| 
10-708 – Lectures (tentative)2020 Spring 
| Lecture | Date | Topic | Slides | Videos | Further Reading | Note | Scribe |  | Design of GMs |  | 01 | Jan 13 | Introduction to GM: (Eric) - Association between random variables
 - Marginal/partial correlation
 - Conditional independence
 | pdf | panopto, youtube
 | Jordan 2004, Airoldi 2007, Larry's notes
 |  | pdf |  | 02 | Jan 15 | Undirected GMs: (Eric) - Markov property
 | pdf | panopto, youtube
 | Koller & Friedman Ch. 4 |  | pdf |  |  | Jan 20 |  |  |  |  | MLK day |  |  | 03 | Jan 22 | Directed GMs: (Eric) - Markov property
 | pdf | panopto, youtube
 | Koller & Friedman Ch. 3 | hw1 out | pdf |  | Basic Inference and Learning |  | 04 | Jan 27 | Exact Inference: (Eric) - Variable elimination
 - Sum-product on trees
 - Belief propagation on junction trees
 | pdf | panopto, youtube
 | Jordan Ch. 3, Ch. 4, Koller & Friedman Ch. 9, Ch. 10
 |  | pdf |  | 05 | Jan 29 | Parameter Estimation: (Eric) - Fully observed: MLE, MAP, Bayesian
 - Exponential family distributions, GLMs
 - Partially observed: EM algorithm
 | pdf | panopto, youtube
 | Koller & Friedman Ch. 17.1-4, Ch. 19.1-4,
 Neal & Hinton 1998
 |  | pdf |  | 06 | Feb 03 | Case Studies: HMM and CRF (Eric) | pdf | panopto, youtube
 | Koller & Friedman Ch. 6.2, Wallach 2004,
 Lafferty, McCallum, Pereira 2001
 |  | pdf |  | Approximate Inference |  | 07 | Feb 05 | Variational Inference 1: (Eric) - Variational methods
 - LDA
 | pdf | panopto, youtube
 | Wainwright, Jordan 2008 |  | pdf |  | 08 | Feb 10 | Variational Inference 2: (Xun) - Stochastic/Black-box VI
 - VI Theory
 | pdf | panopto, youtube
 | Wainwright, Jordan 2008 |  | pdf |  | 09 | Feb 12 | Sampling 1: (Eric) - Accept-reject sampling
 - Importance sampling
 - Metropolis-Hastings
 - Gibbs sampling
 | pdf | panopto, youtube
 | MacKay 2003, Ch. 29.1-3 | hw1 due | pdf |  | 10 | Feb 17 | Sampling 2: (Eric) - Hamiltonian Monte Carlo
 - Langevin dynamics
 - Sequential Monte Carlo
 | pdf | panopto, youtube
 | MacKay 2003, Ch. 29.4-10 |  | pdf |  | Deep Learning and Deep Generative Models |  | 11 | Feb 19 | Foundations of Deep Learning: (Eric) - Insight into DL
 - Connectionss to GM
 | pdf | panopto, youtube
 | Goodfellow, Bengio, Courville 2016 Ch. 6.2-5, 20.3-4
 | proposal due, hw2 out | pdf |  | 12 | Feb 24 | Deep Generative Models 1: (Eric) - Wake-sleep algorithm
 - Variational autoencoder
 - Generative adversarial networks
 | pdf | panopto, youtube
 | Goodfellow, Bengio, Courville 2016 Ch. 20.9-10
 Mohamed et al. 2019
 |  | pdf |  | 13 | Feb 26 | Deep Generative Models 2: (Eric) - More GANs and variants
 - Normalizing flows
 - Integrating domain knowledge in DL
 | pdf | panopto, youtube
 | Arjovsky, Bottou 2017, Papamakarios et al. 2019,
 Hu et al. 2018
 |  | pdf |  | 14 | Mar 02 | Deep Sequence Models: (Zhiting) - RNN and LSTM
 - CNN and Transformers
 - Attention mechanisms
 | pdf | panopto, youtube
 | Pascanu, Mikolov, Bengio 2013, Vaswani et al. 2017,
 Devlin et al. 2018
 |  | pdf |  | 15 | Mar 04 | Case Study: Text Generation (Zhiting) - Encoder-decoder framework
 - Machine translation as conditional generation
 - Unifying MLE and RL for text generation
 | pdf | panopto, youtube
 | Ranzato et al. 2015, Hu et al. 2017
 | hw2 due, hw3 out | pdf |  |  | Mar 09 |  |  |  |  | Spring break |  |  |  | Mar 11 |  |  |  |  | Spring break |  |  | Structure and Causal Inference |  |  | Mar 16 |  |  |  |  | No class. Stay healthy! |  |  | 16 | Mar 18 | Structure Learning (Eric): - Undirected GM: Gaussian GM
 - Directed: Causal discovery
 | pdf | panopto, youtube
 | Meinshausen, Bühlmann 2006, Kolar et al. 2010
 |  | pdf |  | 17 | Mar 23 | Causality 1: (Kun Zhang) | pdf | panopto, youtube
 | Pearl et al. 2016 |  | pdf |  | 18 | Mar 25 | Causality 2: (Kun Zhang) | pdf | panopto, youtube
 | Spirtes et al. 1993, Zhang et al. 2017
 |  | pdf |  | RL as Inference in GMs |  | 19 | Mar 30 | RL as Inference 1 (Maruan) | pdf | panopto, youtube
 | Sutton, Barto Ch. 3-4, Lilian Weng blog post,
 Levine Sec. 1-4,
 Ziebart Ch. 5.1-2, 6.1-2
 |  | pdf |  | 20 | Apr 01 | RL as Inference 2 (Maruan) | pdf | panopto, youtube
 |  | hw3 due, hw4 out | pdf |  | RL as Inference in GMs |  | 21 | Apr 06 | Gaussian Process (Eric) | pdf | panopto, youtube
 |  |  | pdf |  | 22 | Apr 08 | Determinantal Point Process (Pengtao) |  | panopto, youtube
 |  | midway report due | pdf |  | Bayesian Nonparametrics |  | 23 | Apr 13 | Dirichlet Process (Eric) | pdf | panopto, youtube
 |  |  | pdf |  | 24 | Apr 15 | Indian Buffet Process (Eric) | pdf | panopto, youtube
 |  |  | pdf |  | Applications and Systems |  | 25 | Apr 20 | Spectral Graphical Models (Eric) | pdf | panopto, youtube
 |  |  |  |  | 26 | Apr 22 | Large-scale Algorithms and Systems (Qirong) | pdf | panopto, youtube
 |  |  |  |  | 27 | Apr 27 | Meta-Learning (Maruan) | pdf | panopto, youtube
 |  |  |  |  | 28 | Apr 29 | Robust Machine Learning (Haohan) | pdf | panopto, youtube
 |  | final report due |  |  Video playlists: Panopto, Youtube
 Candidates for open slots: 
Structure Learning for Markov NetworksTheory of Variational InferenceSpectral and Kernel GMsMax-margin GMsRegularized Bayesian LearningMeta-learning and Neural Process... |