
Probabilistic Graphical Models

Scalable algorithms and systems for
learning, inference and prediction
Qirong Ho
Lecture 26, April 22, 2020

© Eric Xing @ CMU, 2005-2020 1

Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

X1 X2

X3 X4 X5

X6

X7 X8

Reading: see class homepage

Source: Cisco Global Cloud
Index

Source: The Connectivist

D q(D)

2© Eric Xing @ CMU, 2005-2020

Challenge 1 – Massive Data Scale

1B+ USERS
30+ PETABYTES

645 million users
500 million tweets / day

100+ hours video
uploaded every minute

32 million
pages

3© Eric Xing @ CMU, 2005-2020

Challenge 1 – Massive Data Scale

Source: University of
Bonn

Dq(D)

4© Eric Xing @ CMU, 2005-2020

Challenge 2 – Gigantic Model Size

Google Brain
Deep Learning

for images:
1~10 Billion

model parameters

Topic Models
for news article

analysis:
Up to 1 Trillion

model
parameters

Collaborative filtering
for Video recommendation:

1~10 Billion
model

parameters

Multi-task Regression
for simplest whole-

genome analysis:
100 million ~ 1 Billion

model
parameters

5© Eric Xing @ CMU, 2005-2020

Challenge 2 – Gigantic Model Size

Pathetic

Good!

Pr
oc

es
si

ng

po
w

er
/s

pe
ed

Number of “machines”

6

The Scalability Challenge

© Eric Xing @ CMU, 2005-2020

q An ML program consists of:
q A mathematical “ML model” (from one of many families)…
q … which is solved by an “ML algorithm” (from one of a few types)

• Stochastic Versions of the above Algorithms

• MC and MCMC • Optimization • Matrix and
Spectral

Algorithms

• Nonparametric
Bayesian Models

• Graphical Models

• Sparse Structured
Input/Output
Regression

• Sparse Coding • Spectral/Matrix
Methods

• Regularized
Bayesian Methods

• Deep Learning• Large-Margin

Machine Learning Model Families

Machine Learning Algorithm Families

7

A “Classification” of ML Models and Tools

© Eric Xing @ CMU, 2005-2020

q We can view ML programs as either
q Probabilistic programs
q Optimization programs

Probabilistic Programs Optimization Programs

8© Eric Xing @ CMU, 2005-2020

A “Classification” of ML Models and Tools

q ML models solved via iterative-convergent ML algorithms
q Iterative-convergent algorithms repeat until θ is stationary. Examples:

q Probabilistic programs: MC, MCMC, Variational Inference
q Optimization programs: Stochastic Gradient Descent, ADMM, Proximal Methods, Coordinate Descent

New Model = Old Model +
Update(Data)

Dq(D)D q(D)

9© Eric Xing @ CMU, 2005-2020

Iterative-convergent view of ML

Example: Merge sort

Sorting
error: 2
after 5

Error persists and is
not corrected 10

Most algorithms need operational correctness …

© Eric Xing @ CMU, 2005-2020

11

… but ML Algorithms can Self-heal

© Eric Xing @ CMU, 2005-2020

for (t = 1 to T) {
doThings()

doOtherThings()
}

An ML Program

12

~✓t+1 = ~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model ParameterData

This computation needs to be parallelized!

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm

© Eric Xing @ CMU, 2005-2020

q Optimization programs:

�

A huge number of parameters
(e.g.) M = 1B

XyN

M

M=

�
NX

i=1

h d

d✓1
, . . . ,

d

d✓M

i
f(xi,yi; ~✓)

A huge volume of data
(e.g.) N = 1B 13

Challenge

© Eric Xing @ CMU, 2005-2020

q Probabilistic programs

topicdoc
(~ 1B)

topic

word (~ 1M)

topic
(~ 1M)

14

Challenge

© Eric Xing @ CMU, 2005-2020

Data Parallel Model Parallel

New Model = Old Model +
Update(Data)

Dq(D)D q(D)

15

Parallelization Strategies

© Eric Xing @ CMU, 2005-2020

q Optimization Algorithms
q Stochastic gradient descent
q Coordinate descent
q Proximal gradient methods

q ISTA, FASTA, Smoothing proximal gradient

q Markov Chain Monte Carlo Algorithms
q Auxiliary Variable methods
q Embarrassingly Parallel MCMC
q Parallel Gibbs Sampling

q Data parallel
q Model parallel

16

Optimization & MCMC Algorithms

© Eric Xing @ CMU, 2005-2020

)(
2
1min 2

2
βXβy

β
W+- l

Data fitting Regularization

Data fitting part:
- find β that fits into the data
- Squared loss, logistic loss, hinge loss, etc

Regularization part:
- induces sparsity in β.
- incorporates structured information into the model 17

Example Optimization Program:
Sparse Linear Regression

© Eric Xing @ CMU, 2005-2020

)(
2
1min 2

2
βXβy

β
W+- l

Examples of regularization :)(βW

å
=

=W
J

j
jlasso

1
)(bβ

å
Î

=W
G

group
g

gββ
2

)(

)(βtreeW

)(βoverlapW

å
Î

=
g

gβ
j

j
2

2
)(bwhere

Sparsity

Structured sparsity
(sparsity + structured information)

18

Example Optimization Program:
Sparse Linear Regression

© Eric Xing @ CMU, 2005-2020

q Consider an optimization problem:

q Classical gradient descent:

q Stochastic gradient descent:
q Pick a random sample di
q Update parameters based on noisy approximation of the true gradient

min
x

E{f(x, d)}

x

(t+1) x

(t) � �

1

n

nX

i=1

r
x

f(x(t)
, d

i

)

x

(t+1) x

(t) � �r
x

f(x(t)
, d

i

)

19

Algorithm I:
Stochastic Gradient Descent

© Eric Xing @ CMU, 2005-2020

l SGD converges almost surely to

a global optimal for convex problems

l Traditional SGD compute gradients based on a single

sample

l Mini-batch version computes gradients based on multiple

samples

l Reduce variance in gradients due to multiple samples

l Multiple samples => represent as multiple vectors => use vector

computation => speedup in computing gradients

20

Stochastic Gradient Descent

© Eric Xing @ CMU, 2005-2020

q Parallel SGD: Partition data to different workers; all
workers update full parameter vector

q Parallel SGD [Zinkevich et al., 2010]

q PSGD runs SGD on local copy of params in each
machine

Input
Data

Input
Data

Input
Data

split Update local copy
of ALL params

Update local copy
of ALL params

aggregate

Update ALL
params

Input
Data

Input
Data

Input
Data

21

Parallel Stochastic Gradient Descent

© Eric Xing @ CMU, 2005-2020

q Goal is to minimize a function in the form of

q e denotes a small subset of parameter indices
q xe denotes parameter values indexed by xe

q Key observation:
q Cost functions of many ML problems can be represented by f(x)
q In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but fe

is applied only a small number of parameters in x

f(x) =
X

e2E

fe(xe)

22

Hogwild!: Lock-free approach to PSGD [Recht et al., 2011]

© Eric Xing @ CMU, 2005-2020

Hogwild!: Lock-free approach to PSGD [Recht et al., 2011]

q Example:
q Sparse SVM

q z is input vector, and y is a label; (z,y) is an elements of E
q Assume that zα are sparse

q Matrix Completion

q Input A matrix is sparse

q Graph cuts

q W is a sparse similarity matrix, encoding a graph

min

x

X

↵2E

max(1� y

↵

x

T

z

↵

, 0) + � kxk22

min
W,H

X

(u,v)2E

(Auv �WuH
T
v)

2 + �1 kWk2F + �2 kHk2F

min

x

X

(u,v)2E

w

uv

kx
u

� x

v

k1 subject to x

v

2 S

D

, v = 1, . . . , n

23© Eric Xing @ CMU, 2005-2020

Hogwild! Algorithm [Recht et al., 2011]

q Hogwild! algorithm: iterate in parallel for each core
q Sample e uniformly at random from E
q Read current parameter xe; evaluate gradient of function fe
q Sample uniformly at random a coordinate v from subset e
q Perform SGD on coordinate v with small constant step size

q Advantages
q Atomically update single coordinate, no mem-locking
q Takes advantage of sparsity in ML problems
q Near-linear speedup on various ML problems, on single machine

q Excellent on single machine, less ideal for distributed
q Atomic update on multi-machine challenging to implement; inefficient and slow
q Delay among machines requires explicit control… why? (see next slide)

24© Eric Xing @ CMU, 2005-2020

The cost of uncontrolled delay – slower convergence
[Dai et al. 2015]

q Theorem: Given lipschitz objective ft and step size ηt,

q where
q Where L is a lipschitz constant, and εm and εv are the mean and variance of the delay

q Intuition: distance between current estimate and optimal value decreases
exponentially with more iterations

q But high variance in the delay εv incurs exponential penalty!
q Distributed systems exhibit much higher delay variance, compared to single

machine

25© Eric Xing @ CMU, 2005-2020

The cost of uncontrolled delay – unstable convergence
[Dai et al. 2015]

q Theorem: the variance in the parameter estimate is

q Where
q and represents 5th order or higher terms, as a function of the delay εt

q Intuition: variance of the parameter estimate decreases near the optimum
q But delay εt increases parameter variance => instability during convergence

q Distributed systems have much higher average delay, compared to
single machine

26© Eric Xing @ CMU, 2005-2020

Parallel SGD with Key-Value Stores

q We can parallelize SGD via
q Distributed key-value store to share parameters
q Synchronization scheme to synchronize parameters

q Shared key-value store provides easy interface to read/write shared
parameters

q Synchronization scheme determines how parameters are shared among
multiple workers

q Bulk synchronous parallel (e.g., Hadoop)
q Asynchronous parallel [Ahmed et al., 2012, Li et al., 2014]

q Stale synchronous parallel [Ho et al., 2013, Dai et al., 2015]

27© Eric Xing @ CMU, 2005-2020

Parallel SGD with Bounded Async KV-store

q Stale synchronous parallel (SSP) is a synchronization model with
bounded staleness – “bounded async”

q Fastest and the slowest workers are ≤s clocks apart

28© Eric Xing @ CMU, 2005-2020

Example KV-Store Program: Lasso

q Lasso example: want to optimize

q Put β in KV-store to share among all workers
q Step 1: SGD: each worker draws subset of samples Xi

q Compute gradient for each term ||yi–Xiβ||2 with respect to β; update
β with gradient

q Step 2: Proximal operator: perform soft thresholding on β

q Can be done at workers, or at the key-value store itself
q Bounded Asynchronous synchronization allows fast read/write

to β, even over slow or unreliable networks

29© Eric Xing @ CMU, 2005-2020

Bounded Async KV-store:
Faster and better convergence

30© Eric Xing @ CMU, 2005-2020

Algorithm II: Coordinate Descent
Update each regression coefficient in a cyclic manner

1st iteration

1b 2b 3b Jb
2st iteration

1b 2b 3b Jb

l Pros and cons
l Unlike SGD, CD does not involve learning rate
l If CD can be used for a model, it is often comparable to the state-of-the-art

(e.g. lasso, group lasso)
l However, as sample size increases, time for each iteration also increases

31© Eric Xing @ CMU, 2005-2020

Example: Coordinate Descent for Lasso

q Set a subgradient to zero:

q Assuming that , we can derive update rule:

å+-=
j

jbl2

22
1minˆ Xβyβ

β

0)(=+-- j
T
j tlXβyx

1=j
T
j
xx

þ
ý
ü

î
í
ì

-= å
¹

lbb),(
jl

ll
T
jj xS yx

Soft thresholding

+-=))((),(ll xxsignxS

Standardization

32© Eric Xing @ CMU, 2005-2020

Example: Block Coordinate Descent for Group Lasso

q Set it to zero:

q In a similar fashion, we can derive update rule for group g

å+-=
j

jbl2

22
1minˆ Xβyβ

β

gXβyx Î"=+-- ju j
T
j ,0)(l

Iterate over each
group of coefficients

33© Eric Xing @ CMU, 2005-2020

Parallel Coordinate Descent
[Bradley et al. 2011]

q Shotgun, a parallel coordinate descent algorithm
q Choose parameters to update at random
q Update the selected parameters in parallel
q Iterate until convergence

q When features are nearly independent, Shotgun scales almost linearly
q Shotgun scales linearly up to workers, where ρ is spectral radius of

ATA
q For uncorrelated features, ρ=1; for exactly correlated features ρ=d
q No parallelism if features are exactly correlated!

P  d

2⇢

34© Eric Xing @ CMU, 2005-2020

Intuitions for Parallel Coordinate Descent

q Concurrent updates of parameters are useful when features are
uncorrelated

q Updating parameters for correlated features may slow down
convergence, or diverge parallel CD in the worst case

q To avoid updates of parameters for correlated features, block-greedy CD has
been proposed

35

Uncorrelated features Correlated features

Source:
[Bradley et al., 2011]

© Eric Xing @ CMU, 2005-2020

Block-greedy Coordinate Descent
[Scherrer et al., 2012]

q Block-greedy coordinate descent generalizes various parallel CD
strategies

q e.g. Greedy-CD, Shotgun, Randomized-CD
q Alg: partition p params into B blocks; iterate:

q Randomly select P blocks
q Greedily select one coordinate per P blocks
q Update each selected coordinate

q Sublinear convergence O(1/k) for separable regularizer r :

q Big-O constant depends on the maximal correlation among the B blocks
q Hence greedily cluster features (blocks) to reduce correlation

min
x

X
i

f

i

(x) + r(x
i

)

36© Eric Xing @ CMU, 2005-2020

Parallel Coordinate Descent with Dynamic Scheduler
[Lee et al., 2014]

q STRADS (STRucture-Aware Dynamic Scheduler) allows scheduling of
concurrent CD updates

q STRADS is a general scheduler for ML problems
q Applicable to CD, and other ML algorithms such as Gibbs sampling

q STRADS improves CD performance via
q Dependency checking

q Update parameters which are nearly independent => small parallelization error
q Priority-based updates

q More frequently update those parameters which decrease objective function faster

37© Eric Xing @ CMU, 2005-2020

Example Scheduler Program: Lasso

q Schedule step:
q Prioritization: choose next variables βj to update, with probability proportional to their

historical rate of change

q Dependency checking: do not update βj, βk in parallel if feature dimensions j and k
are correlated

q Update step:
q For all βj chosen in Schedule step, in parallel, perform coordinate descent update

q Repeat from Schedule step

38© Eric Xing @ CMU, 2005-2020

q Priority-based scheduling converges faster than Shotgun (random)
scheduling

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

Comparison: Priority vs. Random-scheduling

39

Priority-based scheduling +

dep. checker

b
e
tt

e
r Shotgun scheduling [Bradley et al. 2011]

© Eric Xing @ CMU, 2005-2020

Advanced Optimization Techniques

q What if simple methods like SPG, CD are not adequate?

q Advanced techniques at hand
q Complex regularizer: PG
q Complex loss: SPG
q Overlapping loss/regularizer: ADMM

q How to parallelize them? Must understand math behind algorithms
q Which terms should be computed at server
q Which terms can be distributed to clients
q …

40© Eric Xing @ CMU, 2005-2020

q f: loss term, smooth (continuously differentiable)
q g: regularizer, non-differentiable (e.g. 1-norm)

Proximal gradient
• g represents some simple function

• e.g., 1-norm, constraint C, etc.

Projected gradient
• g represents some constraint

min
w

f(w) + g(w)

g(w) = ◆C(w) =

(
0, w 2 C

1, otherwise

w w � ⌘rf(w)

w argmin
z

1
2⌘kw � zk2 + ◆C(z)

= argmin
z2C

1
2kw � zk2

w w � ⌘rf(w) gradient

w argmin

z

1
2⌘kw � zk2 + g(z)

| {z }
proximal map

41

When Constraints Are Complex:
Algorithm III: Proximal Gradient (a.k.a. ISTA)

© Eric Xing @ CMU, 2005-2020

Background: Proximal Gradient (a.k.a. ISTA)

q PG hinges on the proximal map [Moreau, 1965]:

q Treated as black-box in PG
q Need proximal map efficiently computable, better closed-form

q True when g is separable and “simple”, e.g. 1-norm (separable in each
coordinate), non-overlapping group norm, etc.

q Can be demanding if g = g1+g2, but vars in g1, g2 overlap
q [Yu, 2013] gave sufficient conditions for when g = g1+g2 can be easily

handled:

q Useful when and available in closed-forms
q E.g. fused lasso (Friedman et al.'07):

P⌘
g(w) = argmin

z

1
2⌘kw � zk2 + g(z)

P⌘
g1 P⌘

g2

P⌘
g1+g2(w) = P⌘

g1

⇣
P⌘
g2(w)

⌘

P⌘
k·k1+k·ktv

(w) = P⌘
k·k1

⇣
P⌘
k·ktv

(w)
⌘

42© Eric Xing @ CMU, 2005-2020

Improvement #1: Accelerated PG (a.k.a. FISTA)
[Beck & Teboulle, 2009; Nesterov, 2013; Tseng, 2008]

q PG convergence rate
q Can be boosted to

q Same Lipschitz gradient assumption on f; similar per-step complexity!
q Lots of follow-up work to the papers cited above

P⌘
g(w) := argmin

z

1
2⌘kw � zk22 + g(z)

Proximal Gradient Accelerated Proximal Gradient

O(1/(⌘t))

O(1/(⌘t2))

vt wt � ⌘rf(wt)

ut P⌘

g

(vt)

wt+1 ut + 0|{z}
no

· (ut � ut�1)| {z }
momentum

vt wt � ⌘rf(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2| {z }
⇡1

(ut � ut�1)| {z }
momentum

43© Eric Xing @ CMU, 2005-2020

Parallel (Accelerated) PG

q Bulk Synchronous Parallel Accelerated PG (exact)
q [Chen and Ozdaglar, 2012]

q Asynchronous Parallel (non-accelerated) PG (inexact)
q [Li et al., 2014] Parameter Server

q General strategy:
1. Compute gradients on workers
2. Aggregate gradients on servers
3. Compute proximal operator on servers
4. Compute momentum on servers
5. Send result wt+1 to workers and repeat

q Can apply Hogwild-style asynchronous updates to non-accelerated PG, for
empirical speedup

q Open question: what about accelerated PG? What happens theoretically and
empirically to accelerated momentum under asynchrony?

vt wt � ⌘rf(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2| {z }
⇡1

(ut � ut�1)| {z }
momentum

44© Eric Xing @ CMU, 2005-2020

q So far need f to have Lipschitz cont grad, obtained O(1/t2)
q What if not ?
q Can use subgradient, with diminishing step size O(1/sqrt(t))

q Huge gap !!
q Smoothing comes into rescue, if f itself is H-Lipschitz cont

q Approx f with something nicer, like Taylor expansion in calculus 101
q Replace f with its Moreau envelope function

q f(w) = |w|, envelope is Huber’s func (blue curve)
q Minimizer gives the proximal map (red curve)

Prop.
M⌘

f

P⌘
f

M⌘
f (w) := min

z

1
2⌘kw � zk22 + f(z)

8w , 0  f(w)�M⌘
f (w)  ⌘H2/2

45

Improvement #2:
Non-Smooth Objectives: Moreau Envelope Smoothing

© Eric Xing @ CMU, 2005-2020

Smoothing Proximal Gradient
[Chen et al., 2012]

q Use Moreau envelope as smooth approximation
q Rich and long history in convex analysis [Moreau, 1965; Attouch, 1984]

q Inspired by proximal point alg [Martinet, 1970; Rockafellar, 1976]
q Proximal point alg = PG, when

q Rediscovered in [Nesterov, 2005], led to SPG [Chen et al., 2012]

q With , SPG converges at

q Improves subgradient
q Requires both efficient and

f ⌘ 0

Smoothing Proximal Gradientoriginal
approx.

P⌘
f P⌘

g

min
w

f(w) + g(w)
⇡ min

w
M⌘

f (w) + g(w)

vt

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum

⌘ = O(1/t)
O(1/(⌘t2)) = O(1/t)

O(1/
p
t)

46© Eric Xing @ CMU, 2005-2020

Parallel SPG?

q Difficulty: Gradients replaced by

q Requires to be parallelizable
q Assuming this can be done, then:
1. Parallel-compute on workers
2. Aggregate on servers
3. Compute proximal operator on servers
4. Compute momentum on servers
5. Send result wt+1 to workers and repeat

q Above strategy is exact under Bulk Synchronous Parallel (just like accelerated
PG)

q Not clear how asynchronous updates impact smoothing+momentum
q Not clear which can be parallelized
q Open research topic

vt

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum

47© Eric Xing @ CMU, 2005-2020

vt

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum

vt

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum

vt

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum

vt

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum

q Optimization Algorithms
q Stochastic gradient descent
q Coordinate descent
q Proximal gradient methods

q ISTA, FASTA, Smoothing proximal gradient

q Markov Chain Monte Carlo Algorithms
q Auxiliary Variable methods
q Embarrassingly Parallel MCMC
q Parallel Gibbs Sampling

q Data parallel
q Model parallel

48

Optimization & MCMC Algorithms

© Eric Xing @ CMU, 2005-2020

q Generative model
q Fit topics to each word xij in each doc i
q Uses categorical distributions with parameters δ and B

q Parameter priors
q Induce sparsity in δ and B
q Can also incorporate structure

q E.g. asymmetric prior doc
(~ 1B)

topic

δi topic

word (~ 1M)

Bk

Generative
model of data

Priors on
parameters

49

Example Probabilistic Program: Topic Models

© Eric Xing @ CMU, 2005-2020

50

Inference for Probabilistic Programs: MCMC and SVI

δi

zij

xijB

Ni

N

K

Markov Chain Monte Carlo:
Randomly sample each variable in sequence

Next set of slides on this

Variational Inference:
Gradient ascent on variables

Can be treated as an optimization problem

δi

zij

xijB

Ni

N

K

© Eric Xing @ CMU, 2005-2020

Preliminaries:
Speeding up sequential MCMC

q Technique 1: Alias tables
q Sample from categorical distribution in amortized O(1)
q “Throw darts at a dartboard”
q Ex: probability distribution [0.5, 0.25, 0.25]

q => alias table {1, 1, 2, 3} => draw from table uniformly at random

q Technique 2: Cyclic Metropolis Hastings [Yuan et al., 2015]
q Exploit Bayesian form P(z=k) = Pevidence(k) * Pprior(k)

q Propose z1 from Pevidence(k)
q Accept/Reject z1
q Propose z2 from Pprior(k)
q Accept/Reject z2 … repeat

q Pprior(k), Pevi(k) cheap to compute with alias table

q Other speedup techniques
q Stochastic Gradient MCMC
q Stochastic Variational Inference

51

Pevidence(z = k)Pprior(z = k)

© Eric Xing @ CMU, 2005-2020

Parallel and Distributed MCMC: Classic methods

q Classic parallel MCMC solution 1
q Take multiple chains in parallel, take average/consensus between chains.

q But what if each chain is very slow to converge?
q Need full dataset on each process – no data parallelism!

Chain on core 1

Chain on core 2

Chain on core 3

Not converged Converged

52© Eric Xing @ CMU, 2005-2020

Parallel and Distributed MCMC: Classic methods

q Classic parallel MCMC solution 2
q Sequential Importance Sampling (SIS)
q Rewrite distribution over n variables as telescoping product over proposals q():

q SIS algorithm:
● Parallel draw samples xi

n ~ qn(xn|xi
1:n-1)

● Parallel compute unnorm. wgts.

● Compute normalized weights wi
n by normalizing ri

n

q Drawback: variance of SIS samples increases exponentially with n
q Need resampling + take many chains to control variance

q Let us look at newer solutions to parallel MCMC…

where

53© Eric Xing @ CMU, 2005-2020

Solution I: Induced Independence via Auxiliary Variables
[Dubey et al. 2013, 2014]

q Auxiliary Variable Inference: reformulate model as P independent models
q Example below: Dirichlet Process for mixture models
q Also applies to Hierarchical Dirichlet Process for topic models

q AV model (left) equivalent to standard DP model (right)

54© Eric Xing @ CMU, 2005-2020

● Why does it work? A mixture over Dirichlet processes is
equivalent to a Dirichlet processes

DP on Processor 1

DP on Processor P

Dirichlet Mixture over
Processor DPs 1...P

55

Solution I: Induced Independence via Auxiliary Variables
[Dubey et al. 2013, 2014]

© Eric Xing @ CMU, 2005-2020

Solution I: Induced Independence via Auxiliary Variables
[Dubey et al. 2013, 2014]

q Parallel inference algorithm:
q Initialization: assign data randomly across P Dirichlet Processes; assign each

Dirichlet Process to one worker p=1..P
q Repeat until convergence:

q Each worker performs Gibbs sampling on local data within its DP
q Each worker swaps its DP’s clusters with other workers, via Metropolis-Hastings:

q For each cluster c, propose a new DP q=1..P
q Compute proposal probability of c moving to p
q Acceptance ratio depends on cluster size

q Can be done asynchronously in parallel without affecting performance

56© Eric Xing @ CMU, 2005-2020

Solution II: Embarrassingly Parallel (but correct) MCMC
[Neiswanger et al., 2014]

q High-level idea:
q Run MCMC in parallel on data subsets; no communication between machines.
q Combine samples from machines to construct full posterior distribution samples.

q Objective: recover full posterior distribution

q Definitions:
q Partition data into M subsets
q Define m-th machine’s “subposterior” to be

q Subposterior: “The posterior given a subset of the observations with an underweighted
prior”.

57© Eric Xing @ CMU, 2005-2020

Embarrassingly Parallel MCMC

q Algorithm
1. For m=1…M independently in parallel, draw samples from each subposterior
2. Estimate subposterior density product (and thus the full

posterior) by “combining subposterior samples”

q “Combine subposterior samples” via nonparametric estimation
1. Given T samples from each subposterior :

q Construct Kernel Density Estimate (Gaussian kernel, bandwidth h):

2. Combine subposterior KDEs:

q where

58© Eric Xing @ CMU, 2005-2020

Embarrassingly Parallel MCMC

q Simulations:
q More subposteriors = tighter estimates
q EPMCMC recovers correct parameter
q Naïve subposterior averaging does not!

59© Eric Xing @ CMU, 2005-2020

Solution III: Parallel Gibbs Sampling

q Many MCMC algorithms
q Sequential Monte Carlo [Canini et al., 2009]
q Hybrid VB-Gibbs [Mimno et al., 2012]
q Langevin Monte Carlo [Patterson et al., 2013]
q …

q Common choice in tech/internet industry:
q Collapsed Gibbs sampling [Griffiths and Steyvers, 2004]
q e.g. topic model Collapsed Gibbs sampler:

60© Eric Xing @ CMU, 2005-2020

Properties of Collapsed Gibbs Sampling (CGS)

q Simple equation: easy for system engineers to scale up
q Good theoretical properties

q Rao-Blackwell theorem guarantees CGS sampler has lower variance (better
stability) than naïve Gibbs sampling

q Empirically robust
q Errors in δ, B do not affect final stationary distribution by much

q Updates are sparse: fewer parameters to send over network
q Model parameters δ, B are sparse: less memory used

q If it were dense, even 1M word * 10K topic ≈ 40GB already!

61© Eric Xing @ CMU, 2005-2020

docs i
(~ 1B)

topics k words v (~ 1M)

62

“Word-topic
summary table”

B

δ

topics k topics k

CGS Example: Topic Model sampler

© Eric Xing @ CMU, 2005-2020

Data Parallelization for
CGS Topic Model Sampler

doc
partition

words v (~ 1M)

doc
partition

doc
partition

model
replica

model
replica

model
replica

63

δ1

δ2

δ3

B

B

B

topics k

© Eric Xing @ CMU, 2005-2020

Data-Parallel Strategy: Approx. Distributed LDA
[Newman et al., 2009]

q Step 1: broadcast central model

64© Eric Xing @ CMU, 2005-2020

Data-Parallel Strategy: Approx. Distributed LDA
[Newman et al., 2009]

q Step 1: broadcast central model

65© Eric Xing @ CMU, 2005-2020

Data-Parallel Strategy: Approx. Distributed LDA
[Newman et al., 2009]

q Step 2: Perform Gibbs sampling in parallel

66© Eric Xing @ CMU, 2005-2020

Data-Parallel Strategy: Approx. Distributed LDA
[Newman et al., 2009]

q Step 3: commit changes back to the central model

67© Eric Xing @ CMU, 2005-2020

Data-Parallel Strategy: Approx. Distributed LDA
[Newman et al., 2009]

q Approximate
q Convergence not guaranteed – Markov Chain ergodicity broken
q Results generally “good enough” for industrial use

q Bulk synchronous parallel
q CPU cycles are wasted while synchronizing the model
q Asynchronous and bounded-asynchronous extensions possible [Smola et al.,

2010; Ahmed et al., 2012, Dai et al., 2015]

q How to overlap communication and computation for better efficiency?

68© Eric Xing @ CMU, 2005-2020

Error in data-parallel LDA

q Consider the CGS equation:

q Data-parallelism incurs error in B (the pink box) and the summation term
(the gray box)

q Both quantities are duplicated onto workers; their values become stale as
sampling proceeds

q True even for bulk synchronous parallel execution!
q Asynchrony helps somewhat

q Communicate very frequently to reduce staleness
q Is there a better solution?

69© Eric Xing @ CMU, 2005-2020

Model-Parallel Strategy 1: GraphLab LDA
[Low et al., 2010; Gonzalez et al., 2012]

q Think graphically: token = edge

docs
words

70

Column
= topic k

Row =
topic k

Column
= topic k

Word-topic
summary table

© Eric Xing @ CMU, 2005-2020

Model-Parallel Strategy 1: GraphLab LDA
[Low et al., 2010; Gonzalez et al., 2012]

q Model-parallel via graph structure

doc word

71

Worker 1

Worker 2

Word-topic
summary table

(copy on worker 1)

Word-topic
summary table

(copy on worker 2)
© Eric Xing @ CMU, 2005-2020

Model-Parallel Strategy 1: GraphLab LDA
[Low et al., 2010; Gonzalez et al., 2012]

q Asynchronous communication
q Overlaps computation and communication – iterations are faster

q Model-parallelism means each machine only stores a subset of statistics
q Less memory usage if implemented well

q Drawback: need to convert problem into a graph
q Vertex-cut duplicates lots of vertices, canceling out savings

q Are there other ways to partition the problem?

72© Eric Xing @ CMU, 2005-2020

Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q Topic model matrix structure:

q Idea: non-overlapping matrix partition:

Source: [Gemulla et al., 2011]

topic

doc
(~ 1B)

topic word (~ 1M)

topic

73© Eric Xing @ CMU, 2005-2020

Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q Non-overlapping partition of the word count matrix
q Fix data at machines, send model to machines as needed

74

Source: [Gemulla et al., 2011]

© Eric Xing @ CMU, 2005-2020

Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q During preprocessing: determine set of words used in each data block
q Begin training: load each data block from disk

disk

sequential read

75© Eric Xing @ CMU, 2005-2020

Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q Pull the set of words
from Key-Value store

disk

=

sequential read

76

Local copy of word-
topic summary table

Key-value store

Local model copy

© Eric Xing @ CMU, 2005-2020

Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q Sample, write result to disk,
send changes back to KV-store

disk

sequential read

sequential write

=

77

Local copy of word-
topic summary table

Key-value store

© Eric Xing @ CMU, 2005-2020

Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q Model-parallel advantage: disjoint words/docs on each machine
q Gibbs sampling almost equivalent to sequential case
q More accurate than data-parallel LDA
q Fast, asynchronous execution possible

q Compared to GraphLab LDA:
q Simple partitioning strategy – less system overheads, easier to implement
q Need to be careful about load imbalance (some docs will touch a particular

word more times than others)
q Solution: pre-group documents by word frequency

78© Eric Xing @ CMU, 2005-2020

Error in model-parallel LDA

q Recall the CGS equation:

q Model-parallelism only has error in summation term (gray box)
q Summation term is very large for Big Data (billions of docs) => error

negligible
q Compared to data-parallelism: error due to B (pink box) eliminated

79© Eric Xing @ CMU, 2005-2020

Distributed ML Algorithms – Summary

q Parallel algos for Optimization and MCMC share common themes
q Embarrassingly parallel: combine results from multiple independent problems, e.g.

PSGD, EP-MCMC
q Stochastic over data: approximate functions/ gradients with expectation over subset

of data, then parallelize over data subsets, e.g. SGD
q Model-parallel: parallelize over model variables, e.g. Coordinate Descent
q Auxiliary variables: decompose problem by decoupling dependent variables, e.g.

ADMM, Auxiliary Variable MCMC

q Considerations
q Regularizers, model structure: may need sequential proximal or projection step, e.g.

Stochastic Proximal Gradient
q Data partitioning: for data-parallel, how to split data over machines?
q Model partitioning: for model-parallel, how to split model over machines? Need to be

careful as model variables are not necessarily independent of each other.

80© Eric Xing @ CMU, 2005-2020

Part 2: Distributed Systems for ML

© Eric Xing @ CMU, 2005-2020 81

Distributed Systems for ML

q Just now: Exploit algorithmic and mathematical properties of ML learning
and inference algorithms, to create efficient distributed ML algorithms

q Once model has been learnt, prediction is (usually) embarrassingly parallel –
given n machines, duplicate the learnt model and give each machine 1/n of
the samples to be predicted

q What about the systems properties of real-world machines?

© Eric Xing @ CMU, 2005-2020 82

q Two distributed challenges:
q Networks are (relatively) slow
q “Identical” machines rarely perform equally

Low bandwidth,
High delay

Unequal
performance

0
1000
2000
3000
4000
5000
6000
7000
8000

0 8 16 24 32 40 48

Se
co

n
d

s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

BSP execution:
Long sync time

Async execution:
May diverge

83

There Is No Ideal Distributed System!

© Eric Xing @ CMU, 2005-2020

There Is No Ideal Distributed System!

q Implementing high-performance distributed ML is not easy
q If not careful, can end up slower than single machine!

q System bottlenecks (load imbalance, network bandwidth & latency) are not trivial to
engineer around

q Even if algorithm is theoretically sound and has attractive properties, still need
to pay attention to system aspects

q Bandwidth (communication volume limits)
q Latency (communication timing limits)
q Data and Model partitioning (machine memory limitation, also affects comms volume)
q Data and Model scheduling (affects convergence rate, comms volume & timing)
q Non-ideal systems behavior: uneven machine performance, other cluster users

84© Eric Xing @ CMU, 2005-2020

Read
Read +

Write

Data

Model Parameters

at iteration (t-1)

Iterative Algorithm

Intermediate Updates

Aggregate +

Transform

Updates

A General Picture of ML Iterative-Convergent Algorithms

85© Eric Xing @ CMU, 2005-2020

Issues with Hadoop and
I-C ML Algorithms?

Naïve MapReduce not best for ML

● Hadoop can execute iterative-convergent, data-parallel ML...
o map() to distribute data samples i, compute update Δ(Di)
o reduce() to combine updates Δ(Di)
o Iterative ML algo = repeat map()+reduce() again and again

● But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!

HDFS Bottleneck

Image source: dzone.com

Iteration 1 Iteration 2

86© Eric Xing @ CMU, 2005-2020

for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}

θ

θ θ

θ

θ

θ θ θ

θθ

θ θθ

Good Parallelization Strategy is Important

ML on

epoch 1

ML on
epoch 2

ML on
epoch 3

ML on
epoch m

Barrier ?

Write

outcome to

KV store

Write

outcome to

KV store

Write

outcome to

KV store

Write

outcome to

KV store

Collect

outcomes and
aggregate

Do nothing Do nothing Do nothing 0
1000
2000
3000
4000
5000
6000
7000
8000

0 8 16 24 32 40 48

Se
co

n
d

s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

87© Eric Xing @ CMU, 2005-2020

Additive Updates

88

Data Parallelism

© Eric Xing @ CMU, 2005-2020

Concatenating updates

Scheduling
Function

Read +
Write

model parameters not
updated in this
iteration 89

Model Parallelism

© Eric Xing @ CMU, 2005-2020

Di?Dj | ✓, 8i 6= j ~✓i 6? ~✓j | D, 9(i, j)

Data Parallelism Model Parallelism

90

A Dichotomy of Data and Model in ML Programs

© Eric Xing @ CMU, 2005-2020

Data+Model Parallel:
Solving Big Data+Model

Model (edge weights)
Data (images)

Update
(backpropagation)

Data & Model both big!
Millions of images,
Billions of weights

What to do?

91© Eric Xing @ CMU, 2005-2020

Data+Model Parallel:
Solving Big Data+Model

BackP algo BackP algo BackP algo BackP algo BackP algo BackP algoBackP algo BackP algo BackP algo

Parameter Synchronization Channel

Tackle Deep Learning scalability

challenges by combining

data+model parallelism

92© Eric Xing @ CMU, 2005-2020

How difficult is data/model-parallelism?

q Certain mathematical conditions must be met

q Data-parallelism generally OK when data IID (independent, identically
distributed)

q Very close to serial execution, in most cases

q Naive Model-parallelism won’t work
q NOT equivalent to serial execution of ML algo
q Need carefully designed schedule

93© Eric Xing @ CMU, 2005-2020

Intrinsic Properties of ML Programs

q ML is optimization-centric, and admits an iterative convergent algorithmic solution
rather than a one-step closed form solution

q Error tolerance: often robust against limited
errors in intermediate calculations

q Dynamic structural dependency: changing correlations
between model parameters critical to efficient parallelization

q Non-uniform convergence: parameters
can converge in very different number of steps

q Whereas traditional programs are transaction-centric, thus only guaranteed by atomic
correctness at every step

94© Eric Xing @ CMU, 2005-2020

Challenges in Data Parallelism

q Existing ways are either safe/slow (BSP), or fast/risky (Async)

q Challenge 1: Need “Partial” synchronicity
q Spread network comms evenly (don’t sync unless needed)
q Threads usually shouldn’t wait – but mustn’t drift too far apart!

q Challenge 2: Need straggler tolerance
q Slow threads must somehow catch up

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

???

BSP Async

Is persistent memory really necessary for ML?
95© Eric Xing @ CMU, 2005-2020

q Challenge 1: “Partial” synchronicity
q Spread network comms evenly (don’t sync unless needed)
q Threads usually shouldn’t wait – but mustn’t drift too far apart!

q Challenge 2: Straggler tolerance
q Slow threads must somehow catch up

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

Force threads to sync
up

2 3 4 5 6

Thread 1 catches up by
reducing network comms

Time 96

Is there a middle ground for data-parallel consistency?

© Eric Xing @ CMU, 2005-2020

Stale Synchronous Parallel (SSP), a “bounded-asynchronous” model
• Allow threads to run at their own pace, without synchronization
• Fastest/slowest threads not allowed to drift >S iterations apart
• Threads cache local (stale) versions of the parameters, to reduce network syncing

Iteration0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 2 may not see
these updates (possible error)

Consequence:
• Asynchronous-like speed, BSP-like ML correctness guarantees
• Guaranteed age bound (staleness) on reads
• Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

97

High-Performance Consistency Models
for Fast Data-Parallelism [Ho et al., 2013]

© Eric Xing @ CMU, 2005-2020

Improving Bounded-Async via Eager Updates
[Dai et al., 2015]

q Eager SSP (ESSP) protocol
q Use spare bandwidth to push fresh parameters sooner

q Figure: difference in stale reads between SSP and ESSP
q ESSP has fewer stale reads; lower staleness variance
q Faster, more stable convergence (theorems later)

98© Eric Xing @ CMU, 2005-2020

q Scale up Data Parallelism without long BSP synchronization time

q Effective across multiple algorithms, e.g. LDA, Lasso, Matrix
Factorization:

LASSO Matrix Fact.LDA

99

Async Speed + BSP-like Guarantees, across algorithms

© Eric Xing @ CMU, 2005-2020

q Recall Lasso regression:

�

A huge number of parameters
(e.g.) J = 100M

XyN

J

J

Model

=

min
�

ky �X�k22 + �
X

j

|�j |

100© Eric Xing @ CMU, 2005-2020

Challenges in Model Parallelism

q Concurrent updates of may induce errors�

�1

�2

�1 �2

�1 �2

Sync

Sequential updates Concurrent updates

�(t)
1 S(xT

1 y � x

T
1 x2�

(t�1)
2 ,�)

Induces parallelization error

Need to check x1
Tx2

before updating
parameters

Challenge 1: Model Dependencies

101© Eric Xing @ CMU, 2005-2020

Challenge 2: Uneven Convergence Rate on Parameters

• Time-to-convergence determined by slowest parameters
• How to make slowest parameters converge quicker?

Parameters converge at similar ratesParameters converge at different rates

C
onverged

C
onverged

Remaining time to convergence Remaining time to convergence

102© Eric Xing @ CMU, 2005-2020

Is there a middle ground for model-parallel consistency?

q Existing ways are either safe but slow, or fast but risky
q Challenge 1: need approximate but fast model partition

q Full representation of data/model, and explicitly compute all dependencies via graph cut is not
feasible

q Challenge 2: need dynamic load balancing
q Capture and explore transient model dependencies
q Explore uneven parameter convergence

???

Graph Partition Random Partition

Is full consistency really
necessary for ML?

103© Eric Xing @ CMU, 2005-2020

Structure-Aware Parallelization (SAP)
[Lee et al., 2014; Kumar et al., 2014] schedulerkey-value

store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

schedulerkey-value
store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

q Careful model-parallel execution:
q Structure-aware scheduling
q Variable prioritization
q Load-balancing

schedulerkey-value
store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

q Simple programming:
q Schedule()
q Push()
q Pull()

104© Eric Xing @ CMU, 2005-2020

Schedule 1: Priority-based [Lee et al., 2014]

q Choose params to update based on convergence progress
q Example: sample params with probability proportional to their recent change
q Approximately maximizes the convergence progress per round

Priority-based schedulingShotgun [Bradley et al. 2011]

�1 �2

�3 �4

�1 �2

�3 �4

�1 �2 �4

Uniform
distribution

�3

p(j) /
⇣
�x

(t�1)
j

⌘2
+ ✏

105© Eric Xing @ CMU, 2005-2020

Schedule 2: Block-based (with load balancing)
[Kumar et al., 2014]

Partition data & model into d × d blocks
Run different-colored blocks in parallel

Blocks with less data/para or experience less
straggling run more iterations

Automatic load-balancing + better convergence

106© Eric Xing @ CMU, 2005-2020

Structure-aware Dynamic Scheduler (STRADS)
[Lee et al., 2014, Kumar et al., 2014]

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.
barrier

Sample Variables

to be Updated ~ p(j)

Check

Variable

Dependency

All Variables

Generate

Blocks of

Variables

STRADS

• Priority Scheduling

• Block scheduling

{�j} ⇠
⇣
��(t�1)

j

⌘2
+ ⌘

[Kumar, Beutel, Ho and Xing, Fugue:
Slow-worker agnostic distributed
learning, AISTATS 2014]

107© Eric Xing @ CMU, 2005-2020

Avoids dependent parallel updates,
attains near-ideal convergence speed

q STRADS+SAP achieves better speed and objective

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

0 50 100 150
0.5

1

1.5

2

2.5

80 ranks
9 machines

Seconds

R
M

SE

STRADS
GraphLab

0 1 2 3 4 5
x 104

−3.5

−3

−2.5 x 109
2.5M vocab, 5K topics

32 machines

Seconds

Lo
g−

Li
ke

lih
oo

d

STRADS
YahooLDA

Lasso MF LDA

108© Eric Xing @ CMU, 2005-2020

Efficient for large models

q Model is partitioned => can run larger models on same hardware

Lasso MF LDA

109© Eric Xing @ CMU, 2005-2020

Theory of real-world distributed ML systems

q What guarantees still hold in parallel setting? Under what conditions?

q Computational and communications costs cannot be ignored
q Real-world ML running time is heavily influenced by them

q Asynchronous or bounded-async approaches can empirically work better than
synchronous approaches

q Async => no serializability… why does it still work?

q Parallelization requires data and/or model partitioning
q Want partitioning strategies that are provably correct
q When/where is independence violated? What is the impact on algorithm correctness?

110© Eric Xing @ CMU, 2005-2020

Background: Bridging Models for Parallel Programming

q Bulk Synchronous Parallel [Valiant, 1990] is a bridging model
q Bridging model specifies how/when parallel workers should compute, and

how/when workers should communicate
q Key concept: barriers

q No communication before barrier, only computation
q No computation inside barrier, only communication

q Computation is “serializable” – many sequential theoretical guarantees can
be applied with no modification

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

111© Eric Xing @ CMU, 2005-2020

Background: Bridging Models for Parallel Programming

q Bounded Asynchronous Parallel (BAP) bridging model
q Key concept: bounded staleness [Ho et al., 2013; Dai et al., 2015]

q Workers re-use old version of parameters, up to s iterations old – no need to barrier
q Workers wait if parameter version older than s iterations

112© Eric Xing @ CMU, 2005-2020

Background: Types of Convergence Guarantees

q Regret/Expectation bounds on parameters
q Better bounds => better convergence progress per iteration

q Probabilistic bounds on parameters
q Similar meaning to regret/expectation bounds, usually stronger in guarantee

q Variance bounds on parameters
q Lower variance => higher stability near optimum => easier to determine

convergence

q Guarantees can be for Data-parallel, Model-parallel, or Data+Model-
parallel

113© Eric Xing @ CMU, 2005-2020

BAP Data Parallel: Why can’t we do value-bounding?

q Seemingly-natural Idea: limit model
parameter difference Δθi-j = ||θi – θj||
between machines i,j to not exceed a
given threshold

q Not practical!
q To guarantee that Δθi-j has not exceeded the

threshold, machines must wait to communicate
with each other

q No improvement over synchronous execution!

q Rather than controlling parameter
difference via magnitude, what about via
iteration count?

q This is the (E)SSP communication model

114

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5 Worker 6

Worker 7

Δθ1-2

Δθ1-3

Δθ1-4

Δθ1-5
Δθ1-6

Δθ1-7

© Eric Xing @ CMU, 2005-2020

Stale Synchronous Parallel (SSP)
• Allow threads to run at their own pace, without synchronization
• Fastest/slowest threads not allowed to drift >S iterations apart
• Threads cache local (stale) versions of the parameters, to reduce network syncing

Iteration0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 2 may not see
these updates (possible error)

Consequence:
• Asynchronous-like speed, BSP-like ML correctness guarantees
• Guaranteed age bound (staleness) on reads
• Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached 115© Eric Xing @ CMU, 2005-2020

BAP Data Parallel: (E)SSP model
[Ho et al., 2013; Dai et al., 2015]

q Goal: minimize convex
(Example: Stochastic Gradient)
q L-Lipschitz, problem diameter bounded by F2
q Staleness s, using P threads across all machines
q Use step size

q (E)SSP converges according to
q Where T is the number of iterations

q Note the RHS interrelation between (L, F) and (s, P)
q An interaction between model and systems parameters

q Stronger guarantees on means and variances can also be proven

Difference between
SSP estimate and true optimum

116© Eric Xing @ CMU, 2005-2020

BAP Data Parallel: (E)SSP Regret Bound
[Ho et al., 2013]

Intuition: Why does (E)SSP converge?

q Number of missing updates bounded
q Partial, but bounded, loss of serializability

q Hence numeric error in parameter also bounded
q Later in this tutorial – formal theorem

117© Eric Xing @ CMU, 2005-2020

SSP versus ESSP: What is the difference?

q ESSP is a systems improvement over SSP communication
q Same maximum staleness guarantee as SSP
q Whereas SSP waits until the last second to communicate…
q … ESSP communicates updates as early as possible

q What impact does ESSP have on convergence speed and stability?

118© Eric Xing @ CMU, 2005-2020

Theorem: Given L-Lipschitz objective ft and stepsize ht,

BAP Data Parallel: (E)SSP Probability Bound
[Dai et al., 2015]

Let real staleness observed by system be
Let its mean, variance be ,

Explanation: the (E)SSP distance between true optima and current
estimate decreases exponentially with more iterations. Lower staleness
mean, variance , improve the convergence rate.

Take-away: controlling staleness mean , variance (on top of max
staleness s) is needed for faster ML convergence, which ESSP does.

119

Gap between current
estimate and optimum

Penalty due to high
avg. staleness ustale

Penalty due to high
staleness var. σstale

© Eric Xing @ CMU, 2005-2020

BAP Data Parallel: (E)SSP Variance Bound
[Dai et al., 2015]

Theorem: the variance in the (E)SSP estimate is

where

and represents 5th order or higher terms in
Explanation: The variance in the (E)SSP parameter estimate monotonically
decreases when close to an optimum.
Lower (E)SSP staleness => Lower variance in parameter => Less
oscillation in parameter => More confidence in estimate quality and
stopping criterion.
Take-away: Lower average staleness (via ESSP) not only improves
convergence speed, but also yields better parameter estimates

120© Eric Xing @ CMU, 2005-2020

ESSP vs SSP: higher stability helps empirical performance

q Low-staleness SSP and ESSP converge equally well
q But at higher staleness, ESSP is more stable than SSP

q ESSP communicates updates early, whereas SSP waits until the last second
q ESSP better suited to real-world clusters, with straggler and multi-user issues

121© Eric Xing @ CMU, 2005-2020

q Further Reading
q On Convergence of Model Parallel Proximal Gradient Algorithm for Stale Synchronous

Parallel System, Zhou et al., AISTATS 2016

q Intuition
q Model-parallel sub-problems become nearly independent with proper scheduling
q Has similarities to Hogwild [Recht et al., 2011], but…

q Hogwild relies on atomic operations for consistency – only practical for single-machine
q BAP+Model-parallel relies on BAP for consistency – implementable for real-world

distributed systems

q Potentially better per-iteration convergence than BAP data-parallel

122

BAP and Model-parallel?

© Eric Xing @ CMU, 2005-2020

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.
barrier

Sample Variables
to be Updated ~ p(j)

Check
Variable

Dependency

All Variables

Generate
Blocks of
Variables

STRADS
• Priority Scheduling

• Block scheduling

{�j} ⇠
⇣
��(t�1)

j

⌘2
+ ⌘

123

Scheduled Model Parallel: Dynamic/Block Scheduling
[Lee et al. 2014, Kumar et al. 2014]

© Eric Xing @ CMU, 2005-2020

q Goal: solve sparse regression problem
q Via coordinate descent over “SAP blocks” X(1),	X(2),	…,	X(B)

q X(b) are the data columns (features) in block (b)
q P parallel workers, M-dimensional data
q ρ = Spectral	Radius[BlockDiag[(X(1))TX(1),	…,	(X(t))TX(t)]]; this block-

diagonal matrix quantifies the maximum level of correlation (and hence
problem difficulty) within all the SAP blocks X(1),	X(2),	…,	X(t)

q SAP converges according to
q Where t is # of iterations

q Take-away: SAP minimizes ρ by searching for feature subsets X(1),	
X(2),	…,	X(B) without cross-correlation => as close to P-fold speedup as
possible

Gap between current

parameter estimate and optimum

min
�

ky �X�k22 + �
X

j

|�j |

SAP explicitly minimizes ρ, ensuring

as close to 1/P convergence as possible

Scheduled Model Parallel:
Dynamic Scheduling Expectation Bound
[Lee et al. 2014]

124© Eric Xing @ CMU, 2005-2020

Let be an ideal model-parallel schedule
Let be the parameter trajectory due to ideal scheduling
Let be the parameter trajectory due to SAP scheduling

Explanation: Under dynamic scheduling, algorithmic progress is nearly
as good as ideal model-parallelism.
Intuitively, this is because both ideal and SAP model-parallelism
minimize the parameter dependencies between parallel workers.

Theorem: After t iterations, we have

E[|�(t)
ideal � �(t)

dyn|]  C
2M

(t+ 1)2
X>X

Sideal()
�(t)
ideal

�(t)
dyn

125

Scheduled Model Parallel:
Dynamic Scheduling Expectation Bound is near-ideal
[Xing et al. 2015]

© Eric Xing @ CMU, 2005-2020

q Dynamic Scheduling for Lasso regression (SMP-Lasso): almost-ideal
convergence rate, much faster than random scheduling (Shotgun-Lasso)

126

Scheduled Model Parallel:
Dynamic Scheduling Empirical Performance

© Eric Xing @ CMU, 2005-2020

Partition data & model into d × d blocks
Run different-colored blocks in parallel

Blocks with less data/para or experience less
straggling run more iterations

Automatic load-balancing + better convergence

127

Scheduled Data+Model Parallel:
Block-based Scheduling (with load balancing)
[Kumar et al. 2014]

© Eric Xing @ CMU, 2005-2020

q Variance between iterations Sn+1 and Sn is:

q Explanation:
q higher order terms (red) are negligible
q => parameter variance decreases every iteration

q Every iteration, the parameter estimates become more stable

128

Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 1
[Kumar et al. 2014]

© Eric Xing @ CMU, 2005-2020

q Intra-block variance: Within blocks, suppose we update the parameters
using data points. Then, variance of after those updates is:

q Explanation:
q Higher order terms (red) are negligible
q => doing more updates within each block decreases parameter variance,

leading to more stable convergence
q Load balancing by doing extra updates is effective

129

Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 2
[Kumar et al. 2014]

© Eric Xing @ CMU, 2005-2020

q Slow-worker Agnostic Block-Scheduling (Fugue) faster than:
q Embarrassingly Parallel SGD (PSGD)
q Non slow-worker Agnostic Block-Scheduling (Barriered Fugue)

q Slow-worker Agnostic Block-Scheduling converges to a better optimum
than asynchronous GraphLab

q Reason: more stable convergence due to block-scheduling

q Task: Imagenet Dictionary Learning
q 630k images, 1k features

130

Scheduled Data+Model Parallel:
Block-Scheduling Empirical Performance

© Eric Xing @ CMU, 2005-2020

Distributed ML Systems – Summary

q Real-world distributed systems are never ideal
q Slow communication, uneven computation speed
q Naïve Bulk Synchronous Parallel (BSP) can be slower than non-parallel implementation!

q Solution 1: Bounded-Asynchronous Parallel (BAP)
q Exploit properties of ML algorithm convergence
q Stale communication mitigates non-idealness in distributed systems
q Applicable to data-parallel and model-parallel strategies

q Solution 2: Scheduled Model Parallelism (SMP)
q Exploit ML model structural properties
q Re-ordering of computation mitigates non-idealness in distributed systems
q SMP is a model-parallel strategy that is compatible with data-parallelism

q Theoretical analysis
q Convergence guarantees exist for BAP, SMP
q Rates are influenced by

q ML model/algorithm properties: learning rates and model structure
q Distributed systems properties: number of parallel machines, staleness

© Eric Xing @ CMU, 2005-2020 131

