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Abstract

We propose a dynamic Bayesian model for motifs in biopolyser
guences which captures rich biological prior knowledge positional

dependencies in motif structure in a principled way. Our elqubsits

that the position-specific multinomial parameters for moeodistribu-

tion are distributed as a latent Dirichlet-mixture randaariable, and the
position-specific Dirichlet component is determined byddein Markov
process. Model parameters can be fit on training motifs uaingri-

ational EM algorithm within an empirical Bayesian framekioiaria-

tional inference is also used for detecting hidden motifgr @odel im-

proves over previous models that ignore biological priord positional
dependence. It has much higher sensitivity to motifs dudatgction
and a notable ability to distinguish genuine motifs fronséatecurring
patterns.

1 Introduction

The identification of motif structures in biopolymer seqoes such as proteins and DNA
is an important task in computational biology and is ess¢mtiadvancing our knowledge
about biological systems. For example, the gene regulatmtyfs in DNA provide key
clues about the regulatory network underlying the complextrol and coordination of
gene expression in response to physiological or envirotahehanges in living cells [11].
There have been several lines of research on statisticaélimgdf motifs [7, 10], which
have led to algorithms for motif detection such as MEME [1§l @ioProspector [9] Un-
fortunately, although these algorithms work well for simphotif patterns, often they are
incapable of distinguishing what biologists would recagras a true motif from a random
recurring pattern [4], and provide no mechanism for inceating biological knowledge of
motif structure and sequence compoaosition.

Most motif models assume independence of position-speuniiitinomial distributions of
monomers such as nucleotides (nt) and animo acids (aa).sfathgies contradict our in-
tuition that the sites in motifs naturally possess spatgshdencies for functional reasons.
Furthermore, the vague Dirichlet prior used in some of threedels acts as no more than
a smoother, taking little consideration of the rich prioolriedge in biologically identi-
fied motifs. In this paper we describe a new model for mononmribution in motifs.
Our model is based on a finite set of informative Dirichletrilimitions and a (first-order)
Markov model for transitions between Dirichlets. The disttion of the monomers is



a continuous mixture of position-specific multinomials alhiadmit a Dirichlet prior ac-
cording to the hidden Markov states, introducing both mmitidal prior information and
dependencies. We also propose a framework for decompdermgeneral motif model into
a local alignment model for motif pattern and a global modehfotif instance distribution,
which allows complex models to be developed in a modular way.

To simplify our discussion, we use DNA motif modeling as ammg example in this paper,
though it should be clear that the model is applicable toratbguence modeling problems.

2 Préiminaries

DNA motifs are short (about 6-30 bp) stochastic string patéFigure 1) in the regulatory
sequences of genes that facilitate control functions bgramting with specific transcrip-
tional regulatory proteins. Each motif typically appeans® or multiple times in the con-
trol regions of a small set of genes. Each gene usually hadeweral motifs. We do not
know the patterns of most motifs, in which gene they appedrveémere they appear. The
goal of motif detection is to identify instances of possitrletifs hidden in sequences and
learn a model for each motif for future prediction.

A regulatory DNA sequence can be fully specified by a charattegy = (y1,... ,yr) €
{A,T,C,G}", and an indicator string that signals the locations of the motif occurrences.
The reason to call a motif a stochastic string pattern ratiear a word is due to the vari-
ability in the “spellings” of different instances of the samotif in the genome. Conven-
tionally, biologists display a motif pattern (of length by amulti-alignmentA of all its M
instances. The stochasticity of motif patterns is refleatdtde heterogeneity of nucleotide
species appearing in eacblumn(corresponding to gositionor site in the motif) of the
multi-alignment. We denote the multi-alignment of all istes of a motif specified by
the indicator string: in sequenceg by A(z,y). Since anyA(z,y) can be characterized
by the nucleotide counts for each column, we defimeanting matrixh(A) (or h(z,y)),
where each columﬁl = (hn, ... ,h4) is an integer vector with four elements, giving the
number of occurrences of each nucleotide at positioithe motif. (Similarly we can de-
fine thecounting vectori, for the whole sequenage) With these settings, one can model
the nt-distribution of a positioh of the motif by aposition-specific multinomial distribu-
tion, 6, = (611, ... ,6;4). Formally, the problem of inferringk = {«(V),... (™)} and

© = {6:,...,6,} (often called a position-weight matrix, or PWM), given a seqce set
Y = {yM, ...y}, is motif detection in a nutshell
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Figure 1:Yeast motifs (solid line) witht- 30 bp flank- Figure 2:(Left) A general motif model

ing regions (dashed line). The axis indexes posi- is a Bayes-ian multinet. Conditional on

tion and they axis represents the information contenthe value ofz, y admits different distri-

2 — H(#,) of the multinomial distributior®; of nt at po- butions (round-cornered boxes) param-

sition [. Note the two typical patterns: thé-shape and eterized by©®. (Right) The HMDM

thebell-shape. model for motif instances specified by a
given z. Boxes are plates representing
replicates.

IMultiple motif detection can be formulated in a similar wéyt for simplicity, we omit this
elaboration. See full paper for details. Also for simplicitve omit the superscript (sequence
index) of variabler andy in wherever it is unnecessary.



3 Generative modelsfor regulatory DNA sequences
3.1 General setting and related work

Without loss of generality, assume that the occurrencesatifsrin a DNA sequence, as
indicated byz, are governed by a global d|str|but|p(‘m\0q, M,); for each type of motif,
the nucleotide sequence pattern shared by all its mstammﬁs a local alignment model
p(A(z,y)|z, ©;, M;). (Usually, the background non-motif sequences are modefeal
simple conditional modely(y — A(y, z)|z, Op), Where the background nt-distribution
parameter®),; are assumed to be learnagriori from the entire sequence and supplied
as constants in the motif detection process.) The symbgl|s©;, M,, M, stand for
the parameters and model classes in the respective sutsndduals, the likelihood of a
regulatory sequenggis:

p(ylO, M) = ZP |09, Mg)p(ylz, Or, Mi)
= > p(x|0g, M,)p(Alz, O, Mi)p(y — Alz, Op), (1)

whereA £ A(z,y). Note that; here is not necessarily equivalent to the position-specific
multinomial parameter® in Eq. 2 below, but is a generic symbol for the parameters of a
general model of aligned motif instances.

The modelp(z|©,, M,) captures properties such as the frequencies of differetifano
and the dependencies between motif occurrences. Althquegifging this model is an
important aspect of motif detection and remains largelyxpiered, we defer this issue to
future work. In the current paper, our focus is on capturimgintrinsic properties within
motifs that can help to improve sensitivity and specificiygenuine motif patterns. For
this the key lies in the local alignment moggl4(x, y)|z, ©;, M,), which determines the
PWM of the motif. Depending on the value of the latent indicat; (a motif or not
at positiont), y; admits different probabilistic models, such as a motif ratngnt model
or a background model. Thus sequencis characterized by Bayesian multinef6], a
mixture model in which each component of the mixture is a Sjpaat-distribution model
corresponding to sequences of a particular nature. Ourigdlis paper is to develop an
expressive local alignment modeglA(z, y)|z, ©,, M,) capable of capturing characteristic
site-dependencies in motifs.

In the standard product-multinomial (PM) model for locabament, the columns of a
PWM are assumed to be independent [9] Thus the likeliho@dmflti-alignmentA is:

ale) - T 11 1" )
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Although a popular model for many motif finders, PM neventisslis sensitive to noise and
random or trivial recurrent patterns, and is unable to cappwtential site-dependencies
inside the motifs. Pattern-driven auxiliary submodelg.(ghe fragmentation model [10])
or heuristics (e.g., split a 'two-block’ motif into two colgal sub-motifs [9, 1]) have been
developed to handle special patterns such adJtiseapedmotifs, but they are inflexible
and difficult to generalize. Some of the literature has ithiced vague Dirichlet priors for
# in the PM [2, 10], but they are primarily used for smoothinthea than for explicitly
incorporating prior knowledges about motifs.

We depart from the PM model and introduce a dynamic hieraatiBayesian model for
motif alignmentA, which captures site dependencies inside the motif so teatan predict
biologically more plausible motifs, and incorporate pkapwledge of nucleotide frequen-
cies of general motif sites. In order to keep the local aligntrmodel our main focus as
well as simplifying the presentation, we adopt an idealigietbal motif distribution model
called “one-per-sequence” [8], which, as the name suggasssimes each sequence har-
bors one motif instance (at an unknown location). Geneatitin to more expressive global
models is straightforward and is described in the full paper



3.2 Hidden Markov Dirichlet-Multinomial (HMDM) M odel

In the HMDM model, we assume that there deunderlying latent nt-distribution proto-
types, according to which position-specific multinomiatdbutions of nt are determined,
and that each prototype is represented by a Dirichlet Higidon. Furthermore, the choice
of prototype at each position in the motif is governed by a-firsler Markov process.

More precisely, a multi-alignme ;. 1, containinghl/ motif instances is generated by the
following process. First we sample a sequence of prototggeeatorsy = (¢1,-.. ,45)
from a first-order Markov process with initial distributianand transition matrix3. Then
we repeat the following for each colunire {1,...,L}: (1) A componentfrom a mixture
of Dirichletsa = {d,... ,dk}, where eaclV; = (a;1,...,a;4), is picked according
to indicatorg,. Say we pickedy;. (2) A multinomial distributiord; is sampled according
to p(g\&i), the probability defined by Dirichlet componerdver all such distributions. (3)
All the nucleotides in columhare generated i.i.d. according to Mi).

The complete likelihood of motif alignme ;. ;, characterized by counting matrixis:

p(A, q,0|®z,/\/lz) :p(h\9) (6lg, a)p(q|m, B)

K
~ TIITCta TT =5 o T
i=1

1=11i=1 j=1

L—1

K
H ; ql iy (3)

=1 i,j=1

The major role of HMDM is to impose dynamic priors for modglidata whose distribu-
tions exhibit temporal or spatial dependencies. As Fig(b thakes clear, this model is
not a simple HMM for discrete sequences. In such a model émsition would be between
the emission models (i.e., multinomials) themselves, hedutput at each time would be
a single data instance in the sequence. In HMDM, the tramsitare between different
priors of the emission models, and the direct output of theMHid the parameter vector
of a generative model, which will be sampled multiple timesach position to generate
random instances.

This approach is especially useful when we have either ecapior learned prior knowl-
edge about the dynamics of the data to be modeled. For exagioplke case of motifs, bi-
ological evidence show that conserved positions (mawiteisy a low-entropy multinomial
nt-distribution) are likely to concatenate, and maybe sdhaoless conserved positions.
However, it is unlikely that conserved and less conservesitipas are interpolated [4].
This is calledsite clusteringand is one of the main motivations for the HMDM model.

4 Inferenceand Learning

4.1 Variational Bayesian Learning

In order to do Bayesian estimation of the motif paraméteand to predict the locations of
motif instances via, we need to be able to compute the posterior distribyt{éry), which

is infeasible in a complex motif model. Thus we turn to vaoiaéal approximation [5]. We
seek to approximate the joint posterior over parametershalden stateg(6, ¢, x|y, M)
with a simpler distributior® (6, ¢, z) = Qg ,4(0. ¢)Q . (x), whereQy , andQy , can be, for
the time being, thought of as free distributions to be optadi Using Jensen’s inequality,
we have the following lower found on the log likelihood:

ply, |6, M) p(0,q| M)
/d&dngﬂ(G, q) {/dazQz(x) In .00 + In Q0 a(6.9)

Thus, maximizing the lower bound of the log likelihood (GalB(Q .., Qs,4)) With respect

to free distributions), and@y , is equivalent to minimizing the KL divergence between
the true joint posterior and its variational approximati&eeping either), or ()4 , fixed

Inp(y|M)

v

(4)



and maximizing3(-) with respect to the other, we obtain the following coupledatgs:
Qx(z) o exp(Inp(y,z|6, M), (5)
Qp,4(0,9) o< p(0,q|M)exp (Inp(y, x|, M), (6)

In our motif model, the prior and the conditional submodelsif aconjugate-exponential
pair (Dirichlet-Multinomial). It can be shown that in thiage we can essentially recover
the same form of the original conditional and prior disttibaos in their variational ap-
proximations except that the parameterization is augndesiités appropriate Bayesian and
posterior updates, respectively:

Qu(z) = plz,yle(6), M) = p(ylz, (), M)p(z| M) @
QG,q(&Q) p(9,q|a,ﬁ(x,y),/\/l) (8)
whereg () = (4(6)),, . (#(-) is the natural parameter) andz, y) = (h(z,y))q, -

As Eqs. 7 and 8 make clear, the locality of inference and matigiation on the latent vari-
ables is preserved in the variational approximation, whigfans probabilistic calculations
can be performed in the prior and the conditional modelsrseglyt and iteratively. For
motif modeling, this modular property means that the mdtgranent model and motif
distribution model can be treated separately with a sinmferface of the posterior mean
for the motif parameters and expected sufficient statigticthe motif instances.

4.2 Inferenceand learning

According to Eqg. 8, we replace the counting mattiin Eq. 3, which is the output of the
HMDM model, by the expected counting mat(ik) obtained from inference in the global
distribution model (we will handle this later, thanks to tbeality preservation property
of inference in variational approximations), and proceéith the inference as if we have
“observations’{h). Integrating ovef, we have the marginal distribution:

L—1 L
pla,(h) = plar) [] plarrla) T] p(Cho)la), €)
=1 =1
a standard HMM with emission probability:
; r(|a@) L TR + @)
h =1) = 10
Pl =1) = FroTes NE a”) (10)

j=1

We can compute the posterior probability of the hidden state|(h)) and the matrix of
co-occurrence probabilitiegq;, ¢;+1|(h)) using standard forward-backward algorithm.

We next compute the expectation of the natural parametérlfvisin # for multinomial
parameters). Given the “observatior#’), the posterior mean is computed as follows:

66 = [ S mbup(@,ala, (), M)
o q

K
= > @) (Ylaig + (B])) — T + [(h)]), 11)
i=1
where~(q;) is the posterior probability of the hidden state (an outduthe forward-
backward algorithm) and (z) = 21%6T(=) — FF((z))

Following Eg. 7, given the posterior means of the multindmarameters, computing the
expected counting matri¢:) under the the one-per-sequence global model for sequence

set{yM), ... yM}is straightforward based on Eq. 2 and we simply give the fieslits:
N T,—L+1

hly Z Z Q n) yt+l 17j)7 (12)



Posterior Dirichlet parameters

(n) pmc gl 5(yf+l 2 P (n)
where Q < [T1] [Qoi] = FXP{ S 6w ) ($(61) — ¢(90,J‘))}
1=0 j=1 =0 j=1

13)
Bayesian estimates of the multinomial parameters for thsitipa-specific nt-distribution
of the motif are obtained via fixed-point iteration under tbkkowing EM-like procedure:

e Variational E step: Compute the expected sufficient statistic, the count matri
(h), via inference in the global motif model givertd, ;).

e Variational M step: Compute the expected natural parametét; ;) via infer-
ence in the local motif alignment model givém).

This basic inference and learning procedure provides advark that scales readily to
more complex models. For example, the motif distributiordei@(z) can be made more
sophisticated so as to model complex properties of multipddifs such as motif-level
dependencies (e.g., co-occurrence, overlaps and coatientwithin regulatory modules)
without complicating the inference in the local alignmemidal. Similarly, the motif align-
ment model can also be more expressive (e.g., a mixture of M§)Dvithout interfering
with inference in the motif distribution model.

5 Experiments

We test the HMDM model on a motif collection frofrhe Promoter Database of Saccha-
romyces cerevisiaSCPD). Our dataset contains twenty motifs, each has 6 tos3@rices
all of which are identified via biological experiments.

We begin with an experiment showing how HMDM can captureinistc properties of
the motifs. The posterior distribution of the position-siie multinomial parameters,
reflected in the parameters of the Dirichlet mixtures ledrinem data, can reveal the nt-
distribution patterns of the motifs. Examining the traiasitprobabilities between different
Dirichlet components further tells us the about dependanisetween adjacent positions
(which indirectly reveals the “shape” information). We #a total number of Dirichlet
components to be 8 based on an intelligent guess (usingdialointuition), and Fig-
ure 3(a) shows the Dirichlet parameters fitted from the @atda empirical Bayes estima-
tion. Among the 8 Dirichlet components, numbers 1-4 favoueemistribution of single
nucleotides A, T, G, C, respectively, suggesting they gmpoad to “homogeneous” proto-
types. Whereas numbers 7 and 8 favor a near uniform diswibof all 4 nt-types, hence
“heterogeneous” prototypes. Components 5 and 6 are somewletween. Such patterns
agree well with the biological definition of motifs. Intetiegly, from the learned transition
model of the HMM (Figure 3(b)), it can be seen that the tramsiprobability from a ho-
mogeneous prototype to a heterogeneous prototype is saymify less than that between
two homogeneous or two heterogeneous prototypes, confjramrempirical speculation
in biology that motifs have the so-callsde clusteringproperty [4].
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Figure 3:(a) Dirichlet hyperparameters. (b) Markov transition matfc) Boxplots of hit and mishit
rate of HMDM(1) and PM(2) on two motifs used during HMDM traig.

Are the motif properties captured in HMDM useful in motif detion? We first examine
an HMDM trained on the complete dataset for its ability toeg¢tnotifs used in training in
the presence of a “decoy”: a permuted motif. By randomly peimg the positions in the



motif, the shapes of the “U-shaped” motifs (eapflandgal4) change dramaticallWe
insert each instance of motif/decoy pair into a 300-500 Inploan background sequence at
random positiorb andd’.3 We allow a+3 bp offset as a tolerance window, and scotsta
whenb — 3 < a < b+ 3 (and amis-hitwhend' — 3 < a < b’ + 3), wherea is the position
where a motif instance is found. The (mis)hit rate is the pripn of (mis)hits to the total
number of motif instances to be found in an experiment. E@{c) shows a boxplot of the
hit and mishit rate of HMDM orabfl andgal4 over 50 randomly generated experiments.
Note the dramatic contrast of the sensitivity of the HMDMneet motifs compared to that
of the PM model (which is essentially the MEME model).
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Figure 4:Motif detection on an independent test dataset (the 8 miotifsgure 1(a)). Four models

used are indexed as: 1. HMDM(bell); 2. HMDM(U); 3. HMDM-mixe; 4. PM. Boxplot of hit-rate
is for 80 randomly generated experiments (the center of dehris the median).

How well does HMDM generalize? We split our data into a tnagnset and a testing set,
and further divide the training set roughly based on bedlggd and U-shaped patterns to
train two different HMDMs, respectively, and a mixture of HIWs. In the first motif
finding task, we are given sequences each of which has onlyroeenotif instance at a
random position. The results are given in Figure 4(a). Wetlsaefor 4 motifs, using an
HMDM or the HMDM-mixtures significantly improves performes over PM model. In
three other cases they are comparable, but for mmatif all HMDM models lose. Note that
mcbhis very “conserved,” which is in fact “atypical” in the trang set. It is also very short,
which diminishes the utility of an HMM. Another interestinservation from Figure 4(a)
is that even when both HMDMs perform poorly, the HMDM-mixtgrcan still perform
well (e.g.,mat-ad, presumably because of the extra flexibility provided bg thixture
model.

The second task is more challenging and biologically moadistic, where we have both
the true motifs and the permuted “decoys.” We show only thedte over 80 experiments
in Figure 4(b). Again, in most cases HMDM or the HMDM mixturatperforms PM.

6 Conclusions

We have presented a generative probabilistic framewonkfmdeling motifs in biopolymer
sequences. Naively, categorical random variables withia@dfiamporal dependencies can
be modeled by a standard HMM with multinomial emission msedelowever, the limited
flexibility of each multinomial distribution and the concdamt need for a potentially large
number of states to model complex domains may require a fEg@meter count and lead
to overfitting. The infinite HMM [3] solve this issue by replag the emission model with
a Dirichlet process which provides potentially infinite flaikty. However, this approach
is purely data-driven and provides no mechanism for explicapturing multi-modality

2By permutation we mean each time the same permuted ordepligéjo all the instances of a
motif so that the multinomial distribution of each positismot changed but their order changed.

3We resisted the temptation of using biological backgrouegusnces because we would not
know if and how many other motifs are in such sequences, whiatlers them ill-suited for purposes
of evaluation.



in the emission and the transition models or for incorpaatnformative priors. Further-
more, when the output of the HMM involves hidden variables f@@ the case of motif
detection), inference and learning is further complicated

HMDM assumes that positional dependencies are inducedgharievel among the finite
number of informative Dirichlet priors rather than betweba multinomials themselves.
Within such a framework, we can explicitly capture the muaitbdalities of the multinomial
distributions governing the categorical variable (sucimasif sequences at different posi-
tions) and the dependencies between modalities, by leathesnmodel parameters from
training data and using them for future predictions. In frotbdeling, such a strategy was
used to capture different distribution patterns of nuéteest homogeneouandheteroge-
neous and transition properties between pattesite(clustering. Such a prior proves to
be beneficial in searching for unseen motifs in our expertraed helps to distinguish more
probable motifs from biologically meaningless random reent patterns.

Although in the motif detection setting the HMDM model invek a complex missing
data problem in which both the output and the internal statdke HMDM are hidden,
we show that a variational Bayesian learning procedurevallprobabilistic inference in
the prior model of motif sequence patterns and in the glotsfidution model of motif
locations to be carried out virtually separately with a Bsge interface connecting the
two processes. This divide and conquer strategy makes ihraasier to develop more
sophisticated models for various aspects of motif analygisout being overburdened by
the somewhat daunting complexity of the full motif problem.
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