Your Course Project

Your class project is an opportunity for you to explore an interesting machine learning problem of your choice in the context of a real-world data set.  Below, you will find some project ideas, but the best idea would be to combine machine learning with problems in your own research area. Your class project must be about new things you have done this semester; you can't use results you have developed in previous semesters.

Projects can be done by you as an individual, or in teams of two students.   Each project will also be assigned a 701 instructor as a project consultant/mentor.   They will consult with you on your ideas, but of course the final responsibility to define and execute an interesting piece of work is yours.  Your project will be worth 20% of your final class grade, and will have two final deliverables:

  1. a writeup in the format of a NIPS paper (8 pages maximum in NIPS format, including references; this page limit is strict), due December 14th by 2pm (emailed to the instructors list, NO LATE SUBMISSION ACCEPTED since we need to get your grades in), worth 60% of the project grade, and

  2. a poster presenting your work for a special ML class poster session on November 30, 2-5pm in the NSH Atrium, worth 20% of the project grade. 

 In addition, you must turn in a midway progress report (5 pages maximum in NIPS format, including references) describing the results of your first experiments by November 12, worth 20% of the project grade. Note that, as with any conference, the page limits are strict! Papers over the limit will not be considered.


Project Proposal

You must turn in a brief project proposal (1-page maximum) by October 17th.  Read the list of available data sets and potential project ideas below.  You are encouraged to use one of these data sets, because we know that they have been successfully used for machine learning in the past.   If you prefer to use a different data set, we will consider your proposal, but you must have access to this data already, and present a clear proposal for what you would do with it. 

Project proposal format:  Proposals should be one page maximum.  Include the following information:



Here are some details on the poster format.



Datasets and project suggestions:   Below are descriptions of several data sets, and some suggested projects.  The first few are spelled out in greater detail.  You are encouraged to select and flesh out one of these projects, or make up you own well-specified project using these datasets.  If you have other data sets you would like to work on, we would consider that as well, provided you already have access to this data and a good idea of what to do with it.

Data Set Categories:

fMRI Brain Imaging Data

Brain imaging data (fMRI)

This data is available here

This data set contains a time series of images of brain activation, measured using fMRI, with one image every 500 msec. During this time, human subjects performed 40 trials of a sentence-picture comparison task (reading a sentence, observing a picture, and determining whether the sentence correctly described the picture). Each of the 40 trials lasts approximately 30 seconds. Each image contains approximately 5,000 voxels (3D pixels), across a large portion of the brain. Data is available for 12 different human subjects. 
Available software: we can provide Matlab software for reading the data, manipulating and visualizing it, and for training some types of classifiers (Gassian Naive Bayes, SVM).

Project A1: Bayes network classifiers for fMRI
Project idea: Gaussian Naïve Bayes classifiers and SVMs have been used with this data to predict when the subject was reading a sentence versus perceiving a picture. Both of these classify 8-second windows of data into these two classes, achieving around 85% classification accuracy [Mitchell et al, 2004]. This project will explore going beyond the Gaussian Naïve Bayes classifier (which assumes voxel activities are conditionally independent), by training a Bayes network in particular a TAN tree [Friedman, et al., 1997]. Issues youll need to confront include which features to include (5000 voxels times 8 seconds of images is a lot of features) for classifier input, whether to train brain-specific or brain-independent classifiers, and a number of issues about efficient computation with this fairly large data set. Midpoint milestone: By April 12 you should have run at least one classification algorithm on this data and measured its accuracy using a cross validation test. This will put you in a good position to explore refinements of the algorithm, alternative feature encodings for the data, or competing algorithms, by the end of the semester. Project: Reducing dimensionality and classification accuracy.
Papers to read: "Learning to Decode Cognitive States from Brain Images," Mitchell et al., 2004, "Bayesian Network Classifiers" Friedman et al., 1997.

Project A2: Dimensionality reduction for fMRI data
Project idea:  Explore the use of dimensionality-reduction methods to improve classification accuracy with this data.  Given the extremely high dimension of the input (5000 voxels times 8 images) to the classifier, it is sensible to explore methods for reducing this to a small number of dimension. For example, consider PCA, hidden layers of neural nets, or other relevant dimensionality reducing methods.  PCA is an example of a method that finds lower dimension representations that minimize error in reconstructing the data.  In contract, neural network hidden layes are lower dimensional representations of the inputs that minimize classification error (but only find a local minimum).  Does one of these work better?  Does it depend on parameters such as the number of training examples?
Papers to read: "Learning to Decode Cognitive States from Brain Images," Mitchell et al., 2004, papers and textbook on PCA, neural nets, or whatever you propose to try.

Project A3: Feature selection/feature invention for fMRI classification.
Project idea:  As in many high dimensional data sets, automatic selection of a subset of features can have a strong positive impact on classifier accuracy.  We have found that selecting features by the difference in their activity when the subject performs the task, relative to their activity while the subject is resting, is one useful strategy [Mitchell et al., 2004].  In this project you could suggest, implement, and test alternative feature selection strategies (eg., consider  the incremental value of adding a new feature to the current feature set, instead of scoring each feature independent of other features that are being selected), and see whether you can obtain higher classification accuracies.   Alternatively, you could consider methods for synthesizing new features (e.g., define the 'smoothed value' of a voxel in terms of a spatial Gaussian kernel function applied to it and its neighbors, or define features by averaging voxels whose time series are highly correlated).
Papers to read: "Learning to Decode Cognitive States from Brain Images," Mitchell et al., 2004, papers on feature selection


Image Data

Character recognition (digits) data

Optical character recognition, and the simpler digit recognition task, has been the focus of much ML research. We have three datasets on this topic. The first tackles the more general OCR task, on a small vocabulary of words: (Note that the first letter of each word was removed, since these were capital letters that would make the task harder for you.)

The second dataset is the now "classic" digit recognition task for outgoing mail zip codes:

The third (and most challenging) data set consists of scrambled text known as Captchas that were designed by Luis Von Ahn to be difficult to automatically recognize. For more about Captchas go to Wikipedia Article or where you will find several papers.

Easier Dataset

Difficult Dataset

Project suggestions:

Image Segmentation Dataset

The goal is to segment images in a meaningful way.  Berkeley collected three hundred images and paid students to hand-segment each one (usually each image has multiple hand-segmentations).   Two-hundred of these images are training images, and the remaining 100 are test images.  The dataset includes code for reading the images and ground-truth labels, computing the benchmark scores, and some other utility functions.  It also includes code for a segmentation example.  This dataset is new and the problem unsolved, so there is a chance that you could come up with the leading algorithm for your project.

Project ideas:
Project B1: Region-Based Segmentation
Most segmentation algorithms have focused on segmentation based on edges or based on discontinuity of color and texture.  The ground-truth in this dataset, however, allows supervised learning algorithms to segment the images based on statistics calculated over regions.  One way to do this is to "oversegment" the image into superpixels (Felzenszwalb 2004, code available) and merge the superpixels into larger segments.  Come up with a set of features to represent the superpixels (probably based on color and texture), a classifier/regression algorithm (suggestion: boosted decision trees) that allows you to estimate the likelihood that two superpixels are in the same segment, and an algorithm for segmentation based on those pairwise likelihoods. Since this project idea is fairly time-consuming focusing on a specific part of the project may also be acceptable. 
Milestone: By April 12, you should be able to estimate the likelihood that two superpixels are in the same segment and have a quantitative measure of how good your estimator is.  You should also have an outline of how to use the likelihood estimates to form the final segmentation.  The rest of the project will involve improving your likelihood estimation and your grouping algorithm, and in generating final results. 
Papers to read: Some segmentation papers from Berkeley are available here

Project B2: Supervised vs. Unsupervised Segmentation Methods
Write two segmentation algorithms (these may be simpler than the one above): a supervised method (such as logistic regression) and an unsupervised method (such as K-means). Compare the results of the two algorithms. For your write-up, describe the two classification methods that you plan to use.
Milestone: By April 12, you should have completed at least one of your segmentation algorithms and have results for that algorithm.  
Papers to read: Some segmentation papers from Berkeley are available here

Object Recognition

The Caltech 256 dataset contains images of 256 object categories taken at varying orientations, varying lighting conditions, and with different backgrounds.

Project ideas:

Papers to read: See link.


Face recognition data 

There are two data sets for this problem. The first dataset contains 640 images of faces. The faces themselves are images of 20 former Machine Learning students and instructors, with about 32 images of each person. Images vary by the pose (direction the person is looking), expression (happy/sad), face jewelry (sun glasses or not), etc. This gives you a chance to consider a variety of classification problems ranging from person identification to sunglass detection. The data, documentation, and associated code are available here:

CMU Machine Learning Faces

Available Software: The same website provides an implementation of a neural network classifier for this image data. The code is quite robust, and pretty well documented in an associated homework assignment.

The second data set consists of 2253 female and 1745 male rectified frontal face images scraped from the website by Ryan White along with user ratings of attractiveness. The data set can be found here:

Facial Attractiveness Images.

Project ideas:

Sensor Network Data

Sensor network data



Using this 54-node sensor network deployment, we collected temperature, humidity, and light data, along with the voltage level of the batteries at each node. The data was collected every 30 seconds, starting around 1am on February 28th 2004.

This is a "real" dataset, with lots of missing data, noise, and failed sensors giving outlier values, especially when battery levels are low.

Project ideas:



Precipitation data

This dataset has includes 45 years of daily precipitation data from the Northwest of the US:

Project ideas:

  • Weather prediction: Learn a probabilistic model to predict rain levels

  • Sensor selection: Where should you place sensor to best predict rain


Text Data

Netflix Prize Dataset

The Netflix Prize data set gives 100 million records of the form "user X rated movie Y a 4.0 on 2/12/05". The data is available here: Netflix Prize

Project ideas:
  • Can you predict the rating a user will give on a movie from the movies that user has rated in the past, as well as the ratings similar users have given similar movies?

  • Can you discover clusters of similar movies or users?

  • Can you predict which users rated which movies in 2006? In other words, your task is to predict the probability that each pair was rated in 2006. Note that the actual rating is irrelevant, and we just want whether the movie was rated by that user sometime in 2006. The date in 2006 when the rating was given is also irrelevant. The test data can be found at this website


    Enron E-mail Dataset

    The Enron E-mail data set contains about 500,000 e-mails from about 150 users. The data set is available here: Enron Data

    Project ideas:
  • Can you classify the text of an e-mail message to decide who sent it?


    Twenty Newgroups text data

    This data set contains 1000 text articles posted to each of 20 online newgroups, for a total of 20,000 articles.  For documentation and download, see this website.  This data is useful for a variety of text classification and/or clustering projects.  The "label" of each article is which of the 20 newsgroups it belongs to.  The newsgroups (labels) are hierarchically organized (e.g., "sports", "hockey").

    Available software: The same website provides an implementation of a Naive Bayes classifier for this text data.  The code is quite robust, and some documentation is available, but it is difficult code to modify.

    Project ideas:

    • EM for text classification in the case where you have labels for some documents, but not for others  (see McCallum et al, and come up with your own suggestions)

    • Make up your own text learning problem/approach



    WebKB Data Set

    This dataset contains webpages from 4 universities, labeled with whether they are professor, student, project, or other pages.

    Project ideas:

    • Can you learn classifiers to predict the type of a webpage from the text?

    • Can you improve accuracy by exploiting correlations between pages that point to each other?



    Datasets of Datasets

    Data 2.0

    Context: There is a great deal of excitement in the research and business communities surrounding the idea of community-managed data analysis and visualization -- i.e. "Web 2.0 for Data". Example commercial sites include,, and IBM's Many Eyes. Research to date has been mostly in the HCI community, eg. the work of Heer, et al in CHI 2007.

    We have access to some 7,000 uploaded datasets from, which are available under a Creative Commons license. Given this background, many interesting Machine Learning projects are possible.

    Note: the data will be posted here soon.

    Project ideas:

    • Graph Selection: After a user uploads a dataset (e.g. a relational table) of many columns, the website should automatically present a set of interesting graphs to the user. From this "starting" set of graphs, the user may pick one and modify it to generate their graph of choice. So the initial choice of graphs should (a) cover a wide variety of graphs that could be "close" to the a user's desired graph, and (b) provide interesting or surprising graphs that may not have occurred to the user. One way to approach this problem is to treat the set of possible graphs as a vector space, and choose suggested graphs by picking clusterheads in this space. Challenges include defining a distance metric in this space, and tuning a clustering algorithm to pick good graphs in the space.

    • Suggested Graph Comparisons: Suppose you upload a spreadsheet to a Data 2.0 site, and choose a graph of interest. The site should suggest other graphs from the database that might combine with yours in an interesting way. For example, is an example that shows an apparent anti-correlation between wine- drinking and crime rates. This example compares graphs based mostly on correlation in the data, but other features for comparison may include textual tags from column and graph names, as well as user comments on the graphs and other data. The definition of a good utility function for suggested graphs is an important challenge in this project.

    • (Semi-) Automatic relational transformation: All of the websites listed above require data to be uploaded in a strict relational format. However, many, many spreadsheets and websites do not adhere to this format -- instead they use a variety of "pivot" or "hierarchical matrix" representations. Swivel provides a "toolbar" for Excel to help users convert to the appropriate format using a set of simple bulk data transformations ( excel_swivelbar). The challenge in this project is to automatically decide on the transformations to perform on a spreadsheet in order to convert it to a relational format that the various websites can use to easily generate graphs.


    Additional Data Sets

    Activity Recognition Dataset

    This dataset contains multimodal recordings (audio, video, accelerometers and gyroscopes) of a human executing five recipes (brownies, salad, pizza, sandwich, eggs) in a model kitchen. Here is a more detailed documentation and instructions for downloading the data: [pdf].

    Project ideas:

    • Activity recognition from weakly label data:

      • Activity recognition across view points. Given a video sequence of a particular recipe (e.g. brownies), learn a set of statistics invariant to the camera viewpoint (there are 7 views of the scene).

      • Learn temporal features that are useful to discriminate among different activities.

    • Automatic synchronization of two or more multimodal datasets (e.g. audio/video). Before starting the recipe, the user presses a device that produces sound and light. This signal can be used to synchronize audio, video and accelerometer data. Some references for audio-video synchronization: [1], [2].

    • Use semi-supervised algorithms to fully label the database. For instance, mark a few points in the body of the subject in a few frames, and use manifold learning techniques to label/track those points in the rest of the frames. Reference: [1]


    Election Contributions Dataset

    This dataset represents federal electoral compaign donations in the United States for the election years 1980 through 2006. The data, fully built, will form a tripartite, directed graph. Donors (individuals and corporations) make contributions to Committtees, who then in turn make contributions to Candidates. There is a many-to-many relationship between Donors and Committees, and also a many-to-many relationship between Committees and Candidates. For documentation and download, see this website

    Project ideas:

    • Can you predict a committee's contribution rate, or preferred candidates, based on its past contribution rate? Which features best indicate who donates to it?

    • Can you predict how much a donor will contribute based on zip code, or whether an occupation is listed (or, if you can analyze the text, what occupation is listed)?

    • Can you predict how much money a candidate will receive based on party, state, or whether s/he is an incumbent/challenger/open seat?

    • Can you discover clusters of donors/committees/candidates?


    There are many other datasets out there. UC Irvine has a repository that could be useful for you project:

    Sam Roweis also has a link to several datasets out there:



    • Text->BOW: Here's a tool for converting text documents into bag-of-words vectors. You need to supply it with the vocabulary file with a list of words you want in the feature vector. Then the first feature in the resulting BOW vector will be the first word in the list, etc. An example vocabulary.txt file is also included. Original author: Sophie Wang.