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Summary

We present a new statistical framework called hidden Markov Dirichlet pro-
cess (HMDP) to jointly model the genetic recombinations among possibly
infinite number of founders and the coalescence-with-mutation events in the
resulting genealogies. The HMDP posits that a haplotype of genetic markers
is generated by a sequence of recombination events that select an ancestor
for each locus from an unbounded set of founders according to a 1st-order
Markov transition process. Conjoining this process with a mutation model,
our method accommodates both between-lineage recombination and within-
lineage sequence variations, and leads to a compact and natural interpretation
of the population structure and inheritance process. An efficient sampling al-
gorithm based on a two-level nested Pólya urn scheme was also developed.

Keywords and Phrases: Dirichlet Process; HMM; MCMC; Statistical
Genetics; Recombination; Population Structure; SNP.

1. INTRODUCTION

Recombinations between ancestral chromosomes during meiosis play a key role in
shaping the patterns of linkage disequilibrium (LD)—the non-random association
of alleles at different loci—in a population. Uneven occurrence of recombination
events along chromosomal regions during genetic history can lead to ”block struc-
tures” in molecular genetic polymorphisms such that within each block only low
level of diversities are present in a population. The problem of inferring recombina-
tion hotspots is essential for understanding the origin and characteristics of genome
variations; several combinatorial and statistical approaches have been developed for
uncovering optimum block boundaries from single nucleotide polymorphism (SNP)
haplotypes (Daly et al., 2001; Anderson and Novembre, 2003; Patil et al., 2001;
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Zhang et al., 2002). The deluge of SNP data also fuels the long-standing interest
of analyzing patterns of genetic variations to reconstruct the evolutionary history
and ancestral structures of human populations, using, for example, variants of ad-
mixture models on genetic polymorphisms (Rosenberg et al., 2002). These progress
notwithstanding, the statistical methodologies developed so far mostly deal with
LD analysis and ancestral inference separately, using specialized models that do
not capture the close statistical and genetic relationships of these two problems.
Moreover, most of these approaches ignore the inherent uncertainty in the genetic
complexity (e,g., the number of genetic founders of a population) of the data and
rely on inflexible models built on a pre-fixed, closed genetic space. Recently, Xing
et al. (2004) have developed a nonparametric Bayesian framework for modeling ge-
netic polymorphisms based on the Dirichlet process mixtures and extensions, which
attempts to allow more flexible control over the number of genetic founders In this
paper, we leverage this approach and present a unified framework to model com-
plex genetic inheritance process that allows recombinations among possibly infinite
founding alleles and coalescence-with-mutation events in the resulting genealogies.

We assume that individual chromosomes in a modern population are originated
from an unknown number of ancestral haplotypes via biased random recombina-
tions and mutations (Fig 1). The recombinations between the ancestors follow a a
state-transition process we refer to as hidden Markov Dirichlet process (originated
from the infinite HMM by Beal et al. (2001)), which travels in an open ancestor
space. Our model draws inspiration from the HMM proposed in Greenspan and
Geiger (2003), but we employ a two-level Pólya urn scheme akin to the hierarchical
DP (Teh et al., 2006) to accommodate an open ancestor space, and allow full poste-
rior inference of the recombination sites, mutation rates, haplotype origin, ancestor
patterns, etc., conditioning on phased SNP data, rather than estimating them using
information theoretic or maximum likelihood principles.

2. HIDDEN MARKOV DIRICHLET PROCESS FOR RECOMBINATION

Sequentially choosing recombination targets from a set of ancestral chromosomes can
be modeled as a hidden Markov process (Niu et al., 2002; Greenspan and Geiger,
2003), in which the hidden states correspond to the index of the candidate chromo-
somes, the transition probabilities to the recombination rates between the recom-
bining chromosome pairs, and the emission model to a mutation process that passes
the chosen chromosome region in the ancestors to the descents. When the number
of ancestral chromosomes is not known, it is natural to consider an HMM whose
state space is countably infinite (Beal et al., 2001; Teh et al., 2006). In this section,
we describe such an infinite HMM formalism, which we would like to call hidden
Markov Dirichlet process, for modeling recombination in an open ancestral space.
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Figure 1: An illustration of a hidden Markov Dirichlet process for haplo-
type recombination and inheritance .
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2.1. Dirichlet Process mixtures

Under a well-known genetic model known as coalescence-with-mutation (but with-
out recombination), one can treat a haplotype from a modern individual—the joint
allele configuration of a contiguous list of SNPs located on one of his/her chromo-
some (Fig 1)—as a descendent of an unknown ancestor haplotype (i.e., a founder)
via random mutations. It can be shown that such a coalescent process in an infinite
population leads to a partition of the population that can be succinctly captured
by the following Pólya urn scheme. Consider an urn that at the outset contains a
ball of a single color. At each step we either draw a ball from the urn and replace
it with two balls of the same color, or we are given a ball of a new color which we
place in the urn. One can see that such a scheme leads to a partition of the balls ac-
cording to their color. Letting parameter τ define the probabilities of the two types
of draws, and viewing each (distinct) color as a sample from Q0, and each ball as a
sample from Q, Blackwell and MacQueen (1973) showed that this Pólya urn model
yields samples whose distributions are those of the marginal probabilities under the
Dirichlet process. One can associate mixture component with colors in the Pólya
urn model, and thereby define a “clustering” of the data. The resulting model is
known as a DP mixture. Note that a DP mixture requires no prior specification
of the number of components. Back to haplotype modeling, following Xing et al.
(2004), let Hi = [Hi,1, . . . , Hi,T ] denote a haplotype over T SNPs from chromosome
i; let Ak = [Ak,1, . . . , Ak,T ] denote an ancestor haplotype (indexed by k) and θk

denote the mutation rate of ancestor k; and let Ci denote an inheritance variable
that specifies the ancestor of haplotype Hi. Then, under a DP mixture, we have the
following Pólya urn scheme for sampling modern haplotypes:

• Draw first haplotype:

a1 | DP(τ, Q0) ∼ Q0(·), sample the 1st founder;

h1 ∼ Ph(·|a1, θ1),
sample the 1st haplotype from an inheritance model defined on
the 1st founder;

• for subsequent haplotypes:

– sample the founder indicator for the ith haplotype:

ci|DP(τ, Q0) ∼
(

p(ci = cj for some j < i|c1, ..., ci−1) =
ncj

i−1+τ
p(ci 6= cj for all j < i|c1, ..., ci−1) = τ

i−1+τ

where nci
is the occupancy number of class ci–the number of previous samples belonging to class ci.

– sample the founder of haplotype i (indexed by ci):

φci
|DP(τ, Q0)

(
= {acj

, θcj
} if ci = cj for some j < i (i.e., ci refers to an inherited founder)

∼ Q0(a, θ) if ci 6= cj for all j < i (i.e., ci refers to a new founder)

– sample the haplotype according to its founder:

hi | ci ∼ Ph(·|aci
, θci

).

Notice that the above generative process assumes each modern haplotype to be
originated from a single ancestor, this is only plausible for haplotypes spanning a
short region on a chromosome. Now we consider long haplotypes possibly bearing
multiple ancestors due to recombinations between an unknown number of founders.

2.2. Hidden Markov Dirichlet Process (HMDP)

In a standard HMM, state-transitions across a discrete time- or space-interval take
place in a fixed-dimensional state space, thus it can be fully parameterized by,
say, a K-dimensional initial-state probability vector and a K ×K state-transition
probability matrix. As first proposed in Beal et al. (2001), and later discussed
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in Teh et al. (2006), one can ”open” the state space of an HMM by treating the
now infinite number of discrete states of the HMM as the support of a DP, and the
transition probabilities to these states from some source as the masses associated
with these states. In particular, for each source state, the possible transitions to the
target states need to be modeled by a unique DP. Since all possible source states and
target states are taken from the same infinite state space, overall we need an open
set of DPs with different mass distributions on the SAME support. In the sequel, we
describe such a nonparametric Bayesian HMM using an intuitive hierarchical Pólya
urn construction. We call this model a hidden Markov Dirichlet process.

We set up a single “stock” urn at the top level, which contains balls of colors that
are represented by at least one ball in one or multiple urns at the bottom level. At
the bottom level, we have a set of distinct urns (say, HMM-urns) which are used to
define the initial and transition probabilities of the HMDP model. Specifically, one of
HMM urns, u0, is set aside to hold colored balls to be drawn at the onset of the HMM
state-transition sequence. Each of the remaining HMM urns is used to hold balls
to be drawn during the execution of a Markov chain of state-transitions. Now let’s
suppose that at time t the stock urn contains n balls of K distinct colors; the number
of balls of color k in this urn is denoted by nk. For urn u0 and urns u1, . . . , uK , let
mj,k denote the number of balls of color k in urn uj , and mj =

P
k∈C mj,k denote

the total number of balls in urn uj . Suppose that at time t−1, we had drawn a ball
with color k′. Then at time t, we either draw a ball randomly from urn uk′ , and
place back two balls both of that color; or with probability τ

mj+τ
we turn to the top

level. From the stock urn, we can either draw a ball randomly and put back two
balls of that color to the stock urn and one to uk′ , or obtain a ball of a new color
K + 1 with probability γ

n+γ
and put back a ball of this color to both the stock urn

and urn uk′ of the lower level. Essentially, we have a master DP (the stock urn)
that serves as a base measure for infinite number of child DPs (HMM-urns).

2.3. HMDP Model for Recombination and Inheritance

For each modern chromosome i, let Ci = [Ci,1, . . . , Ci,T ] denote the sequence of
inheritance variables specifying the index of the ancestral chromosome at each SNP
locus. When a recombination occurs, say, between loci t and t + 1, we have Ci,t 6=
Ci,t+1. We can introduce a Poisson point process to control the duration of non-
recombinant inheritance. That is, given that Ci,t = k, then with probability e−dr +
(1 − e−dr)πkk, where d is the physical distance between two loci, r reflects the
rate of recombination per unit distance, and πkk is the self-transition probability
of ancestor k defined by HMDP, we have Ci,t+1 = Ci,t; otherwise, the source state
(i.e., ancestor chromosome k) pairs with a target state (e.g., ancestor chromosome

k′) between loci t and t +1, with probability (1− e−dr)πkk′ . Hence, each haplotype
Hi is a mosaic of segments of multiple ancestral chromosomes from the ancestral
pool {Ak,·}∞k=1. Essentially, the model we described so far is a time-inhomogeneous
infinite HMM. The emission process of the HMDP corresponds to an inheritance
model from an ancestor to the matching descendent. For simplicity, we adopt the
single-locus mutation model in Xing et al. (2004), which is widely used in statistical
genetics as an approximation to a full coalescent genealogy (Liu et al., 2001).

The two-level nested Pólya urn schemes described in §2.2 motivates an efficient
and easy-to-implement MCMC algorithm to sample from the posterior associated
with HMDP. Details of this algorithms is available in Xing and Sohn (2007).
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Figure 2: (a)Ancestor reconstruction errors (the ratio of incorrectly recov-
ered loci over all the loci). (b)The empirical recombination rates along 100
SNP loci with the pre-specified recombination hotspots (dotted lines). (c)The
true (panel 1) and estimated (panel 2 for HMDP, and panel 3-5 for the HMMs
with 3, 5, 10 states, repsectively.) population maps of ancestral compositions.

3. EXPERIMENTS

We have applied the HMDP model to both simulated and real haplotype data. Our
analyses focus on the three popular problems in statistical genetics of ancestral
inference, LD-block analysis and population structural analysis.

3.1. Analyzing simulated haplotype population

We simulated a population of 200 individual haplotypes from Ks = 5 (unknown to
the HMDP model) ancestor haplotypes, via a Ks = 5-dimensional HMM.

Ancestral Inference. Using HMDP, we successfully recovered the correct number
(i.e., K = 5) of ancestors in 21 out of 30 simulated populations; for the remaining
9 populations, we inferred 6 ancestors. From samples of ancestor states {ak,t}, we
reconstructed the ancestral haplotypes under the HMDP model. For comparison,
we also inferred the ancestors under the 3 standard HMMs using EM (Fig 2a).

LD-block Analysis. From samples of the inheritance variables {ci,t} under HMDP,
we can infer the recombination status of each locus of each haplotype. We define the
empirical recombination rates λe at each locus to be the ratio of individuals who had
recombinations at that locus over the total number of haploids in the population.
Fig 2b shows a plot of the λe in one simulated population. We can identify the
recombination hotspots directly from such a plot based on an empirical threshold
λt (i.e., λt = 0.05). The inferred hotspots (i.e., the λe peaks) show reasonable
agreement with the true hotspots shown as vertical dotted lines.

Population Structural Analysis. Finally, from samples of the inheritance variables
{ci,t}, we can also uncover the genetic origins of all loci of each individual haplotype
in a population. For each individual, we define an empirical ancestor composition
vector ηe, which records the fractions of every ancestor in all the ci,t’s of that indi-
vidual. Fig 2c displays a population map constructed from the ηe’s (the thin vertical
lines) of all individuals. Five population maps, corresponding to (1) true ancestor
compositions, (2) ancestor compositions inferred by HMDP, and (3-5) ancestor com-
positions inferred by HMMs with 3, 5, 10 states, respectively, are shown in Fig 2c.
The L1 distance between the HMDP-derived population map and the true map is
0.190, whereas the distance between HMM-map and true map is 0.319.

3.2. Analyzing two real haplotype datasets

We also applied HMDP to two real haplotype datasets, the single-population Daly
data (Daly et al., 2001), and the two-population HapMap data (Thorisson et al.,
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2005); our method was able to uncover known recombination hotspots and popula-
tion structures underlying these data (see Xing and Sohn (2007) for details).

4. CONCLUSION

We have proposed a new Bayesian approach for joint modeling genetic recombina-
tions among possibly infinite founding alleles and coalescence-with-mutation events
in the resulting genealogies. By incorporating a hierarchical DP prior to the stochas-
tic matrix underlying an HMM, our method can efficiently infer a number of im-
portant genetic variables, such as recombination hotspot, mutation rates, haplotype
origin, and ancestor patterns, jointly under a unified statistical framework. HMDP
can also be easily adapted to more complicated genetics problems (e.g., analyzing
unphased genotype data) and many engineering and information retrieval contexts
such as object and theme tracking in open space. Due to space limit, we leave
out some details of the algorithms and more results of our experiments, which are
available in the full version of this paper (Xing and Sohn, 2007).

REFERENCES

Anderson, E. C. and Novembre, J. (2003). Finding haplotype block boundaries by using
the minimum- description-length principle. Am J Hum Genet 73, 336

Beal, M. J., Ghahramani, Z., and Rasmussen, C. E. (2001). The infinite hidden Markov
model. In Advances in Neural Information Processing Systems 13

Blackwell, D. and MacQueen, J. B. (1973). The infinite hidden Markov model Ann.
Statist. 1, 353–355

Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J., and Lander, E. S. (2001).
High-resolution haplotype structure in the human genome. Nature Genetics 29(2),
229–232.

Greenspan, D. and Geiger, D. (2003). Model-based inference of haplotype block variation.
In Proceedings of RECOMB 2003

Liu, J. S., Sabatti, C., Teng, J., Keats, B., and Risch, N. ( 2001). Bayesian analysis of
haplotypes for linkage disequilibrium mapping. Genome Res. 11, 1716–1724.

Niu, T., Qin, S., Xu, X., and Liu, J. (2002). Bayesian haplotype inference for multiple
linked single nucleotide polymorphisms. Am J Hum Genet 70, 157–169.

Patil, N., Berno, A. J., et al. (2001), Blocks of limited haplotype diversity revealed by
high-resolution scanning of human chromosome 21. Science 294, 1719–1723.

Rosenberg, N. A., Pritchard, J. K., Weber, J. L., Cann, H. M., Kidd, K. K., Zhivotovsky,
L. A., and Feldman, M. W. (2002). Genetic structure of human populations. Science
298, 2381–2385.

Teh, Y., Jordan, M. I., Beal, M., and Blei, D. (2006). Hierarchical Dirichlet processes.
J. Amer. Statist. Assoc. (to appear).

Thorisson, G.A., Smith, A.V., Krishnan, L., and Stein, L.D. (2005). The international
hapmap project web site. Genome Research 15, 1591–1593.

Xing, E. P., Sharan, R., and Jordan, M. (2004). Bayesian haplotype inference via the
Dirichlet process. In Proceedings of the 21st International Conference on Machine
Learning, New York, 2004.10. ACM Press.

Xing, E. P. and Sohn, K.-A. (2007). Hidden markov dirichlet process: Modeling genetic
inference in open ancestral space. Bayesian Analysis (to appear).

Zhang, K., Deng, M., Chen, T., Waterman, M., and Sun, F. (2002). A dynamic
programming algorithm for haplotype block partitioning. Proc. Natl. Acad. Sci. USA
99(11), 7335–7339.


