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Abstract

Time-evolving networks are a natural represen-
tation for dynamic social and biological interac-
tions. While latent space models are gaining pop-
ularity in network modeling and analysis, previ-
ous works mostly ignore networks with tempo-
ral behavior and multi-modal actor roles. Fur-
thermore, prior knowledge, such as division and
grouping of social actors or biological specificity
of molecular functions, has not been systemati-
cally exploited in network modeling. In this pa-
per, we develop a network model featuring a state
space mixture prior that tracks complex actor la-
tent role changes through time. We provide a fast
variational inference algorithm for learning our
model, and validate it with simulations and held-
out likelihood comparisons on real-world time-
evolving networks. Finally, we demonstrate our
model’s utility as a network analysis tool, by ap-
plying it to United States Congress voting data.

1 INTRODUCTION
Social and biological systems can often be represented as a
series of temporal networks over actors, and these networks
may undergo systematic rewiring or experience large topo-
logical changes over time. The dynamics of these time-
evolving networks pose many interesting questions. For
instance, what are the roles played by these networked
actors? How will these roles dictate the way two ac-
tors interact? How do actors play multiple roles (multi-
functionality) in different social and biological contexts,
and how does an actor’s set of roles evolve over time?
Knowledge of actor roles provides insight into how social
or biological communities form in networks. In particular,
we might elucidate how actors with diverse role composi-
tions group together, and how these groupings change over
time.
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There is increasing interest in employing latent space mod-
els for network analysis (Hoff, Raftery, and Handcock
2002; Handcock, Raftery, and Tantrum 2007). However,
most of these models assume static networks and a sin-
gle, fixed role for each actor. Hence they cannot model ac-
tor multi-functionality and role evolution over time, mak-
ing them unsuitable for analyzing complex temporal net-
works. Airoldi et al. (2008) proposed a Mixed Membership
Stochastic Blockmodel (MMSB) that captures actor multi-
functionality, but it applies to static data only.

Recently, Xing et al. (2010) have addressed temporal evo-
lution in networks with a dynamic extension of MMSB,
which they call dMMSB. The dMMSB places a time-
evolving, unimodal prior on all network actors; specifically,
it employs a time-evolving logistic normal distribution sim-
ilar to a state-space model. Although an important first step
towards dynamic network analysis, dMMSB offers very
weak modeling power — because it employs a unimodal
logistic normal for the role distribution of all actors, it is
only applicable to networks where the multi-functionalities
of all actors follow similar, unimodal dynamics. A direct
solution might be to introduce a separate dynamic process
for each actor, but not only is this computationally imprac-
tical for large networks with many actors, it is also sta-
tistically unsatisfactory from a Bayesian standpoint as the
actors no longer share any common pattern and coupling,
leaving the model prone to over-fitting and unable to sup-
port activity and anomaly detection.

This challenge naturally leads us to explore “evolving clus-
ters” of actors — by modeling dynamic processes on clus-
ters, rather than on individuals or on the whole network,
we can increase inferential power while retaining a com-
mon, yet much more expressive multimodal mixture model
prior, for each actor. With such a prior, we can accom-
modate the actors’ potentially non-stationary and heteroge-
neous behaviors.

Thus, in order to model both the temporal evolution and
multi-modal nature of networks, we propose an evolving
cluster of mixed membership stochastic blockmodels. Our
model employs the vanilla MMSB as the basic building
block, but augments it with a multi-modal mixture prior to
capture both the multi-functionality and the multi-modality
of the actor trajectories. We conjoin the mixture MMSB
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with a set of state space models, one over each mixture
component, allowing the model to follow as many trajecto-
ries as there are mixture components. Each state space tra-
jectory corresponds to the average evolution of the multi-
functionality of a group of actors.

This evolving mixture prior over vanilla MMSB presents
additional challenges to parameter learning and latent vari-
able inference. We overcome these difficulties by devel-
oping a variational EM algorithm inspired by ideas from
Ghahramani & Hinton (2000) and dMMSB (Xing, Fu, and
Song 2010). Our algorithm performs approximate infer-
ence and learning efficiently. Moreover, it is fundamentally
different from dMMSB’s algorithm — the latter’s M-step
equations lack second order moments found in ours.

In our experiments, we validate our model on synthetic
data, and compare our held-out likelihood on real networks
to that of dMMSB. Finally, we analyze voting data from
the United States Congress using our model.

2 TIME-EVOLVING NETWORK MODEL
We condsider a sequence of interaction networks or graphs,
denoted by {G(t)}Tt=1, where each G(t) ≡ {V, E(t)} repre-
sents the network observed at time t. We assume the set
of actors V = {1, . . . , N} is constant. Furthermore, we
permit E(t) ≡ {e(t)ij }

N,N
i,j=1, the set of interactions between

actors, to evolve with time. We ignore self edges e(t)ii .

Our goal is to infer the underlying multi-functionalities and
clusters that give rise to this network sequence. We ap-
proach this problem by extending the mixed membership
stochastic blockmodel (MMSB) (Airoldi, Blei, Fienberg,
and Xing 2008), a static network model. The idea is to
place a time-evolving (i.e. dynamic) model on top of the
MMSB, allowing it to account for temporally-evolving net-
work dynamics. An earlier approach, the dynamic MMSB
(dMMSB) (Xing, Fu, and Song 2010), used a single dy-
namic model to account for all network actors. Because
dMMSB learns just one dynamic process for all actors’
multi-functionalities, it is a poor statistical fit when the
multi-functionalities follow a multimodal distribution. At
the other extreme, one might contemplate placing a sep-
arate dynamic model on every actor, but then the multi-
functionalities would no longer share a common prior.

We resolve these conflicting goals by generalizing the prior
on actors to a mixture of time-evolving logistic normal dis-
tributions. This mixture prior is multi-modal and captures
correlations between roles, allowing it to fit complex data
densities that the unimodal Gaussian prior of dMMSB or
the uncorrelated Dirichlet prior of MMSB cannot.

2.1 Mixed Membership Stochastic Blockmodel
(MMSB)

We begin by describing the Mixed Membership Stochas-
tic Blockmodel (Airoldi, Blei, Fienberg, and Xing 2008),

which serves as the foundation for our model. The MMSB
assumes that each actor vi ∈ V possesses a latent mix-
ture of K roles, which determine observed network inter-
actions. This role mixture formalizes the notion of actor
multi-functionality, and we denote it by a normalizedK×1
vector πi, referred to as a mixed membership or MM vector.
We assume these vectors are drawn from some prior p(π).

Given MM vectors πi, πj for actors i and j, the network
edge eij is stochastically generated as follows: first, actor
i (the donor) picks one role z→ij ∼ p(z|πi) to interact
with actor j. Next, actor j (the receiver) also picks one
role z←ij ∼ p(z|πj) to receive the interaction from i.
Both z→ij , z←ij are K × 1 unit indicator vectors. Finally,
the chosen roles of i, j determine the network interaction
eij ∼ p(e|z→ij , z←ij), where eij ∈ {0, 1}. The specific
distributions over z→ij , z←ij , eij are:

• z→ij ∼ Multinomial(πi)

• z←ij ∼ Multinomial(πj)

• eij ∼ Bernoulli(z>→ijBz←ij)

where B is a K ×K role compatibility matrix. Intuitively,
the bilinear form z>→ijBz←ij selects a single element ofB;
the indicators z→ij , z←ij behave like indices into B.

This generative model has two noteworthy features. First,
observed relations E result from actor latent roles interact-
ing. In the case of social networks, the latent roles are nat-
urally interpretable as social functions, e.g. political party
affiliations. Note that actor i’s latent membership indica-
tors {z→i·, z←·i} are unique to each interaction; he/she
may assume different roles for interacting with each actor.

Second, the role compatibility matrix B completely de-
termines the affinity between latent roles. For example,
a diagonally-dominant B signifies that actors of the same
role are more likely to interact. Conversely, off-diagonal
entries in B suggest interactions between actors of differ-
ent roles. The MMSB’s expressive power lies in its ability
to control the interaction strength between any pair of roles,
by specifying the corresponding entries of B.

2.2 Mixture of MMSBs (M3SB)
The actor MM prior p(π) significantly affects MMSB’s ex-
pressive power. Airoldi et al. originally used a Dirichlet
prior in MMSB (2008), allowing their variational inference
algorithm to exploit Dirichlet conjugacy with the multino-
mial role indicator distribution p(z|π). Later, Xing et al.
employed a logistic normal prior in dMMSB (2010) to cap-
ture correlations between roles, which the Dirichlet prior
cannot. However, the logistic normal prior is unimodal and
cannot fit complex, multi-modal data densities.

As a step towards our final model, we extend the MMSB
by making p(π) a logistic normal mixture prior:

• ci ∼ Multinomial(δ)

• γi|ci ∼ Normal(µci ,Σci)

• πi|ci = Logistic(γi), [Logistic(γ)]k = exp{γk}∑K
l=1

exp{γl}
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Figure 1: Graphical model representation of dM3SB.

We call this model a mixture of MMSBs (M3SB). ci is a
C × 1 cluster selection indicator for πi, where C is the
number of mixture components. Thus, πi is drawn from a
logistic normal distribution with mean and covariance se-
lected by ci. ci itself is drawn from a prior multinomial
distribution δ.

Like dMMSB, the M3SB accounts for role correlations us-
ing its logistic normal distribution. However, the M3SB
also has the flexibility to fit complex data densities, by
virtue of its multi-modal mixture prior. In the sequel, we
shall exploit this property to design a time-varying net-
work model that tracks cluster trajectories, in contrast to
dMMSB which tracks a single, average trajectory.

2.3 Dynamic M3SB (dM3SB)

In a time-evolving network, the MM vectors π(t) and their
prior p(t)(π) change with time, and the goal now is to in-
fer their dynamic trajectories. This enables detection of
large-scale network trends, e.g. a group of actors whose
MM vectors π shift from one set of roles to another. For
example, if politicians change party affiliations; their MM
vectors should exhibit a shift in political roles over time.

In order to model time-evolving networks, we place a state-
space model on every logistic normal distribution in the
mixture prior p(π). In contrast, dMMSB only uses a single
state-space model for its prior. Let N denote the number
of actors, and T the number of time points in the evolving
network. Also, let K denote the number of MMSB latent
roles, and C the number of mixture components. We begin
with an outline of our generative process; see Figure 1 for
a graphical model representation.

1. Mixture State Space Model for MM Vectors

• µ(1)
h ∼ Normal(ν,Φ) for h = 1 . . . C. Sample mix-

ture means for the MM prior at t = 1.

• µ(t)
h ∼ Normal(µ(t−1),Φ) for h = 1 . . . C,
t = 1 . . . T . Sample mixture means for t > 1.

2. Mixture Component Indicators
• {c(t)i }

N
i=1 ∼ Multinomial(δ) for t = 1 . . . T . Sam-

ple mixture indicator for each MM vector.

3. Mixed Membership Stochastic Blockmodel
• {γ(t)

i }
N
i=1 ∼ Normal(µ

(t)

c
(t)
i

,Σ
c
(t)
i

) for t = 1 . . . T .

Sample untransformed MM vectors according to the
mixture indicated by c(t)i .

• π(t)
i = Logistic(γ

(t)
i ), [Logistic(γ)]k = exp{γk}∑K

l=1
exp{γl}

.

Logistic transform γ
(t)
i into MM vector π(t)

i .
• For every actor pair (i, j 6= i) and every time point
t = 1 . . . T :

– z
(t)
→ij ∼ Multinomial(π

(t)
i ). Sample role indica-

tor for the donor i.
– z

(t)
←ij ∼ Multinomial(π

(t)
j ). Sample role indica-

tor for the receiver j.
– e

(t)
ij ∼ Bernoulli(z

(t)>
→ij Bz

(t)
←ij). Sample the in-

teraction between actors i, j.

We refer to this model as the dynamic Mixture of MMSBs
(dM3SB for short). The general idea is to apply the state
space model (SSM) used in object tracking to the MMSB
model. Specifically, the MMSB becomes the emission
model to the SSM; a distinct MMSB model is “emitted” at
each time point (Figure 1). Furthermore, the SSM contains
C distinct trajectories µh, each modeling the mean trajec-
tory for a subset of MM vectors π(t)

i . The SSM has two
parameters ν,Φ, representing the prior mean and variance
of the C trajectories. Each trajectory evolves according to
a linear transition model µ(t)

h = Aµ
(t−1)
h +w

(t)
h , whereA is

a transition matrix and w(t)
h ∼ Normal(0,Φ) is Gaussian

transition noise. We assume A to be the identity matrix,
which corresponds to random walk dynamics; generaliza-
tion to arbitrary A is straightforward.

Each MM vector π(t)
i is then drawn from one of the C tra-

jectories µ(t)
h . The choice of trajectory for π(t)

i is given
by the indicator vector c(t)i , which is drawn from some
prior. For simplicity, we have used a single multinomial
prior with parameter δ for all c(t)i . Observe that c(t)i can
change over time, allowing actors to switch clusters if that
would fit the data better. Given c(t)i , the MM vector π(t)

i is
drawn according to LN (µ

(t)

c
(t)
i

,Σ
c
(t)
i

), where the variances

Σ1, . . . ,ΣC are model parameters. LN denotes a logistic
normal distribution, the result of applying a logistic trans-
formation to a normal distribution.

Once {π(t)
i }Ni=1 have been drawn for some t, the remaining

variables z(t)→ij , z
(t)
←ij , e

(t)
ij follow the MMSB exactly. We

assume the role compatibility B to be a model parameter,
although we note that more sophisticated assumptions can
be found in the literature, such as a state space model prior
(Xing, Fu, and Song 2010).
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Algorithm 1 Variational EM for dM3SB

Input: temporal sequence of networks {G(t)}Tt=1.
Output: variational distributions qz, qγ , qc, qµ and
model parameters B, δ, ν,Φ, {Σh}Ch=1.
Initialize parameters B, δ, ν,Φ, {Σh}Ch=1.
Sample initial values for µ(t), γ(t), c(t).
repeat

repeat
Update qz(z

(t)
i→j , z

(t)
i←j) for all i, j, t.

Update B.
Update qγ(γ

(t)
i ) for all i, t.

until convergence
Update qµ({µ(t)

h }
T,C
t,h=1).

Update ν,Φ.
Update qc(c

(t)
i ) for all i, t.

Update δ, {Σh}Ch=1.
until convergence

3 dM3SB INFERENCE AND LEARNING
Neither exact latent variable inference nor parameter learn-
ing are computationally tractable in dM3SB. The mixture
prior on π(t)

i , a factorial Hidden Markov Model, presents
the biggest difficulty — it is analytically un-integrable, its
likelihood is subject to many local maxima, and it requires
exponential time for exact inference. Moreover, its logistic
normal distribution does not admit closed-form integration
with the multinomial distribution of z|π. Finally, the space
of possible discrete role indicators z is exponentially large
in the number of actors N and time points T .

We address all these difficulties with a variational EM pro-
cedure (Ghahramani and Beal 2001) based on the general-
ized mean field (GMF) algorithm (Xing, Jordan, and Rus-
sell 2003), and using techniques from Ghahramani & Hin-
ton (2000) and dMMSB (Xing, Fu, and Song 2010). Our
algorithm simultaneously performs inference and learning
for dM3SB in a computationally-effective fashion.

3.1 Variational Inference
Let Θ = {ν,Φ, {Σh}Ch=1, δ, B} denote all model
parameters. We approximate the joint posterior
p({z(t), γ(t), c(t), {µ(t)

h }Ch=1}Tt=1 | {E(t)}Tt=1; Θ) by a
variational distribution over factored marginals,

q = qµ
(
{µ(t)

h }
T,C
t,h

) T,N∏
t,i=1

[
qγ(γ

(t)
i )qc(c

(t)
i )

N∏
j=1

qz(z
(t)
→ij , z

(t)
←ij)

]
.

qz , qγ and qc correspond to MMSB latent variables z, γ
and mixture indicators c, while qµ corresponds to the mix-
ture ofC SSMs over time. The idea is to approximate latent
variable inference under p (intractable) with feasible infer-
ence under q. In particular, Ghahramani & Hinton (2000)
have demonstrated that it is feasible to have one marginal
qµ over all µs.

The GMF algorithm maxmizes a lower bound on
the marginal distribution p({E(t)}Tt=1; Θ) over arbitrary
choices of qz, qγ , qc, qµ. We use the GMF solutions to
the qs as the E-step in our variational EM algorithm, and
derive the M-step through direct maximization of Θ with
respect to our variational lower bound. Under GMF, the
optimal solution to a marginal q(X) for some latent vari-
able set X is p(X|Y,Eq[φ(MBX)]), the distribution of X
conditioned on the observed variables Y and the expected
exponential family sufficient statistics (under variational
distribution q) of X’s Markov Blanket variables (Xing,
Jordan, and Russell 2003). Hence our E-step iteratively
computes q(X) := p(X|{E(t)}Tt=1,Eq[φ(MBX)]) for
X = {u(t)h }

T,C
t,h , γ(t)i , c(t)i and {z(t)→ij , z

(t)
←ij}. For brevity,

we present only the final E-step equations; exact deriva-
tions can be found in the Supplemental.

E-step for qz: From here, we drop time indices t when-
ever appropriate. qz is a categorical distribution over K2

elements,

qz(z→ij = k, z←ij = l) ∼ Multinomial(ω(ij)) (1)

ω(ij)kl ∝ (Bkl)
eij (1−Bkl)1−eij exp(〈γik〉+ 〈γjl〉)

where ω(ij) is a normalized K2 × 1 vector indexed1 by
(k, l). The notation 〈X〉 denotes the expectation of X
under q; for example, the expectations of z under qz are
〈z(→ij)k〉 :=

∑
l ω(ij)kl and 〈z(←ij)l〉 :=

∑
k ω(ij)kl.

E-step for qγ: qγ does not have a closed form, because
the logistic-normal distribution of γ is not conjugate to the
multinomial distribution of z. We apply a Laplace ap-
proximation to qγ , making it normally distributed (Xing,
Fu, and Song 2010; Ahmed and Xing 2007). Define
Ψ(a, b, C) := exp{− 1

2 (a− b)>C−1(a− b)}. The approx-
imation to qγ is

qγ(γi) ∝Ψ(γi, τi,Λi) where (2)

Λi =

(
(2N − 2)Hi +

C∑
h=1

Σ−1h 〈cih〉

)−1
,

τi = u+ Λi{
N∑
j 6=i

(〈z→ij〉+ 〈z←ji〉)

− (2N − 2) (gi +Hi(u− γ̂i))},

u =

(
C∑
h=1

Σ−1h 〈cih〉

)−1( C∑
h=1

Σ−1h 〈cih〉〈µh〉

)
,

γ̂i is a Taylor expansion point, and gi and Hi are
the gradient and Hessian of the vector-valued function
log(

∑K
l=1 exp γi) evaluated at γi = γ̂i. We set γ̂i to 〈γi〉

from the previous E-step iteration, keeping the expansion
point close to the current expectation of γi.

1k, l correspond to roles indicated by zi→j , zi←j .
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E-step for qc: qc is discrete over C elements,

qc(ci = h) ∝ δh |Σh|−1/2 exp

{
−1

2
tr
[
Σ−1h

(
〈γiγ>i 〉

−〈µh〉〈γi〉> − 〈γi〉〈µh〉> + 〈µhµ>h 〉
)] }

Note the dependency on second order moments 〈γiγ>i 〉 and
〈µhµ>h 〉. Since qγ , qµ are Gaussian, these moments are
simple to compute.

E-step for qµ: The GMF solution to qµ factors across
clusters h:

qµ

(
{µ(t)

h }
T,C
t,h

)
:=

C∏
h=1

qµ,h

(
{µ(t)

h }
T
t

)
where (3)

qµ,h

(
{µ(t)

h }
T
t

)
∝

Ψ(µ
(1)
h , ν,Φ)Ob(1, h)

T∏
t=1

Ψ(µ
(t)
h , µ

(t−1)
h ,Φ)Ob(t, h),

Ob(t, h) := Ψ

(∑N
i=1〈c

(t)
ih 〉〈γ

(t)
i 〉∑N

i=1〈c
(t)
ih 〉

, µ
(t)
h ,

Σh∑N
i=1〈c

(t)
ih 〉

)
.

Notice that factor qµ,h({µ(t)
h }Tt ) resembles a state-space

model for cluster h, with “observation probability” at time
t proportional to Ob(h, t). Hence the mean and covariance
of each µ can be efficiently computed using the Kalman
Smoother algorithm.

3.2 Parameter Estimation (M-step)
Given GMF solutions to each q from our E-step, we
take our variational lower bound on the log marginal
likelihood, and maximize it jointly with respect to all
parameters Θ (for details, refer to the Supplemental). Let
S(A) := A+A>. The parameter solutions are:

β̂kl :=

∑T,N,N
t,i,j 6=i ω

(t)

(ij)kle
(t)
ij∑T,N,N

t,i,j 6=i ω
(t)

(ij)kl

, ν̂ :=

C∑
h

〈µ(1)
h 〉
C

, δ̂ :=

T,N∑
t,i

〈c(t)i 〉
TN

Φ̂ :=
1

TC

[
C∑
h=1

〈µ(1)
h µ

(1)>
h 〉 − S

(
〈µ(1)
h 〉ν̂

>
)

+ ν̂ν̂>

+

T∑
t=2

〈µ(t)
h µ

(t)>
h 〉 − S

(
〈µ(t)
h µ

(t−1)>
h 〉

)
+ 〈µ(t−1)

h µ
(t−1)>
h 〉

]

Σ̂h :=

∑T,N
t,i 〈c

(t)
ih 〉[〈γ

(t)
i γ

(t)>
i 〉 − S(〈γ(t)

i 〉〈µ
(t)
h 〉
>) + 〈µ(t)

h µ
(t)>
h 〉]∑T,N

t,i 〈c
(t)
ih 〉

.

In particular, our estimate of Σ̂h contains second order
moments of µ (full derivations are in the Supplemental).
dMMSB’s unimodal prior has a similar covariance param-
eter, but its M-step equation lacks the aforementioned mo-
ments (Xing, Fu, and Song 2010). That paper does not
furnish the relevant derivations, so we cannot verify their
equations.

Our full inference and learning algorithm is summarized
in Algorithm 1. This algorithm interleaves the E-step and
M-step equations, yielding a coordinate ascent algorithm
in the space of variational and model parameters. The al-
gorithm is guaranteed to converge to a local optimum in
our variational lower bound, and we use multiple random
restarts to approach the global optimum. Similar to Airoldi
et al. (2008), we update qz, qγ and B more often for im-
proved convergence. Note that each random restart can
be run on a separate computational thread, making dM3SB
easily parallelizable and therefore highly scalable.

3.3 Suitability of the Variational Approximation
Given that our true model is multimodal, our variational
approximation will only be useful if it also fits multimodal
data. Historically, naive mean field approximations, such
as used in latent space models such as MMSB (Airoldi,
Blei, Fienberg, and Xing 2008) and the Latent Dirichlet
Allocation (Blei, Ng, and Jordan 2003), approximate all
latent variables with unimodal variational distributions.

Instead, we have employed a structured mean field approx-
imation that approximates all µs with a single, multimodal
switching state-space distribution qµ(), essentially a collec-
tion of C Kalman Filters. This ensures that the multimodal
structure of the prior on the MM vectors γ(t)i is not lost.
Moreover, although each qγ(γ

(t)
i ) for a given i, t is a uni-

modal Gaussian, it can be fitted to any mode in qµ(), inde-
pendently of qγ(γ

(t)
i ) for other i, t. This flexibility ensures

the variational posterior over all γ(t)i s remains multimodal.

4 EXPERIMENTS
We now validate dM3SB on synthetic and real-world data,
showing that it improves over dMMSB (Xing, Fu, and Song
2010) in multiple respects. We then conduct a case study on
a real-world dataset to demonstrate dM3SB’s capabilities.

In the experiments that follow, we ran our algorithm for
50 outer loop iterations per random restart, with 5 it-
erations per inner loop. We also fixed Φ = IK and
δ = 1/C instead of running their M-steps, as the former
yields more stable results. For the remaining parameters,
we used their M-steps with the following initializations:
Bkl ∼ Uniform(0, 1), Σh = IK . For ν, we initialized
〈µ(1)
h 〉 ∼ Uniform([−1, 1]K) for all h and set ν to their

average. The remaining variational parameters were ini-
tialized via the generative process.

4.1 Synthetic Evaluation
Xing et al. (2010) have established the advantages of a
time-varying MMSB model (dMMSB) compared to naive
MMSB. In particular, when the roles are correlated, the
logistic-normal prior provides a better fit to the data than
the Dirichlet prior. Moreover, for time-varying networks,
dMMSB provides a better fit than disjoint MMSBs on ev-
ery time point.
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Figure 2: Synthetic data ground truth visualization. Top Row: Adjacency matrix visualizations, beginning on the left with t = 1 using
random actor ordering, followed by t = 1, . . . , 5 with actors grouped according to the ground truth. Bottom left: The role compatibility
matrix B, shown as a graph. Circles represent roles, and numbered arrows represent interaction probabilities. Bottom row: True actor
MM plots in the 3-role simplex for each t. Blue, green and red crosses denote the static MMs of the first 3 actor groups, and the cyan
circle denotes the moving MM of the last actor group.
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Figure 3: Synthetic data: BIC scores and 5-fold heldout
log-likelihoods for dM3SB and dMMSB.

In this experiment, we compare dM3SB’s performance
to dMMSB, in terms of model fit (measured by the log
marginal likelihood) and in terms of actor MM recovery.
We generate data with N = 200 actors and T = 5
time points, and assume a K = 3 role compatibility ma-
trix B = (B1, B2, B3)>, with rows B1 = (1, .25, 0),
B2 = (0, 1, .25), B3 = (0, 0, 1). The actors are divided
into 4 groups of 50, with the first three groups having true
MM vectors (.9, .05, .05), (.05, .9, .05) and (.05, .05, .9)
respectively, for all time points. The last group has MM
vectors that move over time, according to the sequence
π(1) = (.6, .3, .1), π(2) = (.3, .6, .1), π(3) = (.1, .8, .1),
π(4) = (.1, .6, .3), π(5) = (.1, .3, .6). In Figure 2, we visu-
alize our generated B, MM vectors π, and networks E(t).

Thus far, we have not addressed model selection — specifi-
cally, selection of the number of rolesK and the number of
mixture components (clusters) C. To do so, we performed
a gridsearch overK ∈ {2, 3, 4, 5, 6} andC ∈ {1, 2, 3, 4, 5}
on the full network, using 200 random restarts per (K,C)
combination. For all combinations, we observed conver-
gence well within our limit of 50 outer iterations. Further-
more, completing all 200 restarts for each K,C took be-
tween 8 hours (K= 2, C= 1) and 28 hours (K= 6, C= 5)
on a single processor. Since the random restarts can be
run in parallel, with sufficient computing power one could

Table 1: Synthetic data: Estimation accuracy of dM3SB
(K = 3, C = 4) and dMMSB (K = 3).

dM3SB role matrix B, Total Variation 0.1083
dMMSB role matrix B, Total Variation 0.0135
dM3SB MMs π(t)

i , mean `2 difference 0.0266
dMMSB MMs π(t)

i , mean `2 difference 0.0477

easily scale dM3SB to much larger time-varying networks
with thousands of actors and tens of time points.

For each (K,C) from the gridsearch, we selected its best
random restart using the variational lower bound with a
BIC penalty. The best restart BIC scores are plotted in Fig-
ure 3; note that dMMSB corresponds to the special case
C = 1. The optimal BIC score selects the correct num-
ber of roles K = 3 and clusters C = 4, making it a good
substitute for held-out model selection.

Next, using the BIC-optimal (K,C), we ran dM3SB on a
5-fold heldout experiment. In each fold, we randomly par-
titioned the dataset’s actors into two equal sets, and used
the two corresponding subnetworks as training and test
data. In each training fold, we selected the best model pa-
rameters Θ from 100 random restarts using the variational
lower bound. We then estimated the log marginal likeli-
hood for these parameters on the corresponding test fold,
using Monte Carlo integration with 2,000 samples. This
process was repeated for all 5 folds to get an average log
marginal likelihood for dM3SB . For comparison, we con-
ducted the same heldout experiment for dMMSB set to K
from the optimal (K,C) pair. The average log marginal
likelihood for both methods is shown in Figure 3, and we
see that dM3SB’s greater heldout likelihood makes it a bet-
ter statistical fit to this synthetic dataset than dMMSB.

Finally, we compared dM3SB to dMMSB in role estima-
tion (B) and actor role recovery (π(t)

i ), using their best
restarts on the correct (K,C) (or just K for dMMSB). Ta-
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Figure 4: Senator/Enron data: BIC scores and 5-fold
heldout log-likelihoods for dM3SB and dMMSB.

ble 1 shows, for both methods versus the ground truth, the
average `2 error in π(t)

i — specifically, we compared the
ground truth to π(t)

i ’s posterior mean from either method
— as well as the total variation in B. dM3SB’s average `2
error in π(t)

i is significantly lower than dMMSB’s, at the
cost of a higher total variation in B. However, dM3SB’s
total variation of 0.1083 implies an average difference of
only 0.012 in each of the 9 entries of B, which is already
quite accurate. The fact that dM3SB accurately recovers
π
(t)
i confirms that its posterior over all π(t)

i is multimodal,
which validates our variational approximation.

We also note that dM3SB’s mean cluster trajectories 〈µ(t)
h 〉

accurately estimated the four groups’ mean MM vectors,
with a maximum `2 error of 0.0761 for any group h and
time t, except at t = 5 where dM3SB exchanged group 3’s
trajectory with that of (moving) group 4.

4.2 Real Data Held-Out Comparisons

We now compare dM3SB to dMMSB on two real-world
data sets: a 151 actor subset of the Enron email com-
munications dataset (Shetty and Adibi 2004) over the 12
months of 2001, and a 100 actor subset of the United States
Congress voting data over the 8 quarters of 2005 and 2006
(described in the next section).

For both datasets, we first selected the optimal values
of (K,C) via BIC score gridsearch with dM3SB over
K ∈ {3, 4, 5, 6}, C ∈ {2, 3, 4, 5}. Our previous syn-
thetic experiment has demonstrated that model gridsearch
using BIC produces good results. The optimal values were
K = 4, C = 2 for the Senator dataset, and K = 3, C = 4
for the Enron dataset (Figure 4).

Using each dataset’s optimal (K,C), we next ran dM3SB
on the 5-fold heldout experiment discussed in the previous
section, obtaining average log marginal likelihoods. For

comparison, we conducted the same heldout experiments
for dMMSB set to K from the optimal (K,C) pair.

Plots of the heldout log marginal likelihoods for dM3SB
and dMMSB can be found in Figure 4. On the Senator
dataset, dM3SB has the higher log marginal likelihood, im-
plying that it is a better statistical fit than dMMSB. For
the Enron dataset, both methods have the same likelihood,
showing that using dM3SB with more mixture components
at least incurs no statistical cost over dMMSB.

4.3 Case Study: US Congress Voting Data

We now apply dM3SB to qualitatively analyze a real data
set, the United States 109th Congress voting records. We
shall show that dM3SB not only recovers Mixed Mem-
bership (MM) vectors and a role-compatibility matrix that
match our intuitive expectations of the data, but that the
MM vectors are useful for identifying outliers and other
unusual phenomena.

The Congress involved 100 senators and 542 bills spread
over Jan 1st 2005 through Dec 31st 2006. The original vot-
ing data2 is provided in the form of yes/no votes for each
senator and each bill. In order to create a time-varying net-
work suitable for dM3SB, we applied the method of Ko-
lar et al. to recreate their network result in (Kolar, Song,
Ahmed, and Xing 2008).

The generated time-varying network contains 100 actors
(senators), and 8 time points corresponding to 3-month
epochs starting on Jan 1st 2005 and ending on Dec 31st
2006. The network is an undirected graph, where an edge
between two senators indicates that their votes were mostly
similar during that particular epoch. Conversely, a missing
edge indicates that their votes were mostly different. Our
intention is to discover how the political allegiances of dif-
ferent senators shifted from 2005 to 2006.

For our analysis, we used the optimal dM3SB restart from
the BIC gridsearch described in the previous held-out ex-
periment. Recall that this optimal restart uses K = 4 roles
and C = 2 clusters. The learned MM vectors πi, compati-
bility matrix B, and most probable cluster assignments are
summarized in Figure 5. The results are intuitive: Demo-
cratic party members have a high proportion of Role 1,
while Republican party members have a high proportion
of Role 2. Both Roles 1 and 2 interact exclusively with
themselves, reflecting the tendency of both political parties
to vote with their comrades and against the other party. The
remaining two roles exhibit no interactions; senators with
high proportions of these roles are unaligned and unlikely
to vote with either political party. Observe that the two
clusters perfectly capture party affiliations — Republican
senators are almost always in cluster 1, while Democratic
senators are almost always in cluster 2.

2Available at http://www.senate.gov
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Figure 5: Congress voting network: Mixed membership vectors
(colored bars) and most probable cluster assignments (numbers
under bars) for all 100 senators, displayed as an 8-time-point se-
ries from left-to-right. The annotation beside a senator’s number
refers to that senator’s political party (D for Democrat, R for Re-
publican, I for Independent) and state (as a two-letter abbrevia-
tion). The learned role compatibility matrix is displayed at the
bottom.

While it is reassuring to see results that reflect a con-
temporary understanding of US politics, the true value of
dM3SB’s mixed-membership analysis lies in identifying
outliers. For instance, consider the Democrat Ben Nelson
(#75): from t = 1 through 7, his votes were unaligned
with either Democrats or Republicans, though his votes
were gradually shifting towards Republican. At t = 8 (end
2006), his voting becomes strongly Republican (Role 2),
and he shifts from the Democrat cluster (1) to the Republi-
can one (2). Ben Nelson’s trajectory through the role sim-
plex is plotted in Figure 6. Incidentally, Ben Nelson was re-
elected as the Senator from Nebraska in late 2006, winning
a considerable percentage of his state’s Republican vote.

Next, observe how the senator from New Jersey, #28,
started off unaligned from t = 1 to 4 but ended up Demo-
cratic from t = 5 to 8; his role trajectory is also plotted
in Figure 6. There is an interesting reason for this: the
seat for New Jersey was occupied by two senators during
the Congress, Jon Corzine in the first session (t = 1 to
4), and Bob Menendez in the second session (t = 5 to 8).
Jon Corzine was known to have far-left views, reflected in
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Figure 6: Congress voting network 3-simplex visualizations.
Colors (green, blue) denote cluster membership. Left: MM vec-
tor time-trajectory for Senator #28 (D-NJ) — Jon Corzine dur-
ing time points 1-4, and Bob Menendez during time points 5-8.
Right: MM vector time-trajectory for Ben Nelson (#75, D-NE) .

#28’s lack of both Republican and Democratic roles dur-
ing his term (the Democrat role captures mainstream rather
than extremist voting behavior). Once Bob Menendez took
over, #28’s behavior fell in line with most Democrats.

Other outliers include James Jeffords (#54), the sole In-
dependent senator who votes like a Democrat, and three
Republican senators with Democratic leanings: Lincoln
Chafee #19, Susan Collins #25, and Olympia Snowe #89.

5 CONCLUSION

We have developed a probabilistic model, dM3SB, for la-
tent role analysis in time-varying networks, as well as an
efficient variational EM algorithm for approximate infer-
ence and learning. Our model is distinguished by its ex-
plict modeling of actor multi-functionalities (role MMs), as
well as its multimodal logistic normal mixture prior over
these multi-functionalities. In particular, the latter sepa-
rates dM3SB from earlier models like dMMSB (Xing, Fu,
and Song 2010) or MMSB (Airoldi, Blei, Fienberg, and
Xing 2008), as it allows dM3SB to fit complex latent role
densities. This is validated by our experiments, as dM3SB
outperforms dMMSB on both synthetic tests and held-out
experiments on real-world data. We have also demon-
strated how dM3SB can be used to explore actor latent
roles, using the US Congress voting data as a case study.

Finally, we note that dM3SB’s variational inference algo-
rithm is trivial to run in parallel, since each random restart
can be run on a separate computational thread. We intend
to explore larger time-varying datasets, such as gene net-
works, in other publication avenues.
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