genetic com-
plexity (e,g., the number of genetic founders of a population) of the data and the close statistical
and biological relationships among objects studied in these problems. We present a new statistical
framework called hidden Markov Dirichlet process (HMDP) to jointly model the genetic recombi-
nations among possibly infinite number of founders and the coalescence-with-mutation events in
the resulting genealogies. The HMDP posits that a haplotype of genetic markers is generated by a
sequence of recombination events that select an ancestor for each locus from an unbounded set of
founders according to a 1st-order Markov transition process. Conjoining this process with a mu-
tation model, our method accommodates both between-lineage recombination and within-lineage
sequence variations, and leads to a compact and natural interpretation of the population struc-
ture and inheritance process underlying haplotype data. We have developed an efficient sampling
algorithm for HMDP based on a two-level nested Pólya urn scheme, and we present experimen-
tal results on joint inference of population structure, linkage disequilibrium, and recombination
hotspots based on HMDP. On both simulated and real SNP haplotype data, our method performs
competitively or significantly better than extant methods in uncovering the recombination hotspots
along chromosomal loci; and in addition it also infers the ancestral genetic patterns and offers a
highly accurate map of ancestral compositions of modern populations.

Keywords: Dirichlet Process, hidden Markov Model, recombination, clustering, Ancestral
inference, population genetics



1 Introduction
Recombinations between ancestral chromosomes during meiosis play a key role in shaping the
patterns of linkage disequilibrium (LD)—the non-random association of alleles at different loci—
in a population. When a recombination occurs between two loci, it tends to decouple the alleles
carried at those loci in its decedents and thus reduce LD; uneven occurrence of recombination
events along chromosomal regions during genetic history can lead to ”block structures” in molec-
ular genetic polymorphisms such that within each block only low level of diversities are present in
a population.

Statistically, for a pair of loci with genetic polymorphic markers, say, X and Y , the LD be-
tween this two loci can be characterized by a number of so-called LD measures. For example, the
L1 distance between p(X, Y ) and p(X)p(Y ), where p(·, ·) and p(·) denotes the empirical joint and
marginal distribution, respectively, of marker states in a population, can be used as a general LD
measure for arbitrary markers. For bi-allelic markers (i.e., markers that have only two possible
states), the most popular LD measures in the genetics community include the gametic disequilib-
rium, D′; and the p-value for Fisher’s exact test. For a population that is typed at a sequence of
polymorphic loci, the LD pattern over all loci-pairs is expected to offer some empirical picture of
the aforementioned block structures on chromosomes (Fig 1). However, this kind of descriptive,
population-level analysis offers limited insight of the underlying genetic processes (e.g., recom-
bination) that generate these patterns, and provides no information regarding the demographical
history and ancestral composites of each individual in the study population. In this paper, we
propose a new model-based approach to address these issues.

(a) HapMap DB (b) Daly et al’s data

Figure 1: The LD measurements, |D′| (upper right), and the p-values for Fisher’s exact test
(lower left), of two real data sets. (a) The two-population haplotype dataset from the HapMap
project [Thorisson et al., 2005]. Note that as the two populations are mixed, the LD-block struc-
tures in the LD map are rather inobvious (compared to the LD patterns in Fig 9, where the popula-
tions are shown separately). (b) The single-population haplotype dataset from Daly et al. [2001].
In each of the LD maps, starting from the upper-left corner, all the markers are listed in top-down
and left-right directions, and each marker is at a spatial position corresponding to its actual genetic
distance with respect to the first marker (at the upper-left corner). The bars left-to and on-top-of
the LD maps denote the genetic location of each marker with respect to the first marker.
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The problem of inferring chromosomal recombination hotspots is essential for understand-
ing the origin and characteristics of genome variations; several combinatorial and statistical ap-
proaches have been developed for uncovering optimum block boundaries from single nucleotide
polymorphism (SNP) haplotypes [Daly et al., 2001; Anderson and Novembre, 2003; Patil et al.,
2001; Zhang et al., 2002]. For example, Zhang et al. [2002] proposed a dynamic programming
algorithm for partitioning single nucleotide polymorphism (SNP) haplotypes (explained in the se-
quel) into low-diversity blocks, Daly et al. [2001] and Greenspan and Geiger [2004] have devel-
oped hidden Markov models for locating recombination hotspots in haplotypes, and Anderson and
Novembre [2003] proposed a minimum description length (MDL) method for optimal haplotype
block finding. Some recent studies resorted to more sophisticated population genetics arguments
that more explicitly capture the mechanistic and population genetic foundations underlying re-
combination and LD pattern formation. For example, Li and Stephens [2003] used a tractable
approximation to the recombinational coalescence, via a (latent) genealogy of the population, to
capturing the conditional dependencies between haplotypes. Rannala and Reeve [2001] also use
a coalescence-based model and an MCMC method to integrate over the unknown gene genealogy
and coalescence times. These advances have important applications in genetic analysis of disease
propensities and other complex traits.

The deluge of SNP data also fuels the long-standing interest of analyzing patterns of genetic
variations to reconstruct the evolutionary history and ancestral structures of human populations, us-
ing, for example, variants of admixture models on genetic polymorphisms [Pritchard et al., 2000;
Rosenberg et al., 2002; Falush et al., 2003]. These models are instances of a more general class
of hierarchical Bayesian models known as mixed memembership models [Erosheva et al., 2004],
which postulate that genetic markers of each individual are iid [Pritchard et al., 2000] or spa-
tially coupled [Falush et al., 2003] samples from multiple population-specific fix-dimensional
multinomial-distributions of marker alleles. However, the admixture models developed so far do
not model genetic drift due to mutations from the ancestor allele and therefore do not enable infer-
ence of the founding genetic patterns and the age of the funding alleles [Excoffier and Hamilton,
2003].

These progress notwithstanding, the statistical methodologies developed so far mostly deal
with LD analysis and ancestral inference separately, using specialized models that do not capture
the close statistical and genetic relationships of these two problems. Moreover, most of these ap-
proaches ignore the inherent uncertainty in the genetic complexity (e,g., the number of genetic
founders of a population) of the data and rely on inflexible models built on a pre-fixed, closed
genetic space. Recently, we have developed a nonparametric Bayesian framework for modeling
genetic polymorphisms based on the Dirichlet process mixtures and extensions, which attempts
to allow more flexible control over the number of genetic founders than has been provided by the
statistical methods proposed thus far [Xing et al., 2004] . In this paper, we leverage on this ap-
proach and present a unified framework to model complex genetic inheritance process that allows
recombinations among possibly infinite founding alleles and coalescence-with-mutation events in
the resulting genealogies.

We assume that individual chromosomes in a modern population are originated from an un-
known number of ancestral haplotypes via biased random recombinations and mutations (Fig 2).
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Figure 2: An illustration of a hidden Markov Dirichlet process for haplotype recombination and
inheritance. Note that the total number of ancestors is unknown.

The recombinations between the ancestors follow a state-transition process we refer to as hidden
Markov Dirichlet process (originated from the infinite HMM by Beal et al. [2001]), which travels
in an open ancestor space, with nonstationary recombination rates depending on the genetic dis-
tances between SNP loci. Our model draws inspiration from the HMM proposed in [Greenspan
and Geiger, 2003], but we employ a two-level Pólya urn scheme akin to the hierarchical DP [Teh
et al., 2006] to accommodate an open ancestor space, and allow full posterior inference of the re-
combination sites, mutation rates, haplotype origin, ancestor patterns, etc., conditioning on phased
SNP data, rather than estimating them using information theoretic or maximum likelihood prin-
ciples. On both simulated and real genetic data, our model and algorithm show competitive or
superior performance on a number of genetic inference tasks over the state-of-the-art parametric
methods.

2 Preliminary: The Data Sets and the Inference Problems
Before presenting our statistical model, we begin with a brief description of the data sets to be
analyzed in this paper, and the specific inference problems we concern.

The data of interest are population samples of what is known as haplotypes of single nucleotide
polymorphisms, or SNPs. Single nucleotide polymorphism represents the largest class of individ-
ual differences in DNA. A SNP refers to the existence of two possible kinds of nucleotides from
{A, C,G, T} at a single chromosomal locus in a population; each variant is called an allele. A hap-
lotype is a list of alleles at contiguous sites in a local region of a single chromosome. Assuming
no recombination in this local region, a haplotype is inherited as a unit. But under many realis-
tic biological or genetic scenarios, repeated recombinations between ancestral haplotypes during
generations of inheritance may confound the genetic origin of modern haplotypes (Fig 2).

We will analyze two haplotype datasets, the single-population Daly data [Daly et al., 2001],
and the two-population (CEPH: Utah residents with northern/western European ancestry; and YRI:
Yoruba in Ibadan and Nigeria) HapMap data [Thorisson et al., 2005]. These data consist of trios
of genotypes, so most of the true haplotypes can be directly inferred from the genotype data 1.

1In general, the haplotypes of each individual is ambiguous given the genotype data; and inferring haplotypes
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The HapMap data was generated by the International HapMap Project that attempts to identify
and catalog genetic similarities and differences in human beings of different ethnic origins [Con-
sortium, 2005; Thorisson et al., 2005]. The current release of the whole HapMap data contains
over 1 million SNPs, from 269 individuals belonging to four populations. In this study, we only
focus on a small subset of SNPs common to all populations (so that here we don’t have to devolve
into large-scale computation and system implementation issue, a point we would like to address
elsewhere); and we use data from two of the four populations, YRI and CEPH, because only these
two populations contain trios of genotypes, which allows unambiguous determination of most of
the true haplotypes. Specifically, we have 30 trios of YRI and 30 trios of CEPH (i.e., 180 individ-
uals in total), of which the 120 unrelated phase-known individuals corresponding to the parents in
the trios were used in the experiment (the children’s haplotypes are inherited from the parents and
are redundant in the population, assuming no mutation occurs in a single-generation inheritance).
We concern ourselves with 254 SNPs (i.e., SNPs at 254 genomic loci), which are located in the
region of ENm010.7p15.2 spanning 497.5 kilo-basepair (kb). The LD patterns of these SNPs are
displayed in Fig 1a.

The Daly set [Daly et al., 2001] consists of the haplotypes 103 SNPs across a 616.7-kb region
on chromosome 5q31 of 129 trios from a European-derived population. Earlier studies indicate
that this region contains a genetic risk factor for Crohn disease, and the LD patterns based on
traditional approaches (i.e., marker versus marker) are shown in Fig 1b. Earlier analysis of this
data set using a hidden Markov model revealed the existence of discrete haplotype blocks, each
with low diversity, in this region [Daly et al., 2001].

Given the haplotypes of a sequence of SNPs from a sample population, we are interested in the
following questions: 1) Recovering a possible set of founding haplotypes that may give rise to all
the haplotypes in the study population. We refer to this problem as ancestral inference. Note that
a priori we have no knowledge about the exact number of possible founders, and typical solutions
to problems of this nature employ a model selection procedure according to, for example, Bayes
factor [Kass and Raftery, 1995]. We proposed a full Bayesian treatment of this problem that lever-
ages the Dirichlet process models. 2) Inferring where recombinations take place in each individual
and where are the recombination hotspots at the population level. We refer this problem as recom-
bination analysis, and we propose a model-based posterior inference approach conditioning on the
entire haplotype data rather than the pairwise LD measure as in conventional analysis. 3) Inferring
the ancestral origin of each SNP in each individual haplotype, and thereby estimate the ancestral
composition of each modern individual. We refer to this problem as ancestral mapping, and again
we tackle it via Bayesian inference in an open, recombining, ancestral space. In the sequel we
present a statistical model that addresses these inference problems jointly.

from genotypes from arbitrary population(s), a problem known as haplotype phasing, is itself a challenging statistical
inference problem and has attracted significant amount of research in the statistics community (e.g., [Excoffier and
Slatkin, 1995], [Niu et al., 2002], [Stephens et al., 2001]). To keep this paper focused, we omit an elaborated discussion
on this problem, but see [Xing et al., 2004; Xing et al., 2006] for our resent works on this subject based on the
nonparametric Bayesian formalism leveraged in this paper.
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3 Hidden Markov Dirichlet Process for Recombination
Sequentially choosing recombination targets from a set of ancestral chromosomes can be mod-
eled as a hidden Markov process [Niu et al., 2002; Greenspan and Geiger, 2003], in which the
hidden states correspond to the index of the candidate chromosomes, the transition probabili-
ties correspond to the recombination rates between the recombining chromosome pairs, and the
emission model corresponds to a mutation process that passes the chosen chromosome region
in the ancestors to the descents. When the number of ancestral chromosomes is not known,
it is natural to consider an HMM whose state space is countably infinite [Beal et al., 2001;
Teh et al., 2006]. In this section, we describe such an infinite HMM formalism, which we would
like to call hidden Markov Dirichlet process, for modeling recombination in an open ancestral
space.

3.1 Dirichlet Process mixtures
For self-containedness, we begin with a quick overview of the fundamentals of Dirichlet process
and its connection to the coalescent process in population genetics, followed by a brief recap of the
basic Dirichlet process mixture model we proposed in [Xing et al., 2004] for haplytope inheritance
without recombination.

As mentioned earlier, a haplotype refers to the joint allele configuration of a contiguous list
of SNPs located on a chromosome. Under a well-known genetic model known as coalescence-
with-mutation (but without recombination), one can treat a haplotype from a modern individual
in a study population as a descendent of their most resent common ancestor (MRCA), which is
of unknown haplotype, via random mutations that alter the allelic states of some SNPs [Kingman,
1982]. Hoppe [1984] observed that a coalescent process in an infinite population leads to a partition
of the population at every generation that can be succinctly captured by the following Pólya urn
scheme.

Consider an urn that at the outset contains a ball of a single color. At each step we either
draw a ball from the urn and replace it with two balls of the same color, or we are given a ball
of a new color which we place in the urn. One can see that such a scheme leads to a partition
of the balls according to their color. Mapping each ball to a haploid individual 2 and each color
to a possible haplotype, this partition is equivalent to the one resulted from the coalescence-with-
mutation process [Hoppe, 1984], and the probability distribution of the resulting allele spectrum—
the numbers of colors (resp. haplotypes) with every possible number of representative balls (resp.
decedents)—is captured by the well-known Ewens’ sampling formula [Tavare and Ewens, 1998].

Letting parameter α define the probabilities of the two types of draws in the aforementioned
Pólya urn scheme, and viewing each (distinct) color as a sample from Q0, and each ball as a sample
from Q 3, Blackwell and MacQueen [1973] showed that this Pólya urn model yields samples whose

2A haploid individual refers to an individual with only one haplotype — a simplifying assumption often used on
population genetics when the paternal and maternal haplotypes of a diploid individual are inherited independently.

3Here we deviate from the conventional notations in the statistics literature (e.g., [Neal, 2000; Escobar and West,
1995; Ishwaran and James, 2001]) and use Q and Q0, instead of G and G0 (or H), to denote the random probability
measure under DP and the base measure of DP, respectively, because in the genetic context, G and H have been
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distributions are those of the marginal probabilities under the Dirichlet process [Ferguson, 1973].
Formally, a random probability measure Q is generated by a DP if for any measurable partition
B1, . . . , Bk of the sample space, the vector of random probabilities Q(Bi) follows a Dirichlet
distribution: (Q(B1), . . . , Q(Bk)) ∼ Dir(αQ0(B1), . . . , αQ0(Bk)), where α denotes a scaling
parameter and Q0 denotes a base measure. The Pólya urn model makes explicit that the association
of data points to colors defines a “clustering” of the data. Specifically, having observed n values
(φ1, . . . , φn) sampled from a Dirichlet process DP (α, Q0), the probability of the (n + 1)th value
is given by:

φn+1|φ1, . . . , φn, α,Q ∼
n∑

i=1

1

n + α
δφi

(·) +
α

n + α
Q0(·), (1)

where δφi
(·) denotes a point mass at value φi. Another very useful representation of DP is the

stick-breaking construction by Sethuraman [1994]. This construction is based on independent
sequences of independent random samples {π′k,i}∞i=1 and {φi}∞i=1 generated in the following way:
π′i|α, Q0 ∼ Beta(1, α) and φi|α, Q0 ∼ Q0, where Beta(a, b) is the Beta distribution with parameter
a and b. Let πi = π′i

∏k−1
l=1 (1 − π′l) (analogous to a process of repetitively breaking a stick at

fraction π′l), Sethuraman [1994] showed that the random measure arising from DP (α, Q0) admits
the representation Q =

∑∞
i=1 πiδφi

. The φi’s can be understood as the locations of samples in its
space, and the πi’s are the weights of these samples.

The discrete nature of the DP, as obviated from the stick-breaking construction, is well suited
for the problem of placing priors on mixture components in mixture modeling. In the context
of mixture models, one can associate mixture component centroids (e.g., haplotype founders,
as explained in the sequel) with colors in the Pólya urn model and thereby define a “cluster-
ing” of the (possibly noisy) data (e.g., modern haplotypes that are ”recognizable” variants of
their corresponding founders). This mixture model is known as a DP mixture [Antoniak, 1973;
Escobar and West, 1995] (also known as “infinite” mixture model in machine learning commu-
nity). Note that a DP mixture requires no prior specification of the number of components, which
is typically unknown in genetic demography and general data clustering problems. It is important
to emphasize that here DP is used as a prior distribution of mixture components. Multiplying
this prior by a likelihood that relates the mixture components to the actual data yields a poste-
rior distribution of the mixture components, and the design of the likelihood function is com-
pletely up to the modeler based on specific problems. MCMC algorithms have been developed
to sample from the posterior associated with DP priors [Escobar and West, 1995; Neal, 2000;
Ishwaran and James, 2001]. This nonparametric Bayesian formalism forms the technical founda-
tion of the haplotype modeling and inference algorithms to be developed in this paper.

Back to haplotype modeling, a straightforward statistical genetics argument shows that the
distribution of haplotypes can be formulated as a mixture model, where the set of mixture com-
ponents corresponds to the pool of ancestor haplotypes, or founders, of the population [Excoffier
and Slatkin, 1995; Niu et al., 2002; Kimmel and Shamir, 2004]. Crucially, however, the size of
this pool is unknown; indeed, knowing the size of the pool would correspond to knowing some-
thing significant about the genome and its history. On the other hand, despite its elegance, with a

used to denote the genotype and haplotype of polymorphic markers [Pritchard et al., 2000; Stephens et al., 2001;
Li and Stephens, 2003; Xing et al., 2004].
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purely coalescence-based model for genetic patterns, it is hard to perform statistical inference of
ancestral features and many other interesting genetic variables (for a large population, the number
of hidden variables in a coalescence tree is prohibitively large) [Stephens et al., 2001]. In most
practical population genetic problems, usually the detailed genealogical structure of a population
(as provided by the coalescent trees) is of less importance than the population-level features such
as pattern of major common ancestor alleles (i.e., founders) in a population bottleneck 4, the age of
such alleles, etc. In this case, the DP mixture offers a principled approach to generalize the finite
mixture model for haplotypes to an infinite mixture model that models uncertainty regarding the
size of the ancestor haplotype pool, and at the same time it provides a reasonable approximation
to the coalescence model by utilizing the partition structure resulted thereof (but allows further
mutations within each partite to introduce further diversity among descents of the same founder,
which correspond to the balls with the same color in the Pólya urn metaphor). Without further
digression, bellow we summarize the Dirichlet process mixture model we proposed in [Xing et al.,
2004] for haplytope inheritance without recombination.

Following Xing et al. [2004; 2006], let Hi = [Hi,1, . . . , Hi,T ] denote a haplotype over T SNPs
from chromosome i 5; let Ak = [Ak,1, . . . , Ak,T ] denote an ancestor haplotype (indexed by k) and
θk denote the mutation rate of ancestor k; and let Ci denote an inheritance variable that specifies
the ancestor of haplotype Hi. Under a DP mixture, we have the following Pólya urn scheme for
sampling modern haplotypes:

• Draw first haplotype:

a1 | DP(τ,Q0) ∼ Q0(·), sample the 1st founder;

h1 ∼ Ph(·|a1, θ1),
sample the 1st haplotype from an inheritance model defined on the 1st
founder;

• for subsequent haplotypes:

– sample the founder indicator for the ith haplotype:

ci|DP(τ,Q0) ∼

{
p(ci = cj for some j < i|c1, . . ., ci−1) =

ncj

i−1+α0

p(ci 6= cj for all j < i|c1, . . ., ci−1) = α0
i−1+α0

where nci is the occupancy number of class ci—the number of previous samples belonging to
class ci.

– sample the founder of haplotype i (indexed by ci):

4A stage in coalescence when there are only a very small number of founding haplotype patterns survived and gave
rise to all the haplotypes in modern population.

5We ignore the parental origin index of haplotype as used in Xing et al. [2004], and assume that the paternal and
maternal haplotypes of each individual are given unambiguously (i.e., phased, as known in genetics), as is the case in
many LD and haplotype-block analyses [Daly et al., 2001; Anderson and Novembre, 2003]. But it is noteworthy that
our model can generalize straightforwardly to unphased genotype data by incorporating a simple genotype model as
in Xing et al. [2004].
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φci |DP(τ,Q0)

 = {acj , θcj}
if ci = {acj , θcj} for some j < i (i.e., ci refers to an inherited
founder)

∼ Q0(a, θ) if ci 6= cj for all j < i (i.e., ci refers to a new founder)

– sample the haplotype according to its founder:

hi | ci ∼ Ph(·|aci , θci).

The usefulness of the DP mixture framework for the haplotype problem should be clear—
using a Dirichlet process prior we in essence maintain a pool of haplotype founders that grows
as observed individual haplotypes are processed. But notice that the above generative process
assumes each modern haplotype to be originated from a single ancestor, which is only true for
haplotypes spanning a short region on a chromosomal. Now we consider long haplotypes possibly
bearing multiple ancestor due to recombinations between an unknown number of founders.

3.2 Hidden Markov Dirichlet Process (HMDP)
In a standard HMM, state-transitions across a discrete time- or space-interval take place in a fixed-
dimensional state space, thus it can be fully parameterized by, say, a K-dimensional initial-state
probability vector π0 and a K × K state-transition probability matrix ΠK×K . As first proposed
in Beal et al. [2001], and later discussed in Teh et al. [2006], one can ”open” the state space of
an HMM by treating the now infinite number of discrete states of the HMM as the support of
a DP, and the transition probabilities to these states from some source as the masses associated
with these states. In particular, for each source state (say, state j), the possible transitions to
the target states need to be modeled by a unique DP Qj . Since all possible source states and
target states are taken from the same infinite state space, overall we need an open set of DPs with
different mass distributions on the SAME support (to capture the fact that different source states
can have different transition probabilities to any target state). In the sequel, we describe such a
nonparametric Bayesian HMM using an intuitive hierarchical Pólya urn construction. We call this
model a hidden Markov Dirichlet process.

In an HMDP, both the columns and rows of the transition matrix Π are infinite dimensional. To
construct such an stochastic matrix, we will exploit the fact that in practice only a finite number
of states (although we don’t know what they are) will be visited by each source state, and we only
need to keep track of these states. The following sampling scheme based on a hierarchical Pólya
urn scheme captures this spirit and yields a constructive definition of HMDP.

We set up a single “stock” urn at the top level, which contains balls of colors that are represented
by at least one ball in one or multiple urns at the bottom level. At the bottom level, we have a set
of distinct urns which are used to define the initial and transition probabilities of the HMDP model
(and are therefore referred as HMM-urns). Specifically, one of HMM urns, Q0, is set aside to
hold colored balls to be drawn at the onset of the HMM state-transition sequence 6. Each of the
remaining HMM urns is painted with a color represented by at least one ball in the stock urn,

6Purposely, we overload the symbol Qj to let it denote both the urns in the hierarchical Pólya urn scheme, and the
Dirichlet process distributions represented by each of these urns.
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and is used to hold balls to be drawn during the execution of a Markov chain of state-transitions.
Now let’s suppose that at time t the stock urn contains n balls of K distinct colors indexed by an
integer set C = {1, 2, . . . , K}; the number of balls of color k in this urn is denoted by nk, k ∈ C.
For urn Q0 and urns Q1, . . . , QK , let mj,k denote the number of balls of color k in urn Qj , and
mj =

∑
k∈C mj,k denote the total number of balls in urn Qj . Suppose that at time t − 1, we had

drawn a ball with color k′. Then at time t, we either draw a ball randomly from urn Qk′ , and
place back two balls both of that color; or with probability τ

mj+τ
we turn to the top level. From

the stock urn, we can either draw a ball randomly and put back two balls of that color to the stock
urn and one to Qk′ , or obtain a ball of a new color K + 1 with probability γ

n+γ
and put back a ball

of this color to both the stock urn and urn Qk′ of the lower level. Essentially, we have a master
DP Q0 (the stock urn) that serves as a source of atoms for infinite number of child DPs {Qj}
(the HMM-urns). As pointed out in Teh et al. [2006], this model can be viewed as an instance
of the hierarchical Dirichlet process mixture model, with an infinite number of DP mixtures as
components. Specifically, we have:

Q0|α, F ∼ DP(α, F ), The master DP over target states common for all sources;
Qj|τ,Q0 ∼ DP(τ,Q0), The HMM DP over target states of source j.

From the above equation we see that the base measure of the DP mixture associated each of the
source state in the HMM is itself drawn from a Dirichlet process DP(α, F ). Since a draw from
a DP is a discrete measure with probability 1, atoms drawn from this measure—atoms which are
used as targets for each of the (unbounded number of) source states—are not generally distinct.
Indeed, the transition probabilities from each of the source states have the same support—the atoms
in Q0.

The Pólya urn scheme described above is similar in spirit to the ”Chinese restaurant franchise”
scheme discussed in [Teh et al., 2006], but it differs in that it avoids having separate occupancy
counters in each lower-level DP for repeated draws of the same atom from a top-level DP, and it
also motivates a simpler sampling scheme for inference as discussed in Section 3.

Associating each color k with an ancestor configuration φk = {ak, θk} whose values are drawn
from the base measure F , and recalling our discussion in the previous section, we know that draws
from the stock urn can be viewed as marginals from a random measure distributed as a Dirichlet
Process Q0 with parameter (α, F ). Specifically, for n random draws φ = {φ1, . . . , φn} from Q0,
the conditional prior for (φn|φ−n), where the subscript ”−n” denotes the index set of all but the
n-th ball, is

φn|φ−n ∼
K∑

k=1

nk

n− 1 + α
δφ∗k

(φn) +
α

n− 1 + α
F (φi), (2)

where φ∗k, k = 1, . . . , K denote the K distinct values (i.e., colors) of φ (i.e., all the balls in the
stock urn), nk denote the number of balls of color k in the top urn, and δa(φi) denotes a unit point
mass at φi = a.

Conditioning on the Dirichlet process underlying the stock urn, the samples in the jth bottom-
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level urn are also distributed as marginals under a Dirichlet measure:

φmj
|φ−mj

∼
K∑

k=1

mj,k + τ nk

n−1+α

mj − 1 + τ
δφ∗k

(φmj
) +

τ

mj − 1 + τ

α

n− 1 + α
F (φmj

)

=
K∑

k=1

πj,kδφ∗k
(φmj

) + πj,K+1Q0(φmj
), (3)

where πj,k ≡ mj,k+τ
nk

n−1+α

mj−1+τ
, πj,K+1 ≡ τ

mj−1+τ
α

n−1+α
. Let πj ≡ [πj,1, πj,2, . . .], now we have an

infinite-dimensional Bayesian HMM that, given F, α, τ , and all initial states and transitions sam-
pled so far, follows an initial states distribution parameterized by π0, and transition matrix Π whose
rows are defined by {πj : j > 0}.

Finally, as in, e.g., Escobar and West [1995] and Rasmussen [2000], we can also introduce
vague priors such as a Gamma or an inverse Gamma for the scaling parameters α and τ .

3.3 HMDP Model for Recombination and Inheritance
Now we describe a stochastic model, based on an HMDP, for generating individual haplotypes
in a modern population from a hypothetical pool of ancestral haplotypes via recombination and
mutations (i.e., random mating with neutral selection). See Fig 1 for an illustration.

First recall that a base measure F at the root of HDP is defined as a distribution from which
ancestor haplotype templates φk are drawn. We define the base measure F as a joint measure
on both ancestor A and mutation rate θ, and let F (A, θ) = p(A)p(θ), where p(A) is uniform
over all possible haplotypes and p(θ) is a beta distribution, Beta(αh, βh), with a small value for
βh/(αh + βh) corresponding to a prior expectation of a low mutation rate. For simplicity, we
assume each Ak,t (and also each Hi,t) takes its value from an allele set B.

Now for each modern chromosome i, let Ci = [Ci,1, . . . , Ci,T ] denote the sequence of inher-
itance variables specifying the index of the ancestral chromosome at each SNP locus. When no
recombination takes place during the inheritance process that produces haplotype Hi (say, from an-
cestor k), then Ci,t = k,∀t. When a recombination occurs, say, between loci t and t + 1, we have
Ci,t 6= Ci,t+1. We can introduce a Poisson point process to control the duration of non-recombinant
inheritance. That is, given that Ci,t = k, then with probability e−dr + (1− e−dr)πkk, where d is the
physical distance between two loci, r reflects the rate of recombination per unit distance, and πkk is
the self-transition probability of ancestor k defined by HMDM, we have Ci,t+1 = Ci,t; otherwise,
the source state (i.e., ancestor chromosome k) pairs with a target state (e.g., ancestor chromosome
k′) between loci t and t+1, with probability (1− e−dr)πkk′ . Hence, each haplotype Hi is a mosaic
of segments of multiple ancestral chromosomes from the ancestral pool {Ak}∞k=1. Essentially, the
model we described so far is a time-inhomogeneous infinite HMM. When the physical distance in-
formation between loci is not available, we can simply set r to be infinity (hence e−dr ≈ 0) so that
we are back to a standard stationary HMDP model with infinite dimensional transition probability
matrix Π∞×∞ described earlier.

The emission process of the HMDM corresponds to an inheritance model from an ancestor
to the matching descendent. For simplicity, we adopt the single-locus mutation model in Xing et
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al. [2004]:

p(ht|at, θ) = θI(ht=at)
( 1− θ

|B| − 1

)I(ht 6=at)

, (4)

where ht and at denote the alleles at locus t of an individual haplotype and its corresponding
ancestor, respectively; θ indicates the ancestor-specific mutation rate; and |B| denotes the number
of possible alleles. As discussed in Liu et al. [2001], this model corresponds to a star genealogy
resulted from infrequent mutations over a shared ancestor, and is widely used in statistical genetics
as an approximation to a full coalescent genealogy starting from the shared ancestor.

Assume that the mutation rate θ admit a Beta prior with hyperparameter (αh, βh)
7, the marginal

conditional likelihood of all the haplotype instances h = {hi,t : i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , T}}
given the set of ancestors a = {a1, . . . , aK} and the ancestor indicators c = {ci,t : i ∈
{1, 2, . . . , I}, t ∈ {1, 2, . . . , T}} can be obtained by integrating out θ from the joint conditional
probability starting from Equation (4) as follows:

p(h|c, a) =
∏

k

( ∫ ∏
i,t|ci,t=k

p(hi,t, θk|ak,t)R(αh, βh)θ
αh−1
k (1− θk)

βh−1dθk

)
=

∏
k

R(αh, βh)
Γ(αh + lk)Γ(βh + l′k)

Γ(αh + βh + lk + l′k)

( 1

|B| − 1

)l′k
(5)

where Γ(·) is the gamma function, R(αh, βh) = Γ(αh+βh)
Γ(αh)Γ(βh)

is the normalization constant associated
with Beta(αh, βh) (which is a prior distribution for θ), lk =

∑
t

∑
i I(hi,t = ak,t)I(ci,t = k)

is the number of alleles that were not mutated with respect to the ancestral allele, and l′k =∑
t

∑
i I(hi,j 6= ak,j)I(ci,t = k) is the number of mutated alleles. The counting record lk = {lk, l′k}

is a sufficient statistic for the parameter θk.
The generative process and likelihood functions descried above points naturally to an algorithm

for population genetic inference. Unlike the classical coalescence models for recombination [Hud-
son, 1983], which has been primarily used for theoretical analysis and simulation, but hardly fea-
sible for reverse ancestral inference based on observed genetic data, the HMDP model described
above for recombination and inheritance provides a semi-parametric Bayesian formalism that are
well suited for data-driven posterior inference on the latent variables that can yield rich informa-
tion of the population ancestry and genetic structure of the study population. For example, under a
HMDP, given the haplotype data, one can infer the ancestral pattern, LD structure and recombina-
tion hotspot of a population using the posterior distribution of inheritance variable c and ancestral
state a, as we will elaborate in the sequel. If is also possible to infer the age of the haplotype alleles
and/or the time of recombination events by exploring the posterior estimates of the mutation and
recombination rates under HMDM.

7For simplicity, we assume that the mutation rates pertaining to different ancestors follow the same prior
Beta(αh, βh).
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4 Posterior Inference
In this section, we describe a Gibbs sampling algorithm for posterior inference under HMDP. Re-
call that a Gibbs sampler draws samples of each random variables (or subset of random variables)
in the model from the conditional distribution of the variable(s) given (previously sampled) values
of all the remaining variables. The variables of interest in our model include {Ci,t}, the inheri-
tance variables specifying the origins of SNP alleles of all loci on each haplotype; and {Ak,t}, the
founding alleles at all loci of each ancestral haplotype. All other variables in the model, e.g., the
mutation rate θ, are integrated out.

The Gibbs sampler alternates between two sampling stages. First it samples the inheritance
variables {ci,t}, conditioning on all given individual haplotypes h = {h1, . . . , h2N}, and the most
recently sampled configuration of the ancestor pool a = {a1, . . . , aK}; then given h and current
values of the ci,t’s, it samples every ancestor ak.

To improve the mixing rate, we sample the inheritance variables one block at a time. That
is, every time we sample δ consecutive states ct+1, . . . , ct+δ starting at a randomly chosen locus
t + 1 along a haplotype. (For simplicity we omit the haplotype index i here and in the forthcoming
expositions when it is clear from context that the statements or formulas apply to all individual
haplotypes.) Let c− denote the set of previously sampled inheritance variables. Let n denote the
totality of occupancy records of the top-level DP (i.e. the “stock urn”) — {n}∪{nk : ∀k}; and m
denote the totality of the occupancy records of each lower-level DPs (i.e., the urns corresponding
to the recombination choices by each ancestor) — {mk : ∀k} ∪ {mk,k′ : ∀k, k′}. And let lk
denote the sufficient statistics associated with all haplotype instances originated from ancestor k.
The predictive distribution of a δ-block of inheritance variables can be written as:

p(ct+1:t+δ |c−,h, a) ∝ p(ct+1:t+δ |ct, ct+δ+1,m,n)p(ht+1:t+δ|act+1,t+1, . . . , act+δ ,t+δ)

∝
t+δ∏
j=t

p(cj+1|cj,m,n)
t+δ∏

j=t+1

p(hj|acj ,j, lcj
). (6)

This expression is simply Bayes’ theorem with p(ht+1:t+δ|act+1,t+1, . . . , act+δ ,t+δ) playing the role
of the likelihood and p(ct+1:t+δ |c−,h, a) playing the role of the prior. One should be careful that
the sufficient statistics n, m and l employed here should exclude the contributions by samples
associated with the δ-block to be sampled. Note that naively, the sampling space of an inheritance
block of length δ is |A|δ where |A| represents the cardinality of the ancestor pool. However, if
we assume that the recombination rate is low and block length is not too big, then the probability
of having two or more recombination events within a δ-block is very small and thus can be ig-
nored. This approximation reduces the sampling space of the δ-block to O(|A|δ), i.e., |A| possible
recombination targets times δ possible recombination locations. Accordingly, Eq. (6) reduces to:

p(ct+1:t+δ |c−,h, a) ∝ p(ct′ |ct′−1 = ct,m,n)p(ct+δ+1 |ct+δ = ct′ ,m,n)
t+δ∏
j=t′

p(hj|act′ ,j
, lct′

), (7)

for some t′ ∈ [t + 1, t + δ]. Recall that in an HMDP model for recombination, given that the total
recombination probability between two loci d-units apart is λ ≡ 1− e−dr ≈ dr (assuming d and r
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are both very small), the transition probability from state k to state k′ is:

p(ct′ = k′ |ct′−1 = k,m,n, r, d)

=

{
λπk,k′ + (1− λ)δ(k, k′) for k′ ∈ {1, ..., K}, i.e., transition to an existing ancestor,
λπk,K+1 for k′ = K + 1, i.e., transition to a new ancestor, (8)

where πk represents the transition probability vector for ancestor k under HMDP, as defined in
Eq. (3). Note that when a new ancestor aK+1 is instantiated, we need to immediately instantiate a
new DP under F to model the transition probabilities from this ancestor to all instantiated ancestors
(including itself). Since the occupancy record of this DP, mK+1 := {mK+1} ∪ {mK+1,k : k =
1, . . . , K + 1}, is not yet defined at the onset, with probability 1 we turn to the top-level DP when
departing from state K + 1 for the first time. Specifically, we define p(·|ct′ = K + 1) according
to the occupancy record of ancestors in the stock urn. For example, at the distal boarder of the δ-
block, since ct+δ+1 always indexes a previously inherited ancestor (and therefore must be present
in the stock-urn), we have:

p(ct+δ+1 |ct+δ = K + 1,m,n) = λ×
nct+δ+1

n− 1 + α
. (9)

Now we can substitute the relevant terms in Eq. (6) with Eqs. (8) and (9). The marginal likelihood
term in Eq. (6) can be readily computed based on Eq. (4), by integrating out the mutation rate
θ under a Beta prior (and also the ancestor a under a uniform prior if ct′ refers to an ancestor
to be newly instantiated) [Xing et al., 2004]. Putting everything together, we have the proposal
distribution for a block of inheritance variables. Upon sampling every ct, we update the sufficient
statistics n, m and {lk} as follows. First, before drawing the sample, we erase the contribution of
ct to these sufficient statistics. In particular, if an ancestor gets no occupancy in either the stock
and the HMM urns afterwards, we remove it from our repository. Then, after drawing a new ct,
we increment the relevant counts accordingly. In particular, if ct = K + 1 (i.e., a new ancestor is
to be drawn), we update n = n + 1, set nK+1 = 1, mct = mct + 1, mct,K+1 = 1, and set up a new
(empty) HMM urn with color K + 1 (i.e. instantiating mK+1 with all elements equal to zero).

Now we move on to sample the founders {ak,t}. From the mutation model in Equation (4), we
can derive the following posterior distribution to sample the founder ak

8:

p(ak,t|c,h) ∝
∫ ( ∏

i|ci,t=k

p(hi,t|ak,t, θ)
)
Beta(θ|αh, βh)dθ

=
Γ(αh + lk,t)Γ(βh + l

′

k,t)

Γ(αh + βh + lk,t + l
′
k,t)(|B| − 1)l

′
k,t

R(αh, βh), (10)

where lk,t is the number of allelic instances originating from ancestor k at locus t that are identical
to the ancestor, when the ancestor has the pattern ak,t; and l

′

k,t =
∑

i I(ci,t = k|ak,t)−lk,t represents

8In deriving Equation (10), instead of assuming a common mutation rate θk for all loci of ancestor ak, we endow
each locus with its own mutation parameter θk,t, with all parameters admitting the same prior Beta(αh, βh). This is
arguably a more accurate reflection of reality.
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the complement. The normalization constant of this proposal distribution can be computed by
summing the R.H.S. of Eq. (10) over all possible allele states of an ancestor at the locus being
sampled. If k is not represented previously, we can just set lk,t and l

′

k,t both to zero. Note that when
sampling a new ancestor, we can only condition on a small segment of an individual haplotype.
To instantiate a complete ancestor, after sampling the alleles in the ancestor corresponding to the
segment according to Eq. (10), we first fill in the rest of the loci with random alleles. When another
segment of an individual haplotype needs a new ancestor, we do not naively create a new full-
length ancestor; rather, we use the empty slots (those with random alleles) of one of the previously
instantiated ancestors, if any, so that the number of ancestors does not grow unnecessarily.

5 Experiments
We applied the HMDP model to both simulated and real haplotype data. Our analyses focus on
the following three popular problems in statistical genetics: 1) Ancestral Inference: estimating the
number of founders in a population and reconstructing the ancestor haplotypes; 2) Recombination
Analysis: inferring the recombination sites in each individual haplotype and uncover population-
level recombination hotspots on the chromosome region; 3) Ancestral Mapping: inferring the
genetic origins of all loci of each individual haplotype in a population.

5.1 Analyzing simulated haplotype population
To simulate a population of individual haplotypes, we started with a fixed number, Ks (unknown
to the HMDP model), of randomly generated ancestor haplotypes, on each of which a set of re-
combination hotspots were pre-specified. Then we applied a hand-specified recombination pro-
cess, which is defined by a Ks-dimensional HMM, to the ancestor haplotypes to generate Ns

individual haplotypes, via sequentially recombining segments of different ancestors according to
the simulated HMM states at each locus, and mutating certain ancestor SNP alleles according to
the emission model. All the ancestor haplotypes were set to be 100 SNPs long. At the hotspots
(pre-specified at every 10-th loci in the ancestor haplotypes), we defined the recombination rate
to be 0.05, otherwise it is 0.00001. We simulated the recombination process for each progeny
haplotype; but to force every progeny haplotype to have at least one recombination, in the rare
cases where no recombination event was simulated for an progeny haplotype, we sampled one of
the hotspots randomly and forced it to recombine with another ancestor chosen at random at that
loci. (Thus our simulated samples were not exactly distributed according to the generative model
we used, but such samples were arguably more close to the real data.) Overall, 30 datasets each
containing 100 individuals (i.e., 200 haplotypes) with 100 SNPs were generated from Ks = 5 an-
cestor haplotypes. As baseline models, we also implemented 3 standard fixed-dimensional HMM,
with 3, 5 (the true number of ancestors for the simulated) and 10 hidden states, respectively.

Following a collapsed Gibbs sampling scheme [Liu, 1994], we integrated out the mutation
rate θ, and sampled variables {ak,t} and {ci,t} iteratively. We monitored convergence based on
the occupancy counts of the top factors in the master DP. Typically, convergence was achieved
after around 3000 samples (Fig 3), and the samples obtained after convergence (with proper de-
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Figure 3: Sampling trace of the top three most occupied factors (ancestor chromosomes). The x-axis represents the
sampling iteration, and the y-axis represent the fraction the occupancy (i.e., be chosen as recombination target) of each
factor over total occupancy.

Figure 4: A comparison of ancestor reconstruction errors for the five ancestors (indexed along
x-axis) in the simulated haplotype populations. The vertical lines show ±1 standard deviation over
30 populations.

autocorrelation, i.e., by using samples from every 10 iterations) were used for computing relevant
sufficient statistics. To increase the chance of proper mixing, 10 independent runs of sampling, with
different random seeds, were simultaneously performed. Convergence were monitored at runtime
using an on-line minimal pairwise Gelman-Rubin (GR) statistics [Gelman, 1998] of scalar sum-
maries of the model parameters (e.g., average occupancy of top factors) obtained in each Markov
chain.
Ancestral Inference Using HMDP, we successfully recovered the correct number (i.e., K = 5)
of ancestors in 21 out of 30 simulated populations; for the remaining 9 populations, we inferred 6
ancestors. From samples of ancestor states {ak,t}, we reconstructed the ancestral haplotypes under
the HMDP model. For comparison, we also inferred the ancestors under the 3 standard HMM
using an EM algorithm. We define the ancestor reconstruction error εa for each ancestor to be the
ratio of incorrectly recovered loci over all the chromosomal sites. The average εa over 30 simulated
populations under 4 different models are shown in Fig 4. In particular, the average reconstruction
errors of HMDP for each of the five ancestors are 0.026, 0.078, 0.116, 0.168, and 0.335, respec-
tively. There is a good correlation between the reconstruction quality and the population frequency
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Figure 5: Analysis of simulated haplotype populations.
(a) LD measurement |D′| (upper right), and the p-value for
Fisher’s exact test (lower left) of 100 SNP loci in one of the
30 populations. (b) A plot of the empirical recombination
rates along the 100 SNP loci in the same population. (c) The
true (panel 1) and estimated (panel 2 for HMDP, and panel
3-5 for 3 HMMs) population maps of ancestral compositions
in a simulated population. Figures were generated using the
software distruct from Rosenberg et al. [2002].
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Figure 6: Boxplot of the empirical recombination rates at the 100 SNP loci over 30 different sim-
ulated population samples. The gray vertical lines show the pre-specified recombination hotspots
used for simulating the data.

16



threshold 0.01 0.03
tolerance window 0 ± 1 ± 2 0 ± 1 ± 2
False positive rate 0.16 0.12 0.067 0.08 0.04 0.03
False negative rate 0 0 0 0.77 0.55 0.55

Table 1: False positive and false negative rates for recombination hotspot detection using medians
of the empirical recombination rates over 30 population samples as shown in Fig 6.

of each ancestor. Specifically, the average (over all simulated populations) fraction of SNP loci
originated from each ancestor among all loci in the population is 0.472,0.258,0.167,0.068 and
0.034, respectively. As one would expect, the higher the population frequency an ancestor is, the
better its reconstruction accuracy. Interestingly, under the fixed-dimensional HMM, even when we
use the correct number of ancestor states, i.e., K = 5, the reconstruction error is still very high
(Fig 4), typically 2.5 times or higher than the error of HMDP. We conjecture that this is because
the non-parametric Bayesian treatment of the transition rates and ancestor configurations under the
HMDP model leads to a desirable adaptive smoothing effect and also less constraints (comparing
to a parametric prior on, e.g., the transition rates) on the model parameters, which allow them to be
more accurately estimated. Whereas under a parametric setting, parameter estimation can easily
go sub-optimum due to lack of appropriate smoothing or prior constraints, or deficiency of the
learning algorithm (e.g., local-optimality of EM).

Recombination Analysis As discussed earlier, traditional LD-measures only capture pairwise
couplings between every pair of SNPs, which may be inefficient to unravel the recombination
structures in a population sample. In Fig 5a, we demonstrate such inability in an LD-map of one of
the 30 simulated sample populations. The upper right triangle of the map shows the gametic dise-
quilibrium, |D′|, and the lower left triangle shows the p-value for Fisher’s exact test for every pair
of loci. As one can see, although some sort of block structures are faintly visible in this LD-map,
identifying the recombination hotspots directly from this map is apparently nontrivial, if possible.
Alternatively, under the HMDP model, from samples of the inheritance variables {ci,t} obtained
via Gibbs sampling, we can infer the recombination status of each locus of each haplotype. We
define the empirical recombination rates λe at each locus to be the ratio of individuals who are
determined to have recombinations at that locus over the total number of haplotypes in the pop-
ulation. Fig 5b shows a plot of the λe in the same simulated population used for plotting Fig 5a.
(For comparison we scale the width of the λe-plot to be the same as that of the LD-map, so that
the horizontal positions in the λe-plot are aligned with those in the LD-map.) From the λe-plot,
we can identify the recombination hotspots directly based on an empirical threshold λt. As we can
see, some of the estimated recombination spots, as represented by the high peaks in Fig 5b, are
not apparent in the LD-map shown in Fig 5a. This suggests that our model-based approach are
more sensitive to the statistical dependencies that would have been resulted from natural recombi-
nations, which are beyond pairwise couplings captured by the classical LD-analysis. Recall that
the true recombination hotspots chosen in the ancestors for simulating the recombinant population
are located at every 10th loci in the 100-loci long ancestral haplotypes; the inferred hotspots (i.e.,
the λe peaks) in the this example population sample show reasonable agreement with the reference.
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More rigorously, Fig 6 shows a boxplot of the empirical recombination rates at the 100 SNP loci
estimated from the the 30 different population samples simulated from these ancestors. The gray
vertical lines along the x-axis correspond to the locations of pre-specified recombination hotspots.
A simple thresholding at 0.01 would identify 24 hotspots which include all the 9 true hotspots and
15 false positive sites. This leads to the false negative rate to be 0 and the false positive rate to be
0.16. To give credit to the false positive sites which are close to the true hotspots, we may allow
small discrepancy between the true hotspots and the detected ones. By allowing ±2 sites discrep-
ancy and eliminating possibly redundant ones in the detection, (e.g., the two detected sites 70 and
71 would be just counted as 1 site of 70), the number of false positive sites decreased to 6, which
resulted in the false positive rate of 0.067 and the false negative rate unchanged. Using a threshold
of 0.03, 10 hotspots would be detected, among which two sites agree with the true ones. After
allowing ±2 sites discrepancy 4 true hotspots could be identified with 3 remaining false positive
sites. The false positive and negative rates using these two thresholds are summarized in Table 1.

Ancestral Mapping Finally, from samples of the inheritance variables {ci,t}, we can also un-
cover the genetic origins of all loci of each individual haplotype in a population. For each individ-
ual, we define an empirical ancestor composition vector ηe, which records the fractions of every
ancestor in all the ci,t’s of that individuals. Fig 5c displays a population map constructed from the
ηe’s of all individual. In the population map, each individual is represented by a thin vertical line
which is partitioned into colored segments in proportion to the ancestral fraction recorded by ηe.
Five population maps, corresponding to (1) true ancestor compositions, (2) ancestor compositions
inferred by HMDP, and (3-5) ancestor compositions inferred by HMMs with 3, 5, 10 states, respec-
tively, are shown in Fig 5c. To assess the accuracy of our estimation, we calculated the distance
between the true ancestor compositions and the estimated ones as the mean squared distance be-
tween true and the estimated ηe over all individuals in a population, and then over all 30 simulated
populations. We found that the distance between the HMDP-derived population map and the true
map is 0.190 ±0.0748, whereas the distance between HMM-map and true map is 0.319± 0.0676,
significantly worse than that of HMDP even though the HMM is set to have the true number of
ancestral states (i.e., K = 5). Because of dimensionality incompatibility and apparent dissimilarity
to the true map for other HMMs (i.e., K = 3 and 10), we forgo the above quantitative comparison
for these two cases.

5.2 Analyzing two real haplotype datasets
We applied HMDP to two real haplotype datasets, the single-population Daly data [Daly et al.,
2001], and the two-population (CEPH and YRI) HapMap data [Thorisson et al., 2005]. These
data consist of trios of genotypes, so most of the true haplotypes can be directly inferred from the
genotype data.

The single-population Daly dataset We first analyzed the 256 individuals (i.e., 512 haplotypes)
from the Daly data set (after excluding one person due to severe missing data). As in the recom-
bination analysis for simulated data (§5.1), we computed the empirical recombination rate λe for
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Figure 7: Analysis of the Daly data: a mixture of Gaussian fitting of the estimated λe.

Figure 8: Analysis of the Daly data. Upper panel: the LD-map of the data. Lower panel: a plot of λe estimated
via HMDP; and the haplotype block boundaries according to HMDP (black solid line), HMM [Daly et al., 2001] (red
dotted line), and MDL [Anderson and Novembre, 2003] (blue dashed line). Note that the width of the λe-plot is scaled
to be the same as that of the LD-map, and the spacing of the loci are scaled accordingly, so that the horizontal positions
in the λe-plot are aligned with those in the LD-map. Also note that the thickness of the black solid lines delineating
the haplotype blocks is proportional to the width of the hotspot regions between adjacent blocks. (But the long span
of the last hotspot region between 738.46-877.57 with only 3 SNPs is depicted with gray shade.
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each locus, based on which the locations of possible recombination hotspots can be estimated, and
the haplotype blocks can be identified. Rather than picking an empirical threshold as in §5.1, here
we determined the recombination hotspot as follows. We fitted the estimated λe’s of all loci with
a one-dimensional mixture of Gaussians (Fig 7). Then we used the intersection point of the two
Gaussian components as the threshold for determining hotspot-loci. This threshold is essentially
the point where the posterior probabilities of λe being a baseline recombination rate or a hotspot
recombination rate are equal. The mass in the area where the two Gaussians overlap represents
the Bayes-error of loci classification under this model. One can also employ more rigorous model-
based methods for hotspot classification, we will return to this point in Section 6. Figure 8 shows
the plot of the empirical recombination rates over all loci, and the estimated hotspots. Note that ac-
cording to the HMDP model, certain estimated recombination hotspots are very close to each other,
for example, at loci 398kb, two hotspots are right next to each other. This finding suggests that the
actual LD patterns in a population sample may not simply fall into blocks with sharp boundaries
universal to all individuals, as assumed in Daly’s HMM model. It is more appropriate to define
”hotspot regions” (i.e., stretch of consecutive hotspot loci) rather than point ”hotspot loci”, where
necessary, to delineate haplotype blocks, as discussed in [Li and Stephens, 2003]. For example,
according to the estimated λe’s shown in Fig 8, 15 hotspot loci/regions (represented as thick solid
vertical bars in Fig 8) were identified, and they divide the entire study region into 16 haplotype
blocks of low diversity. Note that in Fig 8, the x-axis represents the actual genetic locations of
the SNP loci (starting from 274kb at the leftmost with respect to a genetic reference), not the in-
teger indices of the SNPs. Since the SNPs of interest are not located uniformly in this region, the
spatial-intervals as seen from Fig 8 between hotspots may not reflect the ”length” of the haplotype
blocks. For example, the block between 445-518kb contains 15 SNPs. Whereas the seemingly
longest interval between 738-877kb contains only 3 SNPs, two of which have high recombination
rates, which render this interval to be a hotspot region as explained below. Biologically, this is not
surprising because the probability of recombination between adjacent SNPs increases with their
physical distance, in addition to depending on the intrinsic recombination rate. This ”hotspot re-
gion” between 738-877kb is more likely to be merely a consequence of sparse location-sampling
of SNPs in this region, rather than a biologically meaningful hotspot region.

Table 2 summarizes the summary-statistics that characterize each haplotype block (and hotspot
regions). We used the threshold of 0.005 determined by the mixture of Gaussians as described
above to identify recombination hotspots. The blocks were determined accordingly, with the
constrain that the lengths of the identified blocks are at least three-SNPs long, to avoid over-
fragmenting the haplotypes. (This means that within our ”hotspot regions” there may be 1 or 2
”cold-spots” separating the hotspots). In column 1 of Table 2, the blocks with blockID starting
with an ”r” represent the hotspots regions which contain more than 2 SNPs, others represent the
haplotype blocks. The numbers of SNPs within the blocks varied from 3 to 15 (the second col-
umn of Table 2). The actual genomic region and length of each block are shown in the third and
the fourth columns, respectively. The lengths of the smallest and the biggest blocks were 1.3kb
and 93kb, respectively, while the average was 22kb. We also report the total number of distinct
haplotypes as a reflection of diversity for each block, of which the most diverse is, not suprisingly,
one of the largest blocks (which spans 71kb), which contains 17 different haplotypes. This is sig-
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blockID #SNPs region length #hap. Anc.freq #hap. coverage #hap. #hap.
(Kb) (Kb) (frq>3) (%) (95%) (90%)

1 9 (274.04-366.81) 92.8 12 0.805 0.190 0.001 0.002 0.002 0.000 3 0.98 3 2
2 5 (395.08-398.35) 3.3 7 0.816 0.176 0.004 0.002 0.002 0.000 2 0.98 2 2

(r1) 3 (398.35-411.87) 13.5
3 3 (411.87-413.23) 1.4 7 0.633 0.164 0.199 0.002 0.002 0.000 6 0.99 4 3
4 3 (415.58-419.85) 4.3 5 0.613 0.162 0.219 0.002 0.002 0.002 4 1.00 2 2
5 3 (424.28-425.55) 1.3 4 0.548 0.162 0.278 0.002 0.008 0.002 2 0.99 2 2
6 3 (433.47-437.68) 4.2 5 0.534 0.161 0.262 0.014 0.027 0.002 3 1.00 3 2

(r2) 5 (437.68-445.34) 7.7
7 15 (445.34-518.48) 73.1 17 0.636 0.157 0.164 0.010 0.029 0.004 9 0.95 9 6

(r3) 5 (518.48-522.60) 4.1
8 3 (522.60-529.56) 7.0 5 0.585 0.282 0.076 0.010 0.043 0.004 4 1.00 4 3
9 3 (532.36-553.19) 20.8 6 0.594 0.275 0.081 0.005 0.041 0.004 3 0.99 3 2
10 9 (570.98-579.82) 8.8 6 0.583 0.286 0.065 0.014 0.049 0.004 3 0.99 3 2
11 6 (582.65-590.59) 7.9 8 0.614 0.286 0.033 0.014 0.049 0.004 5 0.99 3 2
12 3 (594.12-598.80) 4.7 5 0.621 0.287 0.031 0.008 0.049 0.004 4 1.00 3 2
13 15 (601.29-649.90) 48.6 17 0.627 0.291 0.020 0.009 0.049 0.004 10 0.95 11 9
14 3 (657.23-662.82) 5.6 4 0.605 0.289 0.043 0.010 0.049 0.004 4 1.00 3 2
15 8 (676.69-738.46) 61.8 13 0.563 0.297 0.076 0.009 0.051 0.004 9 0.97 8 5
(r4) 3 (738.46-877.57) 139.1
16 4 (877.57-890.71) 13.1 6 0.489 0.384 0.066 0.006 0.045 0.010 3 0.99 3 3

Table 2: Haplotype block structures and the summary statistics of the blocks for the Daly data. The block boundaries
correspond to the x-coordinates of the λe peaks in Fig. 9a.

nificantly lower than the 217 possible different haplotypes one could observe had there existed no
co-inheritance (i.e., due to fully random recombination) among loci in this block. Note that the
17 haplotypes reported here are the actual total observed diversity in this region among the study
population, not the number of prototypes underlying these haplotypes that parsimoniously account
for the majority of the observed diversity when small amount mutation are allowed, as reported
in [Daly et al., 2001]. The actual demographic diversity of these blocks is actually much lower
than that is reflected by the total number of haplotypes, as obviated from the results in column
6-15. In column 6-11 of Table 2, we report the ancestor association frequencies of haplotypes
within each block, where the associations were directly estimated from the inheritance variable
ci,t’s sampled by our algorithm. We can see that overall 6 founders sufficed to fully account for our
data, and indeed within each block, only 3-4 of them were significantly used. It is worth pointing
out that our HMDM model explicitly allows mutations during inheritance, therefore there can be
many different individual haplotypes even if they originated from the same ancestor. For practical
applications such as association studies, we can focus on the dominant haplotypes which cover the
majorities of the population such that the remaining few can be derived by mutating only one or
two sites from the dominant ones. We present the number of necessary haplotypes to cover over
95% and 90% of the entire population, which were mostly around 3 with a few blocks with higher
diversity around 10.

We compared the recovered recombination hotspots with those reported in Daly et al. [2001]
(which is based on an HMM employing different number of states at different chromosome seg-
ments) and in Anderson and Novembre [2003] (which is based on a minimal description length
(MDL) principle). Again in Fig 8 we show the plot of the empirical recombination rates estimated
under HMDP, side-by-side with the reported recombination hotspots. For such real biological data,
there is no ground truth to judge which one is correct because we do not know where are the true
recombination hotspots; hence we computed information-theoretic (IT) scores based on the es-
timated within-block haplotype frequencies and the between-block transition probabilities under
each model for a comparison. Figure 9 shows a comparison of these scores for haplotype blocks
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(16) (11) (11)

Figure 9: The IT scores of the haplotype blocks inferred by different methods for the Daly data. The left panel
shows cross-block MI and the right shows the average within-block entropy. The total number of blocks inferred by
each method are given on top of the bars.

Figure 10: The estimated population map of the Daly dataset. The ordering of all individuals in the sample popula-
tion was determined by a K-means clustering with K = 6, followed by a within-cluster ordering of samples based on
their distances to the cluster centroid. The black vertical bars show the K-means cluster boundaries.

obtained from HMDP and the other two sources. The left panel of Fig 9 shows the total pairwise
mutual information between adjacent haplotype blocks segmented by the recombination hotspots
uncovered by the three methods. The right panel shows the average entropies of haplotypes within
each block. The number above each bar denotes the total number of blocks. The pairwise mutual
information score of the HMDP block structure was similar to that of the MDL structure, but that
of Daly was the smallest. Not that due to the presence of hotspot regions in our segmentation of
the population haplotypes, the transition probabilities between blocks are sometimes not directly
defined if between the two blocks there exists a hotspot region containing multiple highly hetero-
geneous SNPs. In our IT-score calculation, we took into account the mutual information pertaining
to all adjacent blocks and hotspots, and between all adjacent hotspots. Thus our cross-block MI is
a pessimistic reflection of the compactness of the block structures due to inclusion of the hotspot
regions. The within-block entropy is arguably a more faithful reflection of this property. As shown
in the right panel of Fig 9, the average entropy of the HMDP structure was indeed lower than either
of the other methods.

Note that the Daly and the MDL methods allow the number of haplotype founders to vary
across blocks to get the most compact local ancestor constructions. Thus their reported scores are
an underestimate of the true global score because certain segments of an ancestor haplotype that
are not or rarely inherited are not counted in the score. Thus the low IT scores achieved by HMDP
suggest that HMDP can effectively avoid inferring spurious global and local ancestor patterns.
This is reflected in the population map shown in Fig 10, which shows that HMDP recovered 6
ancestors and among them the 3 dominant ancestors account for 98% of all the modern haplotypes
in the population.

For a more informative revelation of the underlying population structure captured by the empir-
ical ancestor composition vector ηe, in Fig 10 we clustered the individuals based on their ηe’s, and
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then ordered all individuals accordingly. Specifically, all individuals were clustered into K = 6
clusters (which is an empirical choice just for illustration) using the K-means algorithm; then
within each group, individual ordering were determined by their distances to the cluster centroid.
Interestingly, we can see that although the Daly data are reported to be from a European-derived
population that is expected to be genetically less diverse, our ancestral map clearly suggests that
in this population there exists multiple genetically well-defined and distinct sub-populations each
with a unique ancestral composition. As of now, we do not have access to the ethnic-label of each
individual, thus we defer a more qualitative validation of this finding.

The two-population HapMap dataset The HapMap data contains 60 individuals from CEPH
and 60 from YRI. We applied HMDP to the union of the populations, with a random individual
order. Interestingly, although no population label is given to the HMDP model, the two-population
structure of the HapMap data was clearly retrieved from the population map constructed from the
population composition vectors ηe for every individual. As seen in Fig 11a, the left half of the
map clearly represents the CEPH population and the right half the YRI population. We found that
the two dominant haplotypes covered over 85% of the CEPH population (and the overall breakup
among all four ancestors is 0.5618,0.3036,0.0827,0.0518). On the other hand, the frequencies of
each ancestor in YRI population are 0.2141,0.1784,0.3209,0.1622,0.1215 and 0.0029, showing that
the YRI population is much more diverse than CEPH. This might explain an earlier observation
that genetic inference on YRI population appeared to be more difficult than for CEPH [Marchini
et al., 2006].

The inferred two-population structures prove to be very useful for more informative recombi-
nation analysis of the population sample (especially when the true population labels are not known
or not discriminative enough as in the Daly data) because such information can be used to separate
sub-populations, and uncover population-specific recombination patterns originally confounded by
the mixing of the populations. To show this, we invite the readers to inspect again the LD-map of
the whole HapMap data shown in Fig 1a, which reveals no significant LD patterns. Now, knowing
the population devision of the data, we can plot the LD-maps separately for each population, i.e.,
CEPH and YRI. As shown in the top panels of Fig 11b, the now population-specific LD-maps start
to exhibit more obvious, and distinctive LD patterns. Echoing the emergence of new patterns in the
LD maps, the recombination maps of the two different populations also show noticeably different
spatial patterns of recombination hotspots (Fig. 11b), which may reflect different recombination
histories of the founders of the two populations. The LD plots here as well as the recombination
plots have been scaled according to the genomic distance between adjacent loci, where the x-ticks
(and the symmetric y-ticks) in the LD plots show the relative positions of each SNP .

Table 3 and 4 summarize the within-block properties of the two populations of CEPH and
YRI as described for the Daly’s dataset. For CEPH population, we found 21 blocks, where the
block lengths range from 1kb to 80.1kb, with an average of 18.0kb. Except for the 11th and
16th blocks, at most 7 different haplotypes were enough to describe over 90 % of the population.
For YRI population, 24 blocks were found, where the block lengths range from 1.5 kb (3 SNPs)
to 95.6 kb (42 SNPs) with an average of 17.4 kb. In 21 out of the total 24 blocks, 90% of the
individuals of the YRI population could be covered by 9 haplotypes. It appears that for the YRI
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Figure 11: Result on the two-population (CEPH and YRI) HapMap data. (a) The estimated population map of the
whole dateset with two populations. (b) The LD measure with the estimated recombination rates along the chromoso-
mal position in the population of CEPH (left) and YRI (right).

population, the genomic regions between 26.94-27.04Mb and 27.14-27.20Mb harbor much more
diverse haplotypes than in similar genomic regions in the CEPH population, which suggests that
the amount of genetic drift due to mutations are different for the two populations, and the identified
regions are of interest to probe for underlying reasons, such as selections or purifying effects.

6 Conclusion
We have proposed a new Bayesian approach for jointly modeling genetic recombinations among
possibly infinite founding alleles and coalescence-with-mutation events in the resulting genealo-
gies. By incorporating a hierarchical DP prior to the stochastic matrix underlying an HMM, which
facilitates well-defined transition process between infinite ancestor space, our proposed method
can efficiently infer a number of important genetic variables, such as recombination hotspot, muta-
tion rates, haplotype origin, and ancestor patterns, jointly underly a unified statistical framework.
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blockID #SNPs region length #hap. Anc.freq #hap. coverage #hap. #hap.
(Mb) (Kb) (frq>3) (%) (95%) (90%)

1 9 (26.70-26.71) 10.0 7 0.279 0.408 0.079 0.143 0.091 0.000 4 0.96 4 3
(r1) 5 (26.71-26.74) 24.9
2 3 (26.74-26.75) 9.6 3 0.408 0.183 0.175 0.146 0.087 0.000 3 1.00 3 3

(r2) 5 (26.75-26.76) 10.8
3 11 (26.76-26.80) 46.7 6 0.412 0.183 0.168 0.157 0.079 0.000 4 0.97 4 3

(r3) 3 (26.80-26.81) 3.7
4 3 (26.81-26.81) 2.4 3 0.200 0.392 0.175 0.154 0.079 0.000 2 0.99 2 2
5 18 (26.81-26.86) 52.3 9 0.201 0.404 0.161 0.154 0.079 0.000 4 0.91 6 4
6 6 (26.86-26.89) 22.8 7 0.146 0.417 0.208 0.154 0.075 0.000 5 0.97 5 4

(r4) 10 (26.89-26.90) 12.8
7 7 (26.90-26.91) 13.8 5 0.445 0.146 0.200 0.129 0.079 0.000 3 0.97 3 3
8 3 (26.91-26.91) 1.0 4 0.454 0.138 0.200 0.129 0.079 0.000 4 1.00 4 3

(r5) 5 (26.91-26.93) 14.0
9 9 (26.93-26.94) 12.3 7 0.554 0.108 0.204 0.054 0.079 0.000 3 0.95 3 3

10 12 (26.94-26.96) 19.3 14 0.550 0.108 0.208 0.054 0.079 0.000 8 0.94 9 7
11 39 (26.97-27.05) 80.1 34 0.525 0.106 0.210 0.079 0.079 0.000 6 0.68 28 22
(r6) 8 (27.05-27.06) 16.7
12 15 (27.06-27.08) 16.4 11 0.108 0.496 0.146 0.192 0.058 0.000 6 0.93 7 6
(r7) 5 (27.08-27.08) 2.9
13 3 (27.08-27.08) 1.5 2 0.271 0.325 0.192 0.171 0.042 0.000 2 1.00 2 2
14 3 (27.08-27.09) 2.1 4 0.350 0.308 0.208 0.092 0.042 0.000 4 1.00 3 3
15 6 (27.09-27.09) 5.1 7 0.370 0.117 0.404 0.063 0.042 0.004 5 0.97 5 4
16 11 (27.09-27.10) 4.7 36 0.371 0.113 0.404 0.067 0.042 0.004 9 0.63 30 24
(r8) 6 (27.10-27.10) 5.2
17 9 (27.10-27.11) 3.7 7 0.409 0.276 0.217 0.062 0.033 0.004 4 0.97 4 4
18 11 (27.11-27.12) 15.4 11 0.346 0.333 0.221 0.067 0.029 0.004 6 0.95 6 6
(r9) 12 (27.12-27.13) 10.2
19 8 (27.13-27.14) 3.7 8 0.408 0.287 0.200 0.075 0.025 0.004 5 0.94 6 5

(r10) 6 (27.14-27.14) 5.7
20 12 (27.14-27.16) 16.6 13 0.471 0.250 0.158 0.092 0.025 0.004 5 0.93 7 4
21 11 (27.16-27.20) 39.5 13 0.471 0.254 0.158 0.087 0.025 0.004 7 0.93 8 7

Table 3: Haplotype block structure of CEPH population in HapMap data.

blockID #SNPs region length #hap. Anc.freq #hap. coverage #hap. #hap.
(Mb) (Kb) (frq>3) (%) (95%) (90%)

1 7 (26.70-26.71) 7.9 4 0.279 0.408 0.079 0.142 0.092 0.000 4 1.00 4 4
(r1) 4 (26.71-26.72) 9.9
2 9 (26.72-26.76) 37.1 8 0.411 0.168 0.188 0.146 0.087 0.000 4 0.96 4 4
3 9 (26.76-26.79) 37.7 7 0.412 0.183 0.167 0.158 0.079 0.000 4 0.97 4 4
4 6 (26.79-26.81) 14.8 6 0.309 0.285 0.175 0.152 0.079 0.000 3 0.97 3 3
5 3 (26.81-26.82) 5.3 8 0.200 0.396 0.179 0.146 0.079 0.000 6 0.97 6 5
6 3 (26.82-26.83) 13.6 6 0.200 0.396 0.171 0.154 0.079 0.000 4 0.98 4 4
7 3 (26.84-26.85) 9.8 7 0.204 0.396 0.167 0.154 0.079 0.000 4 0.96 4 3
8 3 (26.85-26.85) 1.8 4 0.204 0.404 0.150 0.163 0.079 0.000 4 1.00 3 3
9 6 (26.85-26.86) 9.6 6 0.200 0.417 0.150 0.154 0.079 0.000 5 0.99 5 4

10 6 (26.86-26.89) 22.8 11 0.146 0.417 0.208 0.154 0.075 0.000 8 0.97 8 7
(r2) 8 (26.89-26.89) 6.3
11 6 (26.89-26.90) 11.3 9 0.442 0.149 0.201 0.129 0.079 0.000 5 0.95 5 5
12 6 (26.91-26.91) 5.2 8 0.452 0.140 0.200 0.129 0.079 0.000 5 0.94 6 5
(r3) 5 (26.91-26.93) 14.0
13 9 (26.93-26.94) 12.3 13 0.554 0.108 0.204 0.054 0.079 0.000 5 0.88 9 6
14 42 (26.94-27.04) 95.6 73 0.532 0.108 0.208 0.072 0.079 0.000 4 0.23 67 61
15 11 (27.04-27.06) 17.0 17 0.527 0.098 0.217 0.079 0.079 0.000 8 0.88 11 9
(r4) 6 (27.06-27.06) 5.5
16 15 (27.06-27.08) 16.4 11 0.108 0.496 0.146 0.192 0.058 0.000 10 0.99 9 8
(r5) 5 (27.08-27.08) 2.9
17 3 (27.08-27.08) 1.5 2 0.271 0.325 0.192 0.171 0.042 0.000 2 1.00 2 2
18 3 (27.08-27.09) 2.1 5 0.350 0.308 0.208 0.092 0.042 0.000 4 0.99 3 3
19 5 (27.09-27.09) 5.0 9 0.371 0.117 0.404 0.063 0.042 0.004 6 0.95 6 5
20 12 (27.09-27.10) 5.2 46 0.370 0.113 0.404 0.067 0.042 0.004 10 0.57 40 34
(r6) 15 (27.10-27.11) 9.0
21 15 (27.11-27.13) 19.7 16 0.335 0.330 0.221 0.081 0.029 0.004 10 0.93 11 9
22 6 (27.13-27.13) 3.1 9 0.329 0.297 0.212 0.128 0.029 0.004 8 0.99 7 6
23 11 (27.13-27.14) 5.0 16 0.408 0.286 0.200 0.077 0.025 0.004 9 0.92 11 9
(r7) 3 (27.14-27.14) 4.4
24 23 (27.14-27.20) 57.2 39 0.471 0.252 0.158 0.090 0.025 0.004 11 0.65 33 27

Table 4: Haplotype block structure of YRI population in HapMap data.
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Emprirically, on both simulated and real data, our approach compares favorably to its parametric
counterpart—a fixed-dimensional HMM (even when the number of its hidden state, i.e., the ances-
tors, is correctly specified) and a few other specialized methods, on ancestral inference, haplotype-
block uncovering and population structural analysis.

From a statistical modeling point of view, the proposed HMDP model fo recombination con-
joins the advantages of two classes of earlier approaches for analyzing LD across multiple genomic
loci. The first class of approaches, as used in, e.g., [Daly et al., 2001; Anderson and Novembre,
2003; Patil et al., 2001], adopt a similar assumption as in HMDP, that each observed haplotypes is a
”mosaic” of ancestral haplotypes and the formation of the mosaic is governed by a hidden Markov
process over the ancestor states. Specifically, it is assumed that each modern chromosome is a
concatenation of a sequence of ”haplotype blocks”; for each block the haplotype is stochastically
chosen from a finite pool of common haplotype patterns—referred to as ”ancestors”—without
mutation; and as a result, every individual chromosome in the population has identical haplotype-
block boundaries. Strictly speaking, this HMM model itself offers little means to infer recombi-
nation events, because the block boundaries (which conceptually correspond to the recombination
sites) of all individual chromosomes are determined a priori, and the only stochasticity lies in the
choice of the ”ancestors” at each block for each chromosome rather than the genomic locations
of recombination events in each chromosome. Furthermore, the recombination templates, i.e., the
physical ancestral chromosomes existed in the past that gave rise to modern individual chromo-
somes via mutation and recombination, are not well-defined in the model. Indeed, the ”ancestors”
as posited in this model has little connection to what one might expected as complete physical
ancestral chromosomes — in this HMM model the ”ancestors” are defined independently for each
block rather than as whole chromosomes; different blocks have different number of ancestors
(which is biologically inconsistent if we view each modern chromosome as mosaic of a common
pool of multiple complete ancestral chromosomes via recombination and mutation); and the deter-
mination of these ”local ancestors” employs an initial heuristic scan for regions of low haplotype
diversity, whose formal connection to the HMM model is not clear. It is possible to employ a model
selection approach, as in [Greenspan and Geiger, 2004], to couple the inference of the boundary
and haplotypes of the ”ancestral-blocks” with the parameter estimation of the HMM model, but it
is unclear to what extent this class of approaches might be helpful for applications that involves
explicit ancestral inference (i.e., whole-genome based ancestral-composition estimation as in, e.g.,
[Rosenberg et al., 2002]) and for interpreting LD patterns that do not have sharp block boundaries,
as seen in Figure 1, which is likely due to the stochastic deviations of the recombination sites
among individual chromosomes from the common recombination hotspots. It also does not facili-
tate statistical estimation of recombination rates over chromosomal region. In contrast, the HMDP
proposed in this paper repents a well-defined generative model for the observed haplotypes based
on spatial point process for stochastic recombination (in the sense of both choice of recombination
participants and choice of recombination locations) and random mutations over an open pool of
complete ancestral chromosomes. Although such a generative process is still a simplification of the
real biological mechanism underlying LD, it enables joint statistical characterization of a number
of genetic variables of interest via posterior inference based on well-founded statistical principles,
and it strikes a reasonable tradeoff between being biologically meaningful and computationally
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manageable.
The proposed HMDP model is also closely related to another class of LD models, as in [Ran-

nala and Reeve, 2001; Li and Stephens, 2003], which place more emphasis on capturing the mech-
anistic underpinning of LD patterns, and resort to tractable approximations to the recombinational
coalescence. As in HMDP, these models assume that the observed haplotypes are descendants of
a randomly-mating population, with stochastic recombination and mutation. Although the data
likelihood under this assumption can be in theory defined by a recombinational coalescent process
[Hudson, 1983], no closed-form expression of is currently known. In Li and Stephens [2003]’s
PAC model, the data likelihood is approximated by a ”product of approximate conditionals” of
each individual haplotype given some other haplotypes determined by an ad hoc ordering of the
data. This approach offers a very flexible platform for modeling the recombination processes and
facilitates estimation of site specific recombination rates with remarkable computational efficiency
and accuracy. However, as a cost of such approximation, PAC likelihood essentially ”marginalizes”
out the coalescent history of the data, thus one can not infer the ancestral structure of the data as in
the previous class of approaches. Moreover, although empirically appears to be non-consequential,
the PAC likelihood is non-exchangeable (i.e., depends on the order of the data). As disused in §3.1
and §3.2, HMDP represents a new type of approximation to the coalescent likelihood, which is ex-
changeable and bears an explicit ancestral structure (which is roughly equivalent to marginalizing
out the ”partial” coalescent history starting from certain generations before present, and approx-
imating the remaining branches of the coalescent tree with star genealogies). Thus our proposed
method does not need the heuristic averaging over sample ordering adopted in [Li and Stephens,
2003], and allows flexible statistical query of the ancestral history of the observed genetic data,
including the number of haplotypes of the founders, evolutionary time from founders to current
population, time of recombination, etc.

As of now, there are a number of statistical and biological aspects of real data that we have
not accounted for here. For example, so far the HMDP model does not intrinsically capture the
heterogeneity of recombination rates over loci, and the recombination rates are determined by the
posterior distribution of recombination events (i.e., as capture by the indicators {Ci,t}) under a uni-
versal recombination rate, rather than directly by an maximum likelihood estimation of site-specific
recombination rates as in [Li and Stephens, 2003]. Also, we have not addressed the issue of thresh-
old calculation and confidence measure of hotspot prediction as in [Li and Stephens, 2003]. These
problems are of importance in various applications such as linkage-based quantitative train locus
mapping and disease-gene mapping. One way of addressing these issues is to explicitly introduce
more recombination states (e.g., for both base-line recombination and hotspot-recombination) into
the infinite HMM we proposed, and/or to introduce priors for for site-specific recombination rates
for Bayesian inference.

Another aspect we have not dealt with extensively is regarding estimating the time of exis-
tence of the hypothetical founders and recombination. These queries are of interest in genetic
demography studies concerning human divergence, migration and mating history. It is possible to
address this by replacing the simplistic recombination and mutation models in the current HMSP
with richer, biologically more plausible alternatives that explicitly incorporate the time factor, i.e.,
based on continuous-time Markov processes, as used in many phylogenetic models for sequence
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evolution.
We are also interested in further investigating the behavior of an alternative scheme based on

reverse-jump MCMC over Bayesian HMMs with different latent states in comparison with HMDP;
and we intend to apply our methods to genome-scale LD and demographic analysis using the full
HapMap data. While our current model employs only phased haplotype data, it is straightforward
to generalize it to unphased genotype data as provided by the HapMap project. HMDP can also
be easily adapted to many engineering and information retrieval contexts such as object and theme
tracking in open space.
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