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ABSTRACT

This paper presents a max margin framework on image an-
notation and multimodal image retrieval as a structured pre-
diction model. Following the max margin approach the im-
age retrieval problem is formulated as a quadratic program-
ming problem. By properly selecting joint feature represen-
tation between different modalities, our framework captures
the dependency information between different modalities and
avoids retraining the model from scratch when database un-
dergoes dynamic updates. While this framework is a gen-
eral approach which can be applied to multimodal informa-
tion retrieval in any domains, we apply this approach to the
Berkeley Drosophila embryo image database for the evalua-
tion purpose. Experimental results show significant perfor-
mance improvements over a state-of-the-art method.

1. INTRODUCTION

Image retrieval plays an important role in information re-
trieval due to the overwhelming multimedia data brought by
modern technologies, especially the Internet. One of notori-
ous bottleneck in the image retrieval is the semantic gap [1].
Recently, it is reported that this bottleneck may be reduced
by the multimodal approach [2, 3] which takes advantage of
the fact that in many applications image data typically co-
exist with other modalities of information such as text. The
synergy between different modalities may be exploited to cap-
ture the high level concepts.

In this paper, we follow this line of research by proposing
the max margin framework on image annotation and image
retrieval as a structured prediction model where the input x
and the desired output y are structures. Our framework is
built upon the model proposed by Taskar et al. [4]. Following
the max margin approach the image retrieval problem is for-
mulated as a quadratic programming (QP) problem. Given
the multimodal information in the image database, the de-
pendency information between different modalities is learned
by solving for this QP problem. In this paper we only con-
sider text modality which co-exists with images although our
approach can be easily extended for more modalities. Across-
modality retrieval (image annotation and word querying) and
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image retrieval can be done based on dependency informa-
tion. By properly selecting the joint feature representation
between different modalities, our approach captures the de-
pendency information between different modalities which is
independent of specific words or specific images. This makes
our approach scalable in the sense that it avoids retraining
the model from scratch when image database undergoes dy-
namic updates which include image and word space updates.

While this framework is a general approach which can
be applied to multimodal information retrieval in any do-
mains, we apply this approach to the Berkeley Drosophila
embryo image database for the evaluation purpose. Exper-
imental results show significant performance improvements
over a state-of-the-art method.

2. RELATED WORK

Multimodal approach has recently received substantial atten-
tion since Barnard and Duygulu et al. started their pioneer-
ing work on image annotation [2, 5]. Recently there have been
many studies [6, 7, 3, 8, 9, 10] on multimodal approaches.

The structure model covers many natural learning tasks.
There have been many studies on the structure model which
include conditional random fields [11], maximum entropy mo-
del [12], graph model [13], semi-supervised learning [14] and
max margin approach [15, 16, 17, 18]. The max margin prin-
ciple has received substantial attention since it was used in
the support vector machine (SVM) [19]. In addition, the per-
ceptron algorithm is also used to explore the max margin
classification [20].

Our main contribution is to develop an effective solution
to the image annotation and multimodal image retrieval prob-
lem using the max margin approach under a structure model.
More importantly, our framework has a great advantage in
scalability over many existing image retrieval systems.

3. MAX MARGIN APPROACH

Assume that the training set consists of a set of training in-
stances S = {(I'V), W")}L_ | where each instance consists
of an image object I and the corresponding annotation
word set W, We define a block as a subimage of an image
such that the image is partitioned into a set of blocks and all
the blocks of this image share the same resolution. For each
block, we compute the feature representation in the feature
space. Since the image database may be large, we apply k-
means algorithm to all the feature vectors in the training set.



We define VRep (visual representative) as a representative of
a set of all the blocks for all the images in the database that
appear visually similar to each other. A VRep is used to rep-
resent each cluster and thus is represented as a feature vector
in the feature space. Consequently, the training set becomes
VRep-annotation pairs S = {(x¥,y)}¥,, where N is the
number of clusters, x*) is the VRep object and y® is the
word annotation set related to this VRep object. We use Y
to represent the whole set of words and w; to denote the j-th
word in the whole word set. y® is the M-dimensional binary
vector (M = ||Y||) in which the j-th component yY) is set to

1 if word w; appears in Xm, and 0 otherwise. We use y to
represent an arbitrary M-dimensional binary vector.

We use score function s(x(, w;) to represent the degree
of dependency between the specific VRep x* and the spe-
cific word w;. In order to capture the dependency between
VReps and words it is helpful to represent it in a joint feature
representation £ : X x ) — R?. The feature vector between
x® and w; can be expressed as f(x¥ w;) and the feature
vector between x* and word set y is the sum for all the
words: fi(y) = f(xV,y) = Zfil yjf(x(i),wj). In this fea-
ture vector, each component may have a different weight in
determining the score function. Thus, the score function can
be expressed as a weighted combination of a set of features
a"f(x, w;), where « is the set of parameters.

The learning task then is to find the optimal weight vector
« such that:

arg max o' £f(x,y)~y? Vi
yey(@)

where Y = {y| " yi=2 y;i) }. We define the loss function
I(y,y) as the number of different words between these two

sets. In order to make the true structure y* as the optimal
solution, the constraint is reduced to:

a fi(y") > a fi(y) + iy, y") Vi, vy € Y

We interpret ﬁoﬁ[fi(y(i)) — fi(y)] as the margin of y®

over another y € Y@ We then rewrite the above constraint
as ﬁoﬁ[fi(y(z)) —fi(y)] > ml(y,ym). Thus, minimizing
||| maximizes such margin.

The goal now is to solve the optimization problem:
. 2
min [led|

st. o fi(y®) > a fi(y) + iy, y") Vi, vy € Y

3.1. Min-max formulation

The above optimization problem is equivalent to the following
optimization problem:
. 2
min [led| 1)
st alfi(y") > max (a"fi(y) + U(y,y")) Vi
yeyit

We take the approach proposed by Taskar et al. [4] to
solve it. We consider the maximization sub-problem con-
tained in the above optimization problem.

We have

a'fi(y) + Uy, y D) =a" Yyt w) + Sy —y,)
j J

J

=d; + (Fia+ Ci)Ty

where d; = Zj y;i) and F; is a matrix in which the j-th row
is f(X<i),Wj); c; is the vector in which the j-th component is
7yjz .

This maximization sub-problem then becomes:

max

d; + (Fia+ Ci)Ty
st Dy =20y
J J
We map this problem to the following linear programming(LP)
problem:

di + (Fia+ci) 2
s.t. AiZi S bl z; Z 0

max

for appropriately defined A, b;, which depend only on y, y¥;
z; is the relaxation for y. It is guaranteed that this LP pro-
gram has an integral (0/1) solution.

We consider the dual program of this LP program:

min  d;+b; A\ (2)
Now we can combine (1) and (2) together:
min  [af? 3)
s.t. o fi(yP)>di+ b/ N Vi
A/ N >Fiatc Vi

This formulation is justified as follows. If (2) is not at the
minimum, the constraint is tighter than necessary, leading to
a sub-optimal solution a.. Nevertheless, the training data are
typically hardly separable. In such cases, we need to intro-
duce slack variables &; to allow some constraints violated. The
complete optimization problem now becomes a QP problem:

min ol +C) & (4)

st. o fi(y)>di+b; \i—& Vi
A;r)\z >F,a+c; Vi
a>0 inf>MN>0 inf>&>0 Vi
After this QP program is solved, we have the optimal param-
eters . Then we have the dependency information between
words and VReps by the score function. For each VRep, we
have a ranking-list of words in terms of the score function.
Similarly we have a ranking-list of VReps for each word.

3.2. Feature representation

For a specific VRep x® and a specific word w;, we con-
sider the following feature representation f between them:
(E g Sij mi)

n; ' N> m;> M
and M words. n; denotes the number of VReps in which w;
appears. m; denotes the number of words which appear in
VRep xV. §;; is an indicator function (1 if w; appears in
x® and 0 otherwise). Other possible features may depend
on the specific word or VRep because some words may be
more important than others. We only use the features in-
dependent of specific words and specific VReps and we will
discuss the advantage later.

. Here we assume that there are N VReps



3.3. Image Annotation

Given a test image, we partition it into blocks and compute
the feature vectors. Then we compute the similarity between
feature vectors and VReps in terms of the distance. We return
the top n most-relevant VReps. Since for each VRep, we
have the ranking-list of words in terms of the score function,
we merge these n ranking-lists and sort them to obtain the
ranking-list of the whole word set. Finally, we return the top
m words as the annotation result.

3.4. Word Query

For a specific word, we have the ranking-list of VReps. we
return the top n VReps. For each VRep, we compute the
similarity between this VRep and each test image in terms of
the distance. For each VRep, we have the ranking-list of test
images. Finally, we merge these n ranking-lists and return
the top m images as the query results.

3.5. Image Retrieval

Given a query image, we annotate it using the procedure in
Sec. 3.3. For each annotation word j, there is a subset of
images S; in which this annotation word appears. Then we
have the union set S = JS; for all the annotation words.

On the other hand, for each annotation word j, the pro-
cedure in Sec. 3.4 is used to obtain the related image subset
T;. Then we have the union set 7' = |J 7. The final retrieval
result is R=S(NT.

3.6. Database Updates

Now we consider the case where new images are added to the
database. Assume that these new images have annotation
words along with them. If they do not, we can annotate them
using the procedure in Sec. 3.3. For each newly added image,
we partition it into blocks and for each block we compute the
nearest VRep in terms of the distance and the VRep-word
pairs are updated in the database. This also applies to the
case where the newly added images may include new word.

Under the assumption that the newly added images fol-
low the same feature distribution as those in the database,
it is reasonable to assume that the optimal parameter a also
captures the dependency information between the VReps and
the newly added words because the feature representation de-
scribed in Sec. 3.2 is independent of specific words and specific
VReps. Consequently, we do not need to re-train the model
from scratch. In fact, the complexity of the update is O(1).
As the database scales up, so does the performance due to
the incrementally updated data. This is a great advantage
over many existing image retrieval systems which are unable
to handle new vocabulary at all. The experimental result
supports and verifies this analysis.

4. EXPERIMENTAL RESULT

While this approach is a general approach which can be ap-
plied to multimodal information retrieval in any domains, we
apply this approach to the Berkeley Drosophila embryo image
database for the evaluation purpose. We compare the perfor-
mance of this framework with the state-of-the-art multimodal
image annotation and retrieval method MBRM [3].

There are totally 16 stages in the whole embryo image
database. We use stages 11 and 12 for the evaluation purpose.

There are about 6000 images and 75 words in stages 11 and
12. We split all the images into two parts (one third and
two thirds), with the two thirds used as the training set and
the one third used as the test set. In order to show the
advantage discussed in Sec. 3.6, we use a smaller training
subset (110 images) to obtain the optimal parameter «. For
these 110 images, there are 35 annotation words. Then we use
the test set for evaluation. This experiment result is shown
as "Our Framework (1)” in the figures. Then we add the
remaining training images to the database and use the test
set for evaluations again. This experiment result is shown as
”Our Framework (2)” in the figures. When the new images
are added to the image database, the new annotation words
along with them are also added to the image database.
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Fig. 1. Evaluation of image annotation between our frame-
work and MBRM model.

In the figures, the dashed lines are for precisions and the
solid lines are for recalls. In the image annotation result
shown in Fig. 1, the performance becomes better when the
new images are added to the image database. This is consis-
tent with the analysis in Sec. 3.6. When the image database
scales up to the size as the same as that used by the MBRM
model, our framework works slightly better than MBRM. In
the word query result shown in Fig. 2, our framework per-
forms significantly better than MBRM. Similarly in the image
retrieval performance shown in Fig. 3, our framework works
much better than MBRM.

5. CONCLUSION

We present a multimodal framework on image annotation and
retrieval based on the max margin approach. The whole prob-
lem is mapped to a quadratic programming problem. Our
framework is highly scalable in the sense that it takes a con-
stant time to accommodate the database updating without
needing to retrain the database from the scratch. The eval-
uation result shows significant improvements on the perfor-
mance over a state-of-the-art method.



Single Word Query Average Precision(n)

Fig.

—@—Our Framework (2)

® —¥— Our Framework (1)
\
i —H-MBRM model
\

2

o

@
T

=4

o

=1
T

0.025

e

o

»
T

o

o

o
T

o

o

&~
T

i
]
!
I
‘l
[=]
L%}
Single Word Query Average Recall(n)

=g

o

&
T

ozl 0.005

0.01
0

5 10 15 20 25 30 35 40 45 50
Top(n)

2. Evaluation of single word query between our frame-

work and MBRM model.

(1

[2

[4

[5

6

(8]

(9]

6. REFERENCES

A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta,
and R Jain, “Content-based image retrieval at the end
of the early years,” IEEFE Trans. on Pattern Analysis
and Machine Intelligence, vol. 22, pp. 1349-1380, 2000.

Kobus Barnard, Pinar Duygulu, David Forsyth, Nando
de Freitas, David M. Blei, and Michael I. Jordan,
“Matching words and pictures,” Journal of Maching
Learning Research, vol. 3, pp. 1107-1135, 2003.

S. L. Feng, R. Manmatha, and V. Lavrenko, “Multiple
bernoulli relevance models for image and video annota-
tion,” in International Conference on Computer Vision
and Pattern Recognition, Washington DC, 2004.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin,
“Learning structured prediction models: A large margin
approach,” in Proc. ICML, Bonn, Germany, 2005.

Pinar Duygulu, Kobus Barnard, Nando de Freitas, and
David Forsyth, “Object recognition as machine transla-
tion: Learning a lexicon for a fixed image vocabulary,”
in Seventh Furopean Conference on Computer Vision,
2002, vol. IV, pp. 97-112.

D. Blei and M. Jordan, “Modeling annotated data,” in
Proceedings of the 26th annual International ACM SI-
GIR Conference on Research and Development in Infor-
mation Retrieval, 2003, pp. 127-134.

J-Y. Pan, H-J. Yang, C. Faloutsos, and P. Duygulu,
“Automatic multimedia cross-modal correlation discov-
ery,” in Proceedings of the 10th ACM SIGKDD Confer-
ence, Seattle, WA, 2004.

E. Chang, Kingshy Goh, G. Sychay, and Gang Wu,
“Cbsa: content-based soft annotation for multimodal
image retrieval using bayes point machines,” IEFEE
Trans. on Circuits and Systems for Video Technology,
vol. 13, pp. 26-38, Jan 2003.

R. Datta, W. Ge, J. Li, and J. Z. Wang, “Toward bridg-
ing the annotation-retrieval gap in image search by a

generative modeling approach,” in Proc. ACM Multi-
media, Santa Barbara, CA, 2006.

Image Retrieval Average Precision(n)

Fig.

0.36

—@— Our Framework
——MBRM model

0.01

0.008

0.006

Image Retrieval Average Recall(n)

3. Evaluation of image retrieval between our framework

and MBRM model.

[10]

[11]

[12]

[13]

14

[15]

[16]

[17]

[18]

[19]

[20]

Yi Wu, Edward Y. Chang, and Belle L. Tseng, “Multi-
modal metadata fusion using causal strength,” in Proc.
ACM Multimedia, Hilton, Singapore, 2005, pp. 872-881.

John Lafferty, Andrew McCallum, and Fernando
Pereira, “Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data,” in Proc.
ICML, 2001.

Andrew McCallum, Dayne Freitag, and Fernando
Pereira, “Maximum entropy markov models for infor-
mation extraction and segmentation,” in Proc. ICML,
2000.

W. Chu, Z. Ghahramani, and D. L. Wild, “A graphical
model for protein secondary structure prediction,” in
Proc. ICML, Banff, Canada, 2004.

Ulf Brefeld and Tobias Scheffer, “Semi-supervised learn-
ing for structured output variables,” in Proc. ICML,
Pittsburgh, PA, 2006.

Hal Daume IIT and Daniel Marcu, “Learning as search
optimization: Approximate large margin methods for
structured prediction,” in Proc. ICML, Bonn, Germany,
2005.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun, “Support vector ma-
chine learning for interdependent and structured output
spaces,” in Proc. ICML, Banff, Canada, 2004.

B. Taskar, C. Guestrin, and D. Koller, “Max-margin
markov networks,” in Neural Information Processing
Systems Conference, Vancouver, Canada, 2003.

Yasemin Altun, Ioannis Tsochantaridis, and Thomas
Hofmann, “Hidden markov support vector machines,”
in Proc. ICML, Washington DC, 2003.

Vladimir Naumovich Vapnik, The nature of statistical
learning theory, Springer, 1995.

Yoav Freund and Robert E. Schapire, “Large margin
classification using the perceptron algorithm,” in Mach-
ing Learning, 1999, vol. 37.



