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Abstract

Semi-supervised learning plays an important role in the recent liter-
ature on machine learning and data mining and the developed semi-
supervised learning techniques have led to many data mining appli-
cations in recent years. This paper addresses the semi-supervised
learning problem by developing a semiparametric regularization
based approach, which attempts to discover the marginal distribu-
tion of the data to learn the parametric function through exploit-
ing the geometric distribution of the data. This learned parametric
function can then be incorporated into the supervised learning on
the available labeled data as the prior knowledge. Specifically, our
contributions are: (1) We present a semi-supervised learning ap-
proach which incorporates the unlabeled data into the supervised
learning by a parametric function learned from the whole data in-
cluding the labeled and unlabeled data. The parametric function
reflects the geometric structure of the marginal distribution of the
data. Furthermore, the proposed approach which naturally extends
to the out-of-sample data is an inductive learning method in nature.
(2) This approach allows a family of algorithms to be developed
based on various choices of the original RKHS and the loss func-
tion. (3) We provide experimental comparisons showing that the
proposed approach leads the state-of-the-art performance on a va-
riety of classification tasks. In particular, we demonstrate that this
approach can be used successfully in both transductive and semi-
supervised settings.

1 Introduction

Semi-supervised learning attempts to use the unlabeled data
to improve the performance. The labeled data are often ex-
pensive to obtain since they require the efforts of experienced
experts. Meanwhile, the unlabeled data are relatively easy
to collect. Semi-supervised learning has attracted consider-
able attention in recent years and many methods have been
proposed to utilize the unlabeled data. Most of the semi-
supervised learning models are based on the cluster assump-
tion which states that the decision boundary should not cross
the high density regions, but instead lie in the low density
regions. In other words, similar data points should have the
same label and dissimilar data points should have different
labels.

The approach proposed in this paper is also based on the
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cluster assumption. Moreover, we believe that the marginal
distribution of the data is determined by the unlabeled exam-
ples if there is a small labeled data set available along with
a relatively large unlabeled data set, which is the case for
many applications. The geometry of the marginal distribu-
tion must be considered such that the learned classification
or regression function adapts to the data distribution. An
example is shown in Fig. 1 for a binary classification prob-
lem. In Fig. 1(a), the decision function is learned only from
the labeled data and the unlabeled data are not used at all.
Since the labeled data set is very small, the decision function
learned cannot reflect the overall distribution of the data. On
the other hand, the marginal distribution of the data described
by the unlabeled data has a particular geometric structure.
Incorporating this geometric structure into the learning pro-
cess results in a better classification function, as shown in
Fig. 1(b).

The above observation suggests that the unlabeled data
help change the decision function towards the desired direc-
tion. Therefore, the question we set for ourselves in this pa-
per is the following:

How to incorporate the geometric structure of the
marginal distribution of the data into the learning such that
the resulting decision function f̄ reflects the distribution of
the data?

A variety of graph based methods are proposed in the
literature to achieve this goal. The approach presented in
this paper exploits the geometric structure in a different
way. This is achieved by a 2-step learning process. The
first step is to obtain a parametric function from the unla-
beled data which describes the geometric structure of the
marginal distribution. In this paper, this parametric function
is obtained by applying Kernel Principal Component Analy-
sis (KPCA) algorithm to the whole data including the labeled
and unlabeled data. In KPCA, the function to extract the
most important principal component is a linear combination
of the kernel functions in the Reproducing Kernel Hilbert
Space (RKHS), f(x) = K(x, .)α, whereK is a kernel func-
tion and α is the coefficients vector. This learned parametric
function can be shown to reflect the geometric structure of
the marginal distribution of the data. The second step is a
supervised learning on the labeled data. To incorporate this
parametric function into the supervised learning, we extend
the original RKHS to be used in the supervised learning by
including this parametric function learned from the whole
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Figure 1: (a) The decision function (dashed line) learned only from the labeled data. (b) The decision function (solid line)
learned after the unlabeled data are considered also.

data. Consequently, we call this approach a semiparametric
regularization based semi-supervised learning.

By selecting different loss functions for the super-
vised learning, we obtain different semi-supervised learn-
ing frameworks. We primarily focus on two families
of the algorithms: the semiparametric regularized Least
Squares (hereafter SpRLS) and the semiparametric regular-
ized Support Vector Machines (hereafter SpSVM). These al-
gorithms demonstrate the state-of-the-art performance on a
variety of classification tasks.

We highlight the following aspects of this paper:

1. We present a semi-supervised learning approach which
incorporates the unlabeled data into the supervised
learning by a parametric function learned from the
whole data including the labeled and unlabeled data.
This parametric function reflects the geometric struc-
ture of the marginal distribution of the data. Further-
more, the proposed approach which naturally extends to
the out-of-sample data is an inductive learning method
in nature.

2. This approach allows a family of algorithms to be
developed based on various choices of the original
RKHS and the loss function.

3. We provide experimental comparisons showing that
the proposed approach leads the state-of-the-art perfor-
mance on a variety of classification tasks. In particular,
we demonstrate that this approach can be used success-
fully in both transductive and semi-supervised settings.

The paper is organized as follows. We first discuss

some related work in Section 2. We introduce our approach
by reviewing the supervised learning which minimizes the
regularized risk functional in RKHS assuming the labeled
data only in Section 3. We subsequently introduce the
unlabeled data, define the semiparametric regularization,
and formulate the semiparametric semi-supervised learning
algorithms for different loss functions in Section 4. In
Section 5 we then report the results of the experiments where
our approach demonstrates the state-of-the-art performance
on a variety of classification tasks. The paper concludes in
Section 6.

2 Related Work

The idea of regularization has a rich mathematical history
dating back to Tikhonov [15] where it is used for solving ill-
posed inverse problems. Many machine learning algorithms,
including SVM, can be interpreted as examples of regular-
ization. Many existing semi-supervised learning methods
rely on the cluster assumption directly or indirectly and ex-
ploit the regularization principle by considering additional
regularization terms on the unlabeled data. Zhu [20] has an
excellent literature survey on the semi-supervised learning.
TSVM [16] may be considered as SVM with an additional
regularization term on the unlabeled data. Xu et al. [17] pro-
pose a TSVM training method based on semi-definite pro-
gramming. Szummer et al. [14] propose an information reg-
ularization framework to minimize the mutual information
on multiple overlapping regions covering the data space. The
idea is that labels should not change too much in a high den-
sity region. Chapelle et al. [6] exploit the same principle.
Grandvalet et al. [7] use the entropy on the unlabeled data as



a regularizer. These methods implement the cluster assump-
tion indirectly.

Graph-based methods [3, 21, 9, 5, 13, 19, 8, 18, 11] as-
sume the label smoothness constraint over a graph where the
nodes represent the labeled and unlabeled examples and the
edges reflect the similarities of the examples. Belkin et al. [2]
propose a data-dependent manifold regularization term ap-
proximated on the basis of the labeled and unlabeled data us-
ing the graph associated with the data. In their approach, the
geometric structure of the marginal distribution is extracted
using the graph Laplacian associated with the data. In our ap-
proach, the geometric structure is described by a parametric
function obtained from the whole data including the labeled
and unlabeled data. In our 2-step learning process, the clas-
sification function we obtain has the same form as that in [2]
if we use the same kernel. However, we use different meth-
ods to obtain the coefficients. We will discuss this in detail
later.

Kernel methods [12, 16] have been widely used in the
machine learning community. The semi-supervised learn-
ing on the kernel methods becomes very popular in recent
years [2, 1, 13, 10]. Sindhwani et al. [13] give a data-
dependent non-parametric kernel. They propose to warp an
RKHS to adapt to the geometry of the data and derive a mod-
ified kernel defined in the same space of the functions as the
original RKHS, but with a different norm. Building on [13],
Altun et al. [1] propose a graph-based semi-supervised learn-
ing framework for structured variables. In this paper, we
warp an RKHS in a different way. We extend the original
RKHS to be used in the supervised learning by including a
parametric function learned from the whole data such that
the learned decision function reflects the data distribution.
In some cases, this parametric function belongs to the origi-
nal RKHS and thus the RKHS is not changed. However, the
learned classification function still reflects the data distribu-
tion. This will be discussed in detail later.

3 Supervised Learning

We begin with the brief review of the supervised learning.
Suppose that there is a probability distribution P on X ×
Y,X ⊂ R

n according to which data are generated. We
assume that the given data consist of l labeled data points
(xi, yi), 1 ≤ i ≤ l which are generated according to P .
In this paper, we assume the binary classification problem
where the labels yi, 1 ≤ i ≤ l, are binary, i.e., yi = ±1.

In the supervised learning scenario, the goal is to learn
a function f to minimize the expected loss called risk func-
tional

R(f ) =
∫

L(x, y, f (x))dP(x, y)(3.1)

where L is a loss function. A variety of loss functions have
been considered in the literature. The simplest loss function

is 0/1 loss

L(xi, yi, f (xi)) =

{
0 if yi = f (xi)
1 if yi �= f (xi)

(3.2)

In Regularized Least Square (RLS), the loss function is given
by

L(xi, yi, f (xi)) = (yi − f (xi))2

In SVM, the loss function is given by

L(xi, yi, f (xi)) = max(0, 1 − yif (xi))

For the loss function Eq. (3.2), Eq. (3.1) determines the
probability of a classification error for any decision function
f . In most applications the probability distribution P is
unknown. The problem, therefore, is to minimize the risk
functional when the probability distribution functionP (x, y)
is unknown but the labeled data (xi, yi), 1 ≤ i ≤ l are given.
Thus, we need consider the empirical estimate of the risk
functional [16]

Remp(f ) = C

l∑

i=1

L(xi, yi, f (xi))(3.3)

where C > 0 is a constant. We often use C = 1
l . Min-

imizing the empirical risk Eq. (3.3) may lead to numerical
instabilities and bad generalization performance [12]. A pos-
sible way to avoid this problem is to add a stabilization (reg-
ularization) term Θ(f ) to the empirical risk functional. This
leads to a better conditioning of the problem. Thus, we con-
sider the following regularized risk functional

Rreg(f ) = Remp(f ) + γΘ(f )

where γ > 0 is the regularization parameter which speci-
fies the tradeoff between minimization of Remp(f ) and the
smoothness or simplicity enforced by small Θ(f ). A choice
of Θ(f ) is the norm of the RKHS representation of the fea-
ture space

Θ(f ) = ‖f ‖2
K

where ‖.‖K is the norm in the RKHS HK associated with
the kernel K . Therefore, the goal is to learn the function f
which minimizes the regularized risk functional

f ∗ = arg min
f∈HK

C
l∑

i=1

L(xi , yi , f (xi)) + γ‖f ‖2
K(3.4)

The solution to Eq. (3.4) is determined by the loss
function L and the kernelK . A variety of kernels have been
considered in the literature. Three most commonly-used
kernel functions are listed in the Table 1 where σ > 0, κ >
0, ϑ < 0. The following classic Representer Theorem [12]
states that the solution to the minimization problem Eq. (3.4)
exists in HK and gives the explicit form of a minimizer.



THEOREM 3.1. Denote by Ω : [0,∞) → R a strictly
monotonic increasing function, by X a set, and by
Λ : (X ×R

2)l → R∪ {∞} an arbitrary loss function. Then
each minimizer f ∈ HK of the regularized risk

Λ((x1, y1, f(x1)), · · · , (xl, yl, f(xl))) + Ω(‖f ‖K)

admits a representation of the form

f(x) =
l∑

i=1

αiK(xi,x)(3.5)

with αi ∈ R.

According to Theorem 3.1, we can use any regularizer in
addition to γ‖f ‖2

K which is a strictly monotonic increasing
function of ‖f ‖K . This allows us in principle to design
different algorithms. In this paper, we take the simplest
approach to use the regularizer Ω(‖f ‖K) = γ‖f ‖2

K . Given
the loss function L and the kernel K , we substitute Eq. (3.5)
into Eq. (3.4) to obtain a minimization problem of the
variables αi, 1 ≤ i ≤ l. The decision function f ∗ is
immediately obtained from the solution to this minimization
problem.

4 Semi-supervised Learning

In the semi-supervised learning scenario, in addition to l
labeled data points (xi, yi), 1 ≤ i ≤ l we are given u
unlabeled data points xi, l + 1 ≤ i ≤ l + u which are
drawn according to the marginal distribution PX of P . The
decision function is learned from both the labeled data and
the unlabeled data. The semi-supervised learning attempts to
incorporate the unlabeled data into the supervised learning
in different ways. This paper presents a semi-supervised
learning approach based on semiparametric regularization
which extends the original RKHS by including a parametric
function learned from the whole data including the labeled
and unlabeled data.

4.1 Semiparametric Regularization In the supervised
learning, we may have additional prior knowledge about the
solution in many applications. In particular, we may know
that a specific parametric component is very likely to be a

Table 1: most commonly-used kernel functions

kernel name kernel function
polynomial kernel K(x,xi) = (〈x,xi〉 + c)d

Gaussian radial basis
function kernel

K(x,xi) = exp(− ‖x−xi‖2

2σ2 )

sigmoid kernel K(x,xi) = tanh(κ〈x,xi〉 + ϑ)

part of the solution. Or we might want to correct the data for
some (e.g., linear) trends to avoid the overfitting. The over-
fitting degrades the generalization performance when there
are outliers.

Suppose that this additional prior knowledge is de-
scribed as a family of parametric functions {ψp}M

p=1 : X →
R. These parametric functions may be incorporated into the
supervised learning in different ways. In this paper we con-
sider the following regularized risk functional

f̄ ∗ = arg min
f̄

C
l∑

i=1

L(xi , yi , f̄ (xi)) + γ‖f ‖2
K(4.6)

where f̄ := f + h with f ∈ HK and h ∈ span{ψp}. Con-
sequently, we extend the original RKHS HK by including
a family of parametric functions ψp without changing the
norm. The semiparametric representer theorem [12] tells us
the explicit form of the solution to Eq. (4.6). The following
semiparametric representer theorem is an immediate exten-
sion of Theorem 3.1.

THEOREM 4.1. Suppose that in addition to the assumptions
of Theorem 3.1 we are given a set ofM real valued functions
{ψp}M

p=1 : X → R, with the property that the l ×M matrix
(ψp(xi))ip has rank M . Then for any f̄ := f + h with
f ∈ HK and h ∈ span{ψp}, minimizing the regularized risk

Λ((x1, y1, f̄(x1)), · · · , (xl, yl, f̄(xl))) + Ω(‖f ‖K)

admits a representation of the form

f̄(x) =
l∑

i=1

αiK(xi,x) +
M∑

p=1

βpψp(x)(4.7)

with αi, βp ∈ R.

In Theorem 4.1, the parametric functions {ψp}M
p=1 can

be any functions. The simplest parametric function is the
constant functionψ1(x) = 1,M = 1 as in the standard SVM
model where the constant function is used to maximize the
margin.

In Eq. (4.6), the family of parametric functions {ψ p}M
p=1

do not contribute to the standard regularizer ‖f ‖2
K . This need

not be a major concern if M is sufficiently smaller than l.
In this paper, we use M = 1 and this parametric function
is learned from the whole data including the labeled and
unlabeled data. Therefore, the l ×M matrix (ψp(xi))ip is
a vector whose rank is 1. We denote by ψ(x) this parametric
function and by β the corresponding coefficient. Thus, the
minimizer of Eq. (4.6) is

f̄∗(x) =
l∑

i=1

α∗
iK(xi,x) + β∗ψ(x)(4.8)

whereK is the kernel in the original RKHS HK .



4.2 Learning Parametric Function ψ(x) is obtained by
applying the KPCA algorithm [12] to the whole data set.
KPCA finds the principal axes in the feature space which
carry more variance than any other directions by diagonal-
izing the covariance matrix C = 1

l+u

∑l+u
j=1 Φ(xj)Φ(xj)�,

where Φ is a mapping function in the RKHS. To find the prin-
cipal axes, we solve the eigenvalue problem, (l + u)λγ =
Kuγ, where Ku is the kernel used. Let λ denote the largest
eigenvalue ofKu and γ the corresponding eigenvector. Then
the most important principal axis is given by

v =
l+u∑

i=1

γiΦ(xi)(4.9)

Usually we normalize v such that ‖v‖ = 1. Given the data
point x, the projection onto the principal axis is given by
〈Φ(x),v〉. Let ψ(x) = 〈Φ(x),v〉 = Ku(x, .)γ. Fig. 2
shows an illustrative example for the binary classification
problem. As shown in this example, ψ(x) might not be the
desired classification function. However, ψ(x) is parallel to
the desired classification function (the dashed line). They
are different up to a constant. Therefore, ψ(x) reflects the
geometric structure of the distribution of the data. From
this example, it is clear that the data points projected onto
the most important principal axis still keep the original
neighborhood relationship. In other words, after projection
on the principal axis, similar data points stay close and
dissimilar data points are kept far away from each other. In
the ideal case of separable binary class problem, we have the
following theorem which says that the similar data points in
the feature space are still similar to each other after projected
on the principal axis.

THEOREM 4.2. Denote by Ci, i = 0, 1 the set of the data
points of each class in the binary class problem. Suppose
Ci = {x| ‖Φ(x) − ci‖ ≤ ri} and ‖c0 − c1‖ > r0 + r1.
For each class, suppose that the data points are uniformly
distributed in the sphere of radius ri. ‖.‖ denotes the
Euclidean norm and v denotes the principal axis derived
from KPCA as defined in Eq. (4.9). Then

∀p ∈ Ci,v�Φ(p) ∈ Ri, i = 0, 1

where Ri = [μi − ri, μi + ri] and μi = v�ci. Moreover,R0

and R1 do not overlap.

Proof. Suppose that the number of the data points in the
class Ci is ni, respectively. Any data point in the class Ci can
be expressed as Φ(x) = ci + rit where ‖t‖ ≤ 1. Denote
by y the projection on the principal axis, y = v�Φ(x).
Therefore, y = v�ci + riv�t. Since ‖v‖ = 1, |v�t| ≤ 1.
Thus, the range of y in the class Ci is [μi − ri, μi + ri].
Because the sphere is symmetric and the data points are
uniformly distributed, the mean of y in the class C i is μi.

Denote by δi, i = 0, 1, the variance of y in each class.
Note δi is invariant to the projection direction. The reason
is again that the sphere is symmetric and the data points are
uniformly distributed.

Therefore, the overall mean of all y is μ = n0μ0+n1μ1
n0+n1

and the overall variance is

δ =
1

n0 + n1

∑

y

(y − μ)2

=
1

n0 + n1
[
∑

y∈C0

(y − μ)2 +
∑

y∈C1

(y − μ)2]

=
1

n0 + n1
[
∑

y∈C0

(y − μ0 +
n1

n0 + n1
(μ0 − μ1))2

+
∑

y∈C1

(y − μ1 +
n0

n0 + n1
(μ1 − μ0))2]

=
n0

n0 + n1
δ0 +

n1

n0 + n1
δ1 +

n0 n1

(n0 + n1)2
(μ1 − μ0)2

It can be shown that the ranges of y of the two classes
on the principal axis derived from the KPCA do not overlap.
First of all, there exists a projection axis such that these two
ranges do not overlap. Conceptually, consider the projection
axis c1−c0

‖c1−c0‖ . Then we have μ̃0 = 1
‖c1−c0‖ (c1−c0)�c0 and

μ̃1 = 1
‖c1−c0‖ (c1 − c0)�c1. Thus, μ̃1 − μ̃0 = ‖c1 − c0‖ >

r0 + r1. Therefore, these two ranges do not overlap. Denote
by δ̃ the variance in this case. Next we give a formal proof
below by contradiction.

Suppose that these two ranges were to overlap under the
principal axis derived from the KPCA. Thus, ‖μ1 − μ0‖ <
r0 + r1. Consequently, δ < δ̃ since δ0, δ1 are invariant to
the projection axis. This is a contradiction since the variance
on the principal axis derived from the KPCA should be the
maximum among all the projection axes. Hence, these two
ranges do not overlap on the principal axis v derived from
the KPCA.

Figure 2: Illustration of KPCA in the two dimensions



Based on the above analysis, our semi-supervised learn-
ing is achieved by a 2-step learning process. The first step
is to obtain a parametric function ψ(x) from the whole data.
Since this parametric function ψ(x) is obtained by KPCA,
ψ(x) reflects the geometric structure of the marginal distri-
bution of the data revealed by the whole data. This imple-
ments cluster assumption indirectly. The second step is to
solve Eq. (4.6) on a new function space to obtain the final
classification function.

If Ku = K , the final classification function has the
form f̄(x) =

∑l+u
i=1 α

′

iK(xi,x) where α
′

i is the linear
combination of αi and β. This classification function has
the same form as that in [2]. But the methods to obtain it are
different. In this case, the parametric function belongs to the
original RKHS. Adding ψ(x) does not change the RKHS,
but guides the learned classification function towards the
desired direction described by ψ(x). If Ku and K are two
different kernels, the original RKHS is extended by ψ(x).

The coefficient β∗ reflects the weight of the unlabeled
data in the learning process. When β∗ = 0, the unlabeled
data are not considered at all and this method is a fully su-
pervised learning algorithm. This means that the unlabeled
data do not provide any useful information. In other words,
the unlabeled data follow the marginal distribution described
by the labeled data. When β∗ �= 0, the unlabeled data pro-
vide the useful information about the marginal distribution
of the data and the geometric structure of the marginal dis-
tribution revealed by the unlabeled data is incorporated into
the learning.

To learn the final classification function, we substitute
Eq. (4.8) into Eq. (4.6) to obtain an objective function of
α∗

i and β∗. The solution of α∗
i and β∗ depends on the

loss function. Different loss functions L result in different
algorithms. We now discuss two typical loss functions: the
squared loss for RLS and the hinge loss for SVM. For the
squared loss function, we obtain the explicit form of α∗

i and
β∗. In the following sections, we use K interchangeably to
denote the kernel function or the kernel matrix.

4.3 Semiparametric Regularized Least Squares We
first outline the RLS approach which applies to the binary
classification and the regression problem. The classic RLS
algorithm is a supervised method where we solve:

f ∗ = arg min
f∈HK

C
l∑

i=1

(yi − f (xi ))2 + γ‖f ‖2
K

where C and γ are the constants.
According to Theorem 3.1, the solution is of the follow-

ing form

f∗(x) =
l∑

i=1

α∗
iK(xi,x)

Substituting this solution in the problem above, we

arrive at the following differentiable objective function of the
l-dimensional variable α = [α1 · · ·αl]�:

α∗ = argminC(Y −Kα)�(Y −Kα) + γα�Kα

where K is the l × l kernel matrix Kij = K(xi,xj) and Y
is the label vector Y = [y1 · · · yl]�.

The derivative of the objective function overα vanishes
at the minimizer

C(KKα∗ −KY) + γKα∗ = 0

which leads to the following solution.

α∗ = (CK + γI)−1CY

The semiparametric RLS algorithm solves the optimiza-
tion problem in Eq. (4.6) with the squared loss function:

f̄ ∗ = argmin
f̄

C
l∑

i=1

(yi − f̄ (xi))2 + γ‖f ‖2
K(4.10)

where f̄ := f + h with f ∈ HK and h ∈ span{ψ}.
According to Theorem 4.1, the solution has the form of

f̄ ∗ =
l∑

i=1

α∗
iK(xi,x) + β∗ψ(x)

Substituting this form in Eq. (4.10), we arrive at the fol-
lowing objective function of the l-dimensional variable α =
[α1 · · ·αl]� and β:

(α∗, β∗) = arg minCδ�δ + γα�Kα

where δ = Y −Kα−βψ, K is the l× l kernel matrixKij =
K(xi,xj), Y is the label vector Y = [y1 · · · yl]�, and ψ is
the vector ψ = [ψ(x1) · · ·ψ(xl)]�. The derivatives of the
objective function over α and β vanish at the minimizer:

C(KKα∗ + β∗Kψ −KY) + γKα∗ = 0
ψ�Kα∗ + β∗ψ�ψ −ψ�Y = 0

which lead to the following solution:

α∗ = C(γI − Cψψ�K
ψ�ψ

+ CK)−1(I − ψψ�

ψ�ψ
)Y(4.11)

β∗ =
ψ�Y −ψ�Kα∗

ψ�ψ

4.4 Semiparametric Regularized Support Vector Ma-
chines We outline the SVM approach to the binary classifi-
cation problem which is the focus of this paper. In the binary



classification problem, the classic SVM attempts to solve the
following optimization problem on the labeled data.

min
1
2
‖w‖2 + C

l∑

i=1

ξi(4.12)

s.t. yi{〈w,Φ(xi)〉 + b} ≥ 1 − ξi

ξi ≥ 0 i = 1, · · · , l

where Φ is a nonlinear mapping function determined by the
kernel and b is a regularized term.

Again, the solution is given by

f∗(x) = 〈w∗,Φ(x)〉 + b∗ =
l∑

i=1

α∗
iK(xi,x) + b∗

To solve Eq. (4.12) we introduce one Lagrange multi-
plier for each constraint in Eq. (4.12) using the Lagrange
multipliers technique and obtain a quadratic dual problem
of the Lagrange multipliers.

min
1
2

l∑

i,j=1

yiyjμiμjK(xi,xj) −
l∑

i=1

μi(4.13)

s.t.

l∑

i=1

μiyi = 0

0 ≤ μi ≤ C i = 1, · · · , l

where μi is the Lagrange multiplier associated with the i-th
constraint in Eq. (4.12).

We have w∗ =
∑l

i=1 μiyiΦ(xi) from the solution
to Eq. (4.13). Note that the following conditions must be
satisfied according to the Kuhn-Tucker theorem [16]:

μi(yi(〈w,Φ(xi)〉 + b) + ξi − 1) = 0 i = 1, · · · , l(4.14)

The optimal solution of b is determined by the above condi-
tions.

Therefore, the solution is given by

f∗(x) =
l∑

i=1

α∗
iK(xi,x) + b∗

where α∗
i = μiyi.

The semiparametric SVM algorithm solves the opti-
mization problem in Eq. (4.6) with the hinge loss function:

min
1
2
‖w‖2 + C

l∑

i=1

ξi(4.15)

s.t. yi{〈w,Φ(xi)〉 + b+ βψ(xi)} ≥ 1 − ξi

ξi ≥ 0 i = 1, · · · , l

As in the classic SVM, we consider the Lagrange dual
problem for Eq. (4.15).

min
1
2

l∑

i,j=1

yiyjμiμjK(xi,xj) −
l∑

i=1

μi(4.16)

s.t.

l∑

i=1

μiyi = 0

l∑

i=1

μiyiψ(xi) = 0

0 ≤ μi ≤ C i = 1, · · · , l

where μi is the Lagrange multiplier associated with the i-
th constraint in Eq. (4.15). The semiparametric SVM dual
problem Eq. (4.16) is the same as the SVM dual problem
Eq. (4.13) except one more constraint introduced by the
parametric function ψ(x). As in the classic SVM, the
following conditions must be satisfied:

μi(yi(〈w,Φ(xi)〉 + b+ βψ(xi)) + ξi − 1) = 0(4.17)

We have w∗ =
∑l

i=1 μiyiΦ(xi) from the solution to
Eq. (4.16). This is the same as that in the SVM.

The optimal solution of b∗ and β∗ is determined by
Eq. (4.17). If the number of the Lagrange multipliers
satisfying 0 < μi < C is no less than two, we may determine
b∗ and β∗ by solving two linear equations corresponding
to any two of them in Eq. (4.17) since the corresponding
slack variable ξi is zero. In the case that the number of
the Lagrange multipliers satisfying 0 < μi < C is less
than two, b∗ and β∗ are determined by solving the following
optimization problem derived from Eq. (4.17).

min b2 + β2(4.18)

s.t. yi{〈w,Φ(xi)〉 + b+ βψ(xi)} ≥ 1
if μi = 0
yi{〈w,Φ(xi)〉 + b+ βψ(xi)} = 1
if 0 < μi < C

The final decision function is

f̄∗(x) =
l∑

i=1

α∗
iK(xi,x) + β∗ψ(x) + b∗

where α∗
i = μiyi. Semiparametric SVM can be imple-

mented by using a standard quadratic programming problem
solver.

4.5 Semiparametric Regularization Algorithm Based
on the above analysis, the semiparametric regularization al-
gorithm is summarized in Algorithm 1.



Algorithm 1 Semiparametric Regularization Algorithm
Input:
l labeled data points (xi, yi), 1 ≤ i ≤ l, yi = ±1 and u
unlabeled data points xi, l + 1 ≤ i ≤ l+ u.
Output:
Estimated function f̄∗(x) =

∑l
i=1 α

∗
iK(xi,x) +

β∗ψ(x) for SpRLS or f̄∗(x) =
∑l

i=1 α
∗
iK(xi,x) +

β∗ψ(x) + b∗ for SpSVM.
1: procedure
2: Choose the kernel Ku and apply KPCA to the

whole data to obtain the parametric function ψ(x) =
∑l+u

i=1 γiKu(xi,x).
3: Choose the kernelK and solve Eq. (4.11) for SpRLS

or Eqs. (4.16) and (4.18) for SpSVM.
4: end procedure

4.6 Transductive Learning and Semi-supervised Learn-
ing The transductive learning only works on the labeled
and unlabeled training data and cannot handle unseen data.
Out-of-sample extension is already a serious limitation for
transductive learning. Contrast to the transductive learning,
the inductive learning can handle unseen data. The semi-
supervised learning can be either transductive or inductive.
Many existing graph-based semi-supervised learning meth-
ods are transductive in nature since the classification func-
tion is only defined on the labeled and unlabeled training
data. One reason is that they perform the semi-supervised
learning only on the graph where the nodes are the labeled
and unlabeled data in the training set, not on the whole space.

In our approach, the decision function Eq. (4.8) is
defined over the whole X space. Therefore, the approach
in this paper is inductive in nature and can extend to the out-
of-sample data.

4.7 Comparisons with other methods In the literature,
many existing semi-supervised learning methods rely on the
cluster assumption directly or indirectly and exploit the reg-
ularization principle by considering additional regularization
terms on the unlabeled data. Belkin et al. [2] propose a
manifold regularization approach where the geometric struc-
ture of the marginal distribution is extracted using the graph
Laplacian associated with the data. They considered the fol-
lowing regularization term.

l+u∑

i,j=1

(f(xi) − f(xj))2Wij = f�Lf(4.19)

where Wij are edge weights in the data adjacency graph
and L is the graph Laplacian given by L = D − W.
Here, the diagonal matrix D is given by D ii =

∑l+u
j=1Wij .

The incorporation of this regularization term leads to the

following optimization problem.

f ∗ = arg min
f∈HK

C
l∑

i=1

L(xi , yi , f (xi)) + γ‖f ‖2
K + f�Lf

Eq. (4.19) attempts to give the nearby points (large W ij ) in
the graph similar labels. However, the issue is that Eq. (4.19)
tends to give the similar labels for points i and j as long
as Wij > 0. In other words, dissimilar points might have
similar labels. Therefore, their approach depends on the
neighborhood graph constructed from the data. Similarly,
Zhu et al. [21] minimize Eq. (4.19) as an energy function.

The semiparametric regularization based semi-
supervised learning approach in this paper exploits the
cluster assumption by the parametric function ψ(x).
Learned from the whole data, this parametric function
reflects the geometric structure of the marginal distribution
of the data. Different from the manifold regularization
approach, our approach uses a parametric function obtained
from the whole data to describe the geometric structure of
the marginal distribution. Similar to the manifold regular-
ization approach, our approach obtains the same form of the
classification function if we use the same kernel (K = Ku)
in the 2-step learning process. However, the methods to
obtain the expansion coefficients are different.

Sindhwani et al. [13] derive a modified kernel defined
in the same space of the functions as the original RKHS,
but with a different norm. In this paper, we warp an
RKHS in a different way. We extend the original RKHS
by including the parametric function without changing the
norm such that the learned decision function reflects the data
distribution. In some cases, this parametric function belongs
to the original RKHS and thus the RKHS is unchanged.
However, the learned classification function still reflects
the data distribution since the classification function has a
preference to the parametric function according to Eq. (4.8).

The parametric function ψ(x) learned by KPCA can be
incorporated into the supervised learning to separate differ-
ent classes very well for the binary classification problem.
For the multiclass problem, KPCA cannot separate different
class very well because some classes overlap after projection
onto the principal axis. That is why we focus on the binary
class problem in this paper.

5 Experiment Results

Experiments are performed on seven well-known datasets
described in Table 2 where c is the number of classes, d is
the data dimension, l is the number of the labeled data points,
and n is the total number of the data points in the dataset in-
cluding labeled, unlabeled, and test data points. The dataset
g50c, mac-win and WebKb are from [13]. The dataset g24lc
and BCI are from [4]. g50c is an artificial dataset gen-
erated from two unit-covariance normal distributions with



Table 2: Dataset used in the experiments

Dataset c d l n
g50c 2 50 50 550
g24lc 2 241 50 1500

mac-win 2 7511 50 1946
BCI 2 117 50 400

WebKb(page) 2 3000 12 1051
WebKb(link) 2 1840 12 1051

WebKb(page+link) 2 4840 12 1051

equal probabilities. g24lc is artificially generated such that
the cluster assumption holds, but the manifold assumption
does not. mac-win is taken from the newsgroups20 dataset
and the task is to categorize the newsgroup documents into
two topics: mac or windows. BCI dataset originates from
research toward the development of a brain computer inter-
face. The WebKb dataset is a subset of the web documents of
the computer science departments of four universities. The
two categories are course or non-course. For each docu-
ment, there are two representations: the textual content of
the webpage (which we call page representation) and the an-
chor text on links on other webpages pointing to the web-
page (which we call link representation). We also consider a
joint (page+ link) representation by concatenating the fea-
tures.

We compare SpRLS and SpSVM with the methods in
Sindhwani et al. [13] (thus called LapRLS and LapSVM for
the reference purpose) as well as the original RLS and SVM
in performance. In our experiments, K is set as the same
as Ku as the Gaussian RBF kernel. For g50c, mac-win,
and WebKb datasets, we use the same kernel parameters
as those used in [13] which also uses the Gaussian RBF
kernel and chooses the parameters using the cross-validation
method. Sindhwani et al. [13] did not report the experimental
results on g241c or BCI datasets. Therefore, we choose
the kernel parameters based on the performance on a small
grid of parameter values and apply the same parameters
to the LapSVM and LapRLS algorithms. We choose the
regularization parameters (e.g., C in the Eq. (4.15)) based
on the performance on a small grid of parameter values, too.

In the transductive setting, the training set consists
of n examples, l of which are labeled (n, l are specified
in Table 2). Table 3 reports the results for predicting
the labels of the n − l unlabeled data points under the
transductive setting. The performance is evaluated by the
error rates (mean and standard deviation) on the unlabeled
data averaged over 10 runs with different random choices of
the labeled set.

In the semi-supervised setting, the training set consists
of l labeled data points and u unlabeled data points; the test

set consists of n − l − u data points. Table 4 reports the
results for predicting the labels of the unlabeled data and the
test data for g50c, g24lc, mac-win, and BCI datasets. Table 5
reports the results for WebKb dataset. The performance is
evaluated again by the error rates averaged over 10 runs
with different random choices of the labeled data and the
unlabeled data.

In summary, our approach outperforms LapSVM and
LapRLS in all the cases in the transductive setting except on
the WebKb (page) dataset. In the semi-supervised setting,
our approach outperforms LapSVM and LapRLS in all the
cases. In both settings, SpRLS returns the best performance
and outperforms SpSVM in most cases. One possible reason
might be that we use MATLAB to solve the quadratic
optimization problem in the SpSVM and MATLAB does not
support quadratic optimization very well.

Figure 3: Accuracies on the test data with different percent-
ages of the labeled data for the g50c dataset

We also evaluate the performance in terms of the accu-
racy on the test data with different percentages of the labeled
data in the training set while keeping the size of the whole
training set as a constant. We define the performance accu-
racy as the correct percentage w.r.t the ground truth. Fig. 3
reports the result on the g50c dataset and Fig. 4 reports the
result on the mac-win dataset. SpRLS demonstrates a good
performance even with a very few labeled data. For g50c
dataset, SpRLS only needs two labeled data points (one for
each class) to obtain a performance almost as good as that
using 100 labeled data points. From this figure, it is clear
that as long as we have a sufficiently few labeled data sam-
ples (≥ 2% for the g50c dataset and ≥ 24% for the mac-win
dataset), this method ensures a satisfactory classification per-
formance (around 70% accuracy).



Table 3: Transductive setting: Error rates on the unlabeled examples

Dataset→ g50c g24lc mac-win BCI WebKB WebKB WebKB
Algorithm↓ (link) (page) (page+link)

SVM(full labels) 8.0(0.4) 6.4(0.1) 2.5(0.1) 29.0(1.4) 12.4(0.1) 13.1(0.1)) 10.5(0.1)
RLS(full labels) 2.5(0.1) 0(0) 0(0) 0(0) 0.5(0) 0.6(0) 0.2(0)

LapSVM 6.1(1.1) 35.4(6.8) 10.5(2.0) 49.8(2.0) 20.2(11.4) 13.0(6.8) 15.1(7.4)
LapRLS 5.4(1.1) 34.5(8.5) 10.1(1.4) 49.4(2.3) 31.3(24.8) 7.9(2.7) 11.0(7.7)

SpSVM 18.7(21.8) 34.0(29.5) 7.1(0.7) 49.6(1.3) 64.3(29.0) 57.4(33.3) 78.1(0.1)
SpRLS 5.2(0.9) 14.8(2.4) 8.0(1.7) 37.4(2.5) 13.5(4.4) 10.9(5.9) 4.3(1.9)

Table 4: Semi-supervised setting: Error rates on the unlabeled and test examples for g50c, g24lc, mac-win, and BCI datasets

Dataset→ g50c g24lc mac-win BCI
Algorithm↓ unlabel test unlabel test unlabel test unlabel test

SVM 11.7(5.7) 9.7(6.0) 48.2(2.1) 48.1(3.2) 45.4(10.2) 47.6(11.4) 49.2(2.1) 49.8(6.8)
RLS 20.6(10.4) 19.4(10.0) 29.6(6.1) 30.4(7.6) 46.5(10.9) 47.4(11.4) 37.9(2.8) 36.7(3.3)

LapSVM 7.2(1.3) 7.0(1.8) 34.4(6.7) 34.9(8.6) 10.8(1.3) 11.1(2.6) 50.2(1.4) 44.9(4.4)
LapRLS 6.4(1.2) 6.2(1.6) 33.2(8.6) 33.1(9.6) 10.1(1.4) 10.5(2.4) 49.1(1.6) 42.4(5.2)

SpSVM 10.3(14.1) 9.8(14.6) 17.7(11.2) 18.9(12.1) 7.6(1.3) 9.2(2.4) 48.4(2.7) 50.4(5.6)
SpRLS 5.5(1.1) 4.9(1.7) 15.2(2.4) 17.1(4.1) 8.1(1.8) 9.0(2.7) 37.8(2.8) 36.7(3.3)

Figure 4: Accuracies on the test data with different percent-
ages of the labeled data for the mac-win dataset

6 Conclusion

This paper presents a semi-supervised learning approach
based on semiparametric regularization which extends to the
out-of-sample data points. A specific parametric function is

learned from the whole data including the plentiful unlabeled
data. This specific parametric function is then incorporated
into the supervised learning on a few available labeled data
to exploit the geometric structure of the marginal distribution
of the data. This approach allows a family of algorithms to
be developed based on various choices of the original RKHS
and the loss function. Empirical evaluations demonstrate
that the proposed approach outperforms the state-of-the-art
methods in the literature on a variety of classification tasks.
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