g Carnegie Mellon University

(/4
" PETUUM

Probabilistic Graphical Models

Scalable algorithms and systems for
learning, inference and prediction

Qirong Ho
Lecture 26, April 22, 2020

Reading: see class homepage

4 Challenge 1 — Massive Data Scale

BILLIONS OF DEVICES

I

THE INTERNET OF THINGS

AN EXPLOSION OF CONNECTED POSSIBILITY

Ty, a2 ne

LI

020

St (G5

Source: The Connectivist

-~
]
o
>
"
o
5
2
2]
=
-
N

r————T\
25% CAGR 2012-2017

Cloud Data Center (35% CAGR)
Traditional Data Center (12% CAGR)

46%

54%

2012 2013 2014 2015 2016 2017

Source: Cisco Global Cloud
Index

© Eric Xing @ CMU, 2005-2020

% Challenge 1 — Massive Data Scale

1B+ USERS
30+ PETABYTES

A\ 32 million
(4 pages

The Free Encyclopedia

You) @ CEwitterd®

100+ hours video 645 million users
uploaded every minute 500 million tweets / day

Challenge 2 - Gigantic Model Size

Convolution Fully connected
s 5 N |1~
| BN =
Source: University of >
Bonn

LO (Input) L1 L2 L3 L4

© Eric Xing @ CMU, 2005-2020 4 %

/
{/ Challenge 2 — Gigantic Model Size

_Multi-task Regression
¥ for simplest whole-

Google Brain
Deep Learning

’.A\\ new output layer
A

AN

Z

=2

N

Y/ H " o gz
N forimages: — #&_2¢ “\1b0million ~ Billion
-\l b NN N / model

model parameters

,,,,,,
4444444444

== &he New Hork Btme .- Topic Models Collaborative filtering
e for news article for Video recommendation:
= B LERE = analysis: 1~10 Billion

model

N [T |: |_ I X parameters

: < model
parameters

% The Scalability Challenge

Processing
power/speed

2000
1800

:

5 8

-

Number of “machines”

? A “Classification” of ML Models and Tools

a An ML program consists of:
o A mathematical “ML model” (from one of many families)...
o ... which is solved by an “ML algorithm” (from one of a few types)

» Sparse Structured
Input/Output . sp
Large-Margin Regression

% A “Classification” of ML Models and Tools

o We can view ML programs as either
o Probabilistic programs
o Optimization programs

[Machine Learning Mode! Families |

| Machine Learning Aigorithm Families =

Optimization Programs

N

i

jlﬂu

N B
a2 ‘
Z Z hl]P)Categomcal Lij I Zijs + Z Z In PCategomcal Zij | () Z ||’.1]z' - X1‘3||2 A Z I-‘33'|

i=1 g=1 =1 g=1 i=1 j=1 %
© Eric Xing @ CMU, 2005-2020 8

4 Iterative-convergent view of ML

nt+1 _ ot N New Model = Old Model +
0 _0 —|_ Af (D) Update(Data)

jor

Sy bt & @
variables ca .-

e ¢
tNOGS student . =
models ="

—~—— e El“’)‘m%

1:students

~

o ML models solved via iterative-convergent ML algorithms

o lterative-convergent algorithms repeat until 6 is stationary. Examples:
o Probabilistic programs: MC, MCMC, Variational Inference
o Optimization programs: Stochastic Gradient Descent, ADMM, Proximal Methods, Coordinate Descent

© Eric Xing @ CMU, 2005-2020 9 Lg

; Most algorithms need operational correctness ...

Example: Merge sort

1

6

5|4 8 (] 2
| !

415 218
N\ e

sl
rd

3 Db

Error persists and is
, 2005-2020 10

s

y ... but ML Algorithms can Self-heal

f An ML Program

—

argmax = L({x;,yi}i ; 0) + Q(0)

0

Model Data Parameter

Solved by an iterative convergent algorithm

}

for (t =1toT) ¢

doThings() |
0! = g(6", As0(D))
doOtherThings()

This computation needs to be parallelized!

/
{/ Challenge

o Optimization programs:

“rd d .

A huge number of parameters

A huge volume of data (e.g.) M=1B
(e.g.)N=1B

% Challenge

a Probabilistic noroarams
zij ~ p(zi5 = klwiz, 6, B) o (O + o) - Briy +1Bray

topic

word (~ 1M)

topic topic
(~1M)

doc
(~1B)

% Parallelization Strategies

Al La—rt 2
1 iMOdelS ops k.
3 e Elmmscs El

Data Parallel

dents=<

Vi a
dzstu

New Model = Old Model +
Update(Data)

© Eric Xing @ CMU, 2005-2020

15

% Optimization & MCMC Algorithms

o Optimization Algorithms
o Stochastic gradient descent
o Coordinate descent
o Proximal gradient methods
o ISTA, FASTA, Smoothing proximal gradient

o Markov Chain Monte Carlo Algorithms
o Auxiliary Variable methods
o Embarrassingly Parallel MCMC
a Parallel Gibbs Sampling
o Data parallel ALD) Ad D)
a Model parallel s e

Example Optimization Program:
Sparse Linear Regression

mm—Hy XBH + AQ(P)

\ J
| |

Data fitting Regularization

Data fitting part:
- find B that fits into the data
- Squared loss, logistic loss, hinge loss, etc

Regqularization part:
- induces sparsity in 3.

- incorporates structured information into the model..cweom s

/
/ Example Optimization Program:
Sparse Linear Regression

1
mﬂm 5 Hy — XBHE + AQ(PB)

Examples of regularization Q(ﬁ) :
J
‘|: Qlasso (B) — Z ‘ﬁ]‘ Sparsity
j=1

Qs ® =2, e B, =207

1 free (B) Structured sparsity
(sparsity + structured information)
_ Qoverlap (l})

Algorithm I:
Stochastic Gradient Descent

a Consider an optimization problem:

min E{ f(x,d)}

X

1 n
o Classical gradient descent: s 2 — v vaf(a’i(t),di)
1=1

o Stochastic gradient descent:
a Pick a random sample d,
o Update parameters based on noisy approximation of the true gradient

2D 2O — v, f(20), d;)

4 Stochastic Gradient Descent

e SGD converges almost surely to
a global optimal for convex problems

e Traditional SGD compute gradients based on a single
sample

e Mini-batch version computes gradients based on multiple
samples

e Reduce variance in gradients due to multiple samples

e Multiple samples => represent as multiple vectors => use vector
computation => speedup in computing gradients

© Eric Xing @ CMU, 2005-2020 20 Lg

% Parallel Stochastic Gradient Descent

a Parallel SGD: Partition data to different workers; all

workers update full parameter vector

a Parallel SGD (zinkevich et al., 2010]

Update local copy
of ALL params

Update local copy
of ALL params

aggregate

Update ALL
params

a PSGD runs SGD on local copy of params in each

machine

© Eric Xing @ CMU, 2005-2020

21

/
f Hogwild!: Lock-free approach to PSGD recntetal, 201

o Goal is to minimize a function in the form of

f(z) = Z fe(ze)

ec

o e denotes a small subset of parameter indices
a X, denotes parameter values indexed by x,

o Key observation:
o Cost functions of many ML problems can be represented by f(x)

o In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but f,
is applied only a small number of parameters in x

/
(/ Hogwild!: Lock-free approach to PSGD recntetal, 201

o Example:
o Sparse SVM
min Z max(1 — yor’ z,0) + A 2|3
acl
o zisinput vector, and vy is a label; (z,y) is an elements of E
o Assume that z,are sparse
o Matrix Completion

%ilr{l (Auy — WL HI)? +) HWH% + A2 ||H||3?
" (uw)€EE

o Input A matrix is sparse

o Graphcuts _
min Z Wyy ||y — Ty]]; subject to z, € Sp,v=1,...,n
(u,v)EE

o W is a sparse similarity matrix, encoding a graph

© Eric Xing @ CMU, 2005-2020 23 %
L 4

% HOgW“d' AlgOrlthm [Recht et al., 2011]

o Hogwild! algorithm: iterate in parallel for each core
o Sample e uniformly at random from E
o Read current parameter x,; evaluate gradient of function f,
o Sample uniformly at random a coordinate v from subset e
o Perform SGD on coordinate v with small constant step size
o Advantages
o Atomically update single coordinate, no mem-locking
o Takes advantage of sparsity in ML problems
o Near-linear speedup on various ML problems, on single machine

o Excellent on single machine, less ideal for distributed
o Atomic update on multi-machine challenging to implement; inefficient and slow
o Delay among machines requires explicit control... why? (see next slide)

© Eric Xing @ CMU, 2005-2020 24 g
L

; The cost of uncontrolled delay — slower convergence

[Dai et al. 2015]

o Theorem: Given lipschitz objective f, and step size n;,

- : 2
P [R;\] - \/1? ((J‘LQ - % - 20L2€7n> - T:|
—Tr?
con gt]
25q€y|+ 50L2%2(25s + 1) Pt
o where RIX] = Yiifl&) — fz*)

o Where L is a lipschitz constant, and ¢, and g, are the mean and variance of the delay

o Intuition: distance between current estimate and optimal value decreases
exponentially with more iterations

o But high variance in the delay €, incurs exponential penalty!

o Distributed systems exhibit much higher delay variance, compared to single
machine

% The cost of uncontrolled delay — unstable convergence

[Dai et al. 2015]

o Theorem: the variance in the parameter estimate Is

Var t+1 = = Var g =)I]t(()l xt {gt]) + O('}tft)

+ O(’It /’t

a Where cov(vy,vs2) := E[vTvs] —E[v]|E[vs]
o and O} represents 5th order or higher terms, as a function of the delay ¢,

o Intuition: variance of the parameter estimate decreases near the optimum
a But delay g, increases parameter variance => instability during convergence

o Distributed systems have much higher average delay, compared to
single machine

% Parallel SGD with Key-Value Stores

o We can parallelize SGD via
o Distributed key-value store to share parameters
o Synchronization scheme to synchronize parameters

o Shared key-value store provides easy interface to read/write shared
parameters

o Synchronization scheme determines how parameters are shared among
multiple workers
o Bulk synchronous parallel (e.g., Hadoop)
o Asynchronous parallel (anmedetal, 2012, Lietal., 2014]
o Stale synchronous parallel [Hoetal, 2013, paietal., 2015]

/
(/ Parallel SGD with Bounded Async KV-store

o Stale synchronous parallel (SSP) is a synchronization model with

bounded staleness — “bounded async”

o Fastest and the slowest workers are <s clocks apart

Stale Synchronous Parallel

Staleness Threshold 3

Thread 1

Thread 2

]

Thread 3

|

|
|
|
I
|
|
|

Thread 4

|

|

1
1
I
I
I
I
I
!
I
I
I
1

|

Thread 1 waits until
Thread 2 has reached iter 4

>

o
[any
N
w
H
w
[¢)]

| L}
8 9 Iteration

; Example KV-Store Program: Lasso

o Lasso example: want to optimize Z ly: — XaBll2 + A 2 1: 1351
o Put B in KV-store to share among all workers

o Step 1: SGD: each worker draws subset of samples X

o Compute gradient for each term ||y—XB||* with respect to B update
B with gradient

B = =1 Loy, — X,p0=HX T
o Step 2: Proximal operator: perform soft thresholding on 3
B; = sign(B;) (|8;| —

o Can be done at workers, or at the key—value store itself

o Bounded Asynchronous synchronization allows fast read/write
to 3, even over slow or unreliable networks

% Bounded Async KV-store:
Faster and better convergence

Log-Likelihood

-9.00E+08
-9.50E+08
-1.00E+09
-1.05E+09
-1.10E+09
-1.15E+09
-1.20E+09
-1.25E+09
-1.30E+09

Objective function versus time
LDA 32 machines (256 threads), 10% data per iter

500

/ —+-BSP (stale 0)

/ -m-stale 32

~#+=async

Seconds

© Eric Xing @ CMU, 2005-2020

30

.

4 Algorithm lI: Coordinate Descent

Update each regression coefficient in a cyclic manner

1st iteration

2st jteration

e Pros and cons

e Unlike SGD, CD does not involve learning rate

e |If CD can be used for a model, it is often comparable to the state-of-the-art
(e.g. lasso, group lasso)

e However, as sample size increases, time for each iteration also increases

© Eric Xing @ CMU, 2005-2020

31

/
(/ Example: Coordinate Descent for Lasso

,\ 1
j=min LIy XB[+ 23]
J

1
-

Set a subgradient t —x (v —
a Set a subgradient to zero Xj(y XpP)+ At

— Standardization

e—
o Assuming that X'x, =1, we can derive update rule:

Soft thresholding
=Sx"(y - AL
ﬂ] {X] (y ; legl)a } S(x, 1) = Slgn(x)(‘x‘ B /1)+

3

/

(/ Example: Block Coordinate Descent for Group Lasso
~ 1 2
B :mﬁlnEHy—XﬁH2 +/IZ‘,BJ.‘

a Setitto zero:
—xf(y—XB)Jr/luj =0,Vjeg

o In a similar fashion, we can derive update rule for group g

Iterate over each
group of coefficients

% Parallel Coordinate Descent

[Bradley et al. 2011]

a Shotgun, a parallel coordinate descent algorithm
o Choose parameters to update at random

o Update the selected parameters in parallel
o lterate until convergence

o When features are nearly indepenccljent, Shotgun scales almost linearly
o Shotgun scales linearly up to P=5. workers, where p is spectral radius of
ATA
o For uncorrelated features, p=1; for exactly correlated features p=d
o No parallelism if features are exactly correlated!

% Intuitions for Parallel Coordinate Descent

a Concurrent updates of parameters are useful when features are
uncorrelated

Source:
[Bradley et al., 2011]

J

Uncorrelated features Correlated features

o Updating parameters for correlated features may slow down
convergence, or diverge parallel CD in the worst case

o To avoid updates of parameters for correlated features, block-greedy CD has
been proposed

Block-greedy Coordinate Descent

[Scherrer et al., 2012]

o Block-greedy coordinate descent generalizes various parallel CD
strategies
o e.g. Greedy-CD, Shotgun, Randomized-CD

o Alg: partition p params into B blocks; iterate:

o Randomly select P blocks
o Greedily select one coordinate per P blocks
o Update each selected coordinate

a Sublinear convergence O(1/k) for separable regularizer r: min) fi(z)+r(z:)

o Big-O constant depends on the maximal correlation among the B blocks
a Hence greedily cluster features (blocks) to reduce correlation

/
{/ Parallel Coordinate Descent with Dynamic Scheduler

[Lee et al., 2014]

o STRADS (STRucture-Aware Dynamic Scheduler) allows scheduling of
concurrent CD updates
o STRADS is a general scheduler for ML problems
o Applicable to CD, and other ML algorithms such as Gibbs sampling

o STRADS improves CD performance via
o Dependency checking
o Update parameters which are nearly independent => small parallelization error
o Priority-based updates
o More frequently update those parameters which decrease objective function faster

; Example Scheduler Program: Lasso

o Schedule step:
o Prioritization: choose next variables 3; to update, with probability proportional to their

historical rate of change » e
P(select B;) ~ (|85 = 8822 + e

o Dependency checking: do not update [3;, By in parallel if feature dimensions j and k
are correlated

|x§azk| < pftorall j #£k
o Update step:
o For all B; chosen in Schedule step, in parallel, perform coordinate descent update

B =By Y — BV +8(XJy— Y XTXkBy), An)

k#j
o Repeat from Schedule step

/
(/ Comparison: Priority vs. Random-scheduling

o Priority-based scheduling converges faster than Shotgun (random)
scheduling

100M features

9 machines
.25 oo
0.2-
| .
2| 2
S| 80.15-
O
@)
v 0.1+
0.05 . .
0 500 1000

Seconds

© Eric Xing @ CMU, 2005-2020 39 ‘g
L 4

Advanced Optimization Techniques

a What if simple methods like SPG, CD are not adequate?

o Advanced technigues at hand

o Complex regularizer: PG
a Complex loss: SPG
o Overlapping loss/regularizer: ADMM

o How to parallelize them” Must understand math behind algorithms

o Which terms should be computed at server
o Which terms can be distributed to clients
a ...

/
/ When Constraints Are Complex:
Algorithm Ill: Proximal Gradient (a.k.a. ISTA)

min f(w) + g(w)

a f:loss term, smooth (continuously differentiable)
a g: regularizer, non-differentiable (e.g. 1-norm)

Projected gradient Proximal gradient
g represents some constraint « g represents some simple function

0, weC * e.g., 1-norm, constraint C, etc.
g(w) = 1c(w) =

o0, otherwise

w—w—nVf(w) w < w—nVf(w) gradient
W < argmin %HW —z||* + 1o (z) W <— arg min %HW —z||* + g(2)

A\ J
-~

o -1 2
= argmin 5 |w — z| proximal map

f Background: Proximal Gradient (a.k.a. ISTA)

a PG hinges on the proximal map [Moreau, 1965]:
Pg(w) = argmin 5 lw — z||* + g(2)
a Ireated as black-box in PG

o Need proximal map efficiently computable, better closed-form

o True when g is separable and “simple”, e.g. 1-norm (separable in each
coordinate), non-overlapping group norm, etc.

a Can be demanding if g = g4+Q,, but vars in g4, g, overlap
o [Yu, 2013] gave sufficient conditions for when g = g++g, can be easily

handled:
Pgl—FQ () — Pgl (PZQ (W))

o Useful when Pj and Pj, available in closed-forms

o E.g. fused lasso (Friedman et al.'07): P, (W) =PI (Pﬁ " (W))

Improvement #1: Accelerated PG (a.k.a. FISTA)

[Beck & Teboulle, 2009; Nesterov, 2013; Tseng, 2008]

a PG convergence rate O(1/(nt))

o Can be boosted to O(1/(nt?))
o Same Lipschitz gradient assumption on f; similar per-step complexity!
o Lots of follow-up work to the papers cited above

Proximal Gradient

Accelerated Proximal Gradient

vl w' —nVf(wh)
u’ « P)(v")
¢

t

witheut+ 0 -(u* —u'”
~—

1

)

no

~~

momentum

vl wl —nVf(wh)
u «— PZ(Vt)
t—1

Wt—|—1 — ut 4+ (ut . ut—l)

t+ 2N

J/

-
momentum

N——

~1

g

P2 (w) = argmin & [l — 2[3 + g(2)

% Parallel (Accelerated) PG

o Bulk Synchronous Parallel Accelerated PG (exact)
o [Chen and Ozdaglar, 2012]
o Asynchronous Parallel (non-accelerated) PG (inexact)

a [Li et al., 2014] Parameter Server T
a General strategy: /’Vt —w' —[nVf(w")

1. Compute gradients on workers u' « P7(v?)

. Aggregate gradients on servers e

3. Compute proximal operator on servers “wt™! « ut + —— (u —u'
4. Compute momentum on servers — fj,_) ~—
5. Send result wi*' to workers and repeat ~pomentum

o Can apply Hogwild-style asynchronous updates to non-accelerated PG, for

empirical speedup
o Open question: what about accelerated PG? What happens theoretically and
empirically to accelerated momentum under asynchrony?

Improvement #2:
Non-Smooth Objectives: Moreau Envelope Smoothing

a So far need f to have Lipschitz cont grad, obtained O(1/t?)

a What if not ?

o Can use subgradient, with diminishing step size = O(1/sqrt(t))
o Huge gap !

o Smoothing comes into rescue, if 7 itself is H-Lipschitz cont
o Approx f with something nicer, like Taylor expansion in calculus 101

a Replace 7 with its Moreau envelope function SN T3 S—
I\/I;Z(w) —mm—Hw 2|12+ f(2) I ___________ _______ ‘_{ AAAAAAA AAAAAAAAAA
Prop.vw 0 < f(w) — M) <ni%2 NN A
. {(w) = W envelope] s Flubers ung (6106 curve)

0 I\/Ilmmlzer gives the proxmal map P (red curve)

/
{/ Smoothing Proximal Gradient

[Chen et al., 2012]

o Use Moreau envelope as smooth approximation
o Rich and long history in convex analysis [Moreau, 1965; Attouch, 1984]

o Inspired by proximal point alg [Martinet, 1970; Rockafellar, 1976]
o Proximal point alg = PG, when f=0

o Rediscovered in [Nesterov, 2005], led to SPG [Chen et al., 2012]

Smoothing Proximal Gradient

H‘l"i’n f(w)+g(w) <=3 original

approx.) =3 mvin M?(W) + g(w) =P’ (w")
a With m=0(1/t) | SPG converges at v w' —nVMi(w')
O(1/(nt*)) = O(1/t) e Py
a Improves subgradient O(1/v/t) e Py(v)
a Requires both efficient & and P’ witl ot & t;; (ut — ut™!)

-
momentum

© Eric Xing @ CMU, 2005-2020 46

% Parallel SPG?

a Difficulty: Gradients replaced by P7(w?)

t t
o Requires P7(w*) to be parallelizable W HVM?(W)
Assuming'this can be done, then: ¢ P (v
| Parallel-computeP;Z(wt) on workers u < g(V)
Aggregate on servers p]
W

t—1
| 1 ¢ ¢ t—1
Compute proximal operator on servers + n ()
Compute momentum on servers ———— ~ T 2N ~~ -
Send result w+' to workers and repeat momentum

o &~ =0

0 égove strategy is exact under Bulk Synchronous Parallel (just like accelerated

o Not clear how asynchrtonous updates impact smoothing+momentum
a Not clear which P (w") can be parallelized
o Open research topic

% Optimization & MCMC Algorithms

o Optimization Algorithms
o Stochastic gradient descent
o Coordinate descent
o Proximal gradient methods
o ISTA, FASTA, Smoothing proximal gradient

o Markov Chain Monte Carlo Algorithms
o Auxiliary Variable methods
o Embarrassingly Parallel MCMC
a Parallel Gibbs Sampling
o Data parallel ALD) Ad D)
a Model parallel s e

% Example Probabilistic Program: Topic Models

N N; N N .
Z Z In PCategorz’cal(J"ij | 2ijs B) + Z Z In I[DCa.tegorical(Zij | (52') B ge';eriat-lfvg t
=1 j=1 =lg—1 SeEoreE

N K
+ Z 11 Poirisniet (51 | Q) B Z In IP)Dz'r'ichlet(-Bk | 3) — Priors on
i=1 i=k parameters

o Generative model
o Fit topics to each word x; in each doc |
o Uses categorical distributions with parameters 6 and B

topic

o Parameter priors

o Induce sparsity in & and B word (~ 1M)
o Can also incorporate structure
o E.g. asymmetric prior doc topic B,

(~1B)

© Eric Xing @ CMU, 2005-2020

49

% Inference for Probabilistic Programs: MCMC and SVI

Markov Chain Monte Carlo: Variational Inference:
Randomly sample each variable in sequence Gradient ascent on variables
Next set of slides on this Can be treated as an optimization problem

4
»

@
N, N;

? Preliminaries:

Speeding up sequential MCMC

o Technique 1: Alias tables

o Sample from categorical distribution in amortized O(1)

“Throw darts at a dartboard”

o Ex: probability distribution [0.5, 0.25, 0.25]

o => aliastable {1, 1, 2, 3} => draw from table uniformly at random

o Technique 2: Cyclic Metropolis Hastings (vuan et al., 2015]
o Exploit Bayesian form P(z=Kk) = Pgigence(K) * Pprior(K)

o Propose z4 from Pgigence(K)
o Accept/Reject z4

a Propose z, from Pyio(K)

o Accept/Reject z, ... repeat

0 Puior(K), Pei(k) cheap to compute with alias table

o Other speedup techniques
o Stochastic Gradient MCMC
o Stochastic Variational Inference

IDprior(z = k) IDevidence(z = k)

p(:z’j = A?lglfij. (51 B) 04

(i + k)|

‘33%'_1 =2 Bk,:l?ij
\%
VB + Zv:l Bk,v

© Eric Xing @ CMU, 2005-2020

51

.

4 Parallel and Distributed MCMC: Classic methods

a Classic parallel MCMC solution 1

o Take multiple chains in parallel, take average/consensus between chains.
o But what if each chain is very slow to converge?
o Need full dataset on each process — no data parallelism!

/ Chain on core 1
N N A) & Al
N g™ . / A D
Al /
\v

& Chain on core 2

\ k Chain on core 3

12 o
0 100 200 300 400 500 800 700 800 S00 1000 0 100 200 300 400 500 600 700 800 §00 1000

Not converged Converged

© Eric Xing @ CMU, 2005-2020

% Parallel and Distributed MCMC: Classic methods

o Classic parallel MCMC solution 2
o Sequential Importance Sampling (SIS)
o Rewrite distribution over n variables as telescoping product over proposals q():

- P (x,)
a SIS algorithm; |7 [e where ax) = s e oy
. Parallel draw samples X\, ~ gn(Xp|X'1:n-1)
. Parallel compute unnorm. wgts. P(x..)
P/_z’4 (leznfl)q,, (X/iz | x]i:nfl)

. Compute normalized weights w', by normalizing ri,

I Ri i
In - Inflan(‘xlzn) - /”4

o Drawback: variance of SIS samples increases exponentially with n
o Need resampling + take many chains to control variance

o Let us look at newer solutions to parallel MCMC...

© Eric Xing @ CMU, 2005-2020 53 g
L

; Solution I: Induced Independence via Auxiliary Variables

[Dubey et al. 2013, 2014]

o Auxiliary Variable Inference: reformulate model as P independent models
o Example below: Dirichlet Process for mixture models
o Also applies to Hierarchical Dirichlet Process for topic models

o AV model (left) equivalent to standard DP model (right)

D,-NDP(S.H). j=1,...,P

P D ~ DP(a,H),
| o Qv O -
b ~ Dlrlchlet<ﬁ ﬁ) <:> 0; ~ D .
T~ @ z; ~ f(0:)
6; ~ Dy,

X,'Nf(@,‘). P = toaaa, N.

% Solution I: Induced Independence via Auxiliary Variables

[Dubey et al. 2013, 2014]

o Why does it work? A mixture over Dirichlet processes is
equivalent to a Dirichlet processes

& &

o ® -
O 0O O

S

DP on Processor 1

Dirichlet Mixture over
Processor DPs 1...P

&

e

O ~ Dirichlet(%. e %)

i~ Q@

DP on Processor P ©Eric Xing @ CMU, 20052020 55

Solution I: Induced Independence via Auxiliary Variables

[Dubey et al. 2013, 2014]

o Parallel inference algorithm:

o Initialization: assign data randomly across P Dirichlet Processes; assign each
Dirichlet Process to one worker p=1..P
o Repeat until convergence:
o Each worker performs Gibbs sampling on local data within its DP

o Each worker swaps its DP’s clusters with other workers, via Metropolis-Hastings:
o For each cluster c, propose a new DP g=1..P
o Compute proposal probability of ¢ moving to p
o Acceptance ratio depends on cluster size

o Can be done asynchronously in parallel without affecting performance

/
f Solution II: Embarrassingly Parallel (but correct) MCMC

[Neiswanger et al., 2014]

o High-level idea:
o Run MCMC in parallel on data subsets; no communication between machines.
o Combine samples from machines to construct full posterior distribution samples.

o Objective: recover full posterior distribution
N
p(0)z") oc p(O)p(z™|0) = p(0) [[;=1 p(z:]0)

o Definitions:
a Partition data into M subsets {z™,...,z"} 1
. . . v i nm
a Define m-th machine’s “subposterior” to be Pm(8) o p(6) ¥ p(z"™[6)
o Subposterior: “The posterior given a subset of the observations with an underweighted
prior”.

; Embarrassingly Parallel MCMC

a Algorithm
1. Form=1...M independently in parallel, draw samples from each subposterior Pm

». Estimate subposterior density product pi-pam(8) « p(8|z"™) (and thus the full
posterior p(d|z™)) by “combining subposterior samples”

o “‘Combine subposterior samples” via nonparametric estimation
1. Given T samples {3} _, from each subposterior pm
o Construct Kernel Density Estimate (Gaussian kernel, bandwidth h):

T

1
~ 1 1 6 — o 1 .
pm(o) _ Rk 75 (” tm”) = T Z Nd(0|6tmvh2ld)

h 1
». Combine subposterior KDESs: o

M T T T 2
PP (0) = Pr-Pu(6) = i [[3 Nal0lO7 L) o 3 > i (o, o)

o where

4 Embarrassingly Parallel MCMC

a Simulations:

o More subposteriors = tighter estimates
o EPMCMC recovers correct parameter
o Nalve subposterior averaging does not!

5 S
- K (3% &\ o
* Dimension 1 ** Dimension 1
Subposteriors (M=10) Subposteriors (M=20)
Posterior Posterior
== === Subposterior Density Product == === Subposterior Density Product
""" Subposterior Average ='='=' Subposterior Average

© Eric Xing @ CMU, 2005-2020 59 g
L

; Solution lll: Parallel Gibbs Sampling

o Many MCMC algorithms

Sequential Monte Carlo [Canini et al., 2009]
Hybrid VB-Gibbs [Mimno et al., 2012]
Langevin Monte Carlo [Patterson et al., 2013]

U 0O 0 O

o Common choice in tech/internet industry:
a Collapsed Gibbs sampling [Griffiths and Steyvers, 2004]
a e.g. topic model Collapsed Gibbs sampler:

":lj),r'ij + Bk -Tz_]

p(zi5 = k|aiz, 0s, B) o< (Bak + ag)
R RS >

/
{/ Properties of Collapsed Gibbs Sampling (CGS)

"'3Tij £ Bk,fﬂz‘j
r vV
‘:’” ‘ij) —I— Z V— l B k g vV

P(—’«'ij = /{|;L’ij. (52 B) X ((szk .3 Cl‘k.) '

a Simple equation: easy for system engineers to scale up

o Good theoretical properties

o Rao-Blackwell theorem guarantees CGS sampler has lower variance (better
stability) than naive Gibbs sampling

o Empirically robust
o Errorsin §, B do not affect final stationary distribution by much

o Updates are sparse: fewer parameters to send over network

o Model parameters 0, B are sparse: less memory used
o If it were dense, even 1M word * 10K topic = 40GB already!

CGS Example: Topic Model sampler

Y *3:1: +ka..
])(:z] e kll’.ija Oz B) oXC L £ ak) 1 , ij_ Tij
L Vp +[Zz‘;/:1 Bk,zJ

topics k words v (~ 1M)

topics k B topics k

“Word-topic
summary table”

docs i
(~1B)

7 Data Parallelization for
4 CGS Topic Model Sampler

"39313"_‘_ Bk,ﬂ?z‘j .

s +[Zz‘;/:l Bk‘ﬂJ

Bz = K|iay, 05,.8) & @ik + ag) - -

topics k words v (~ 1M)

doc

partition . B I

doc E3 model
partition replica
doc

model
replica

model
replica

% Data-Parallel Strategy: Approx. Distributed LDA

[Newman et al., 2009]

o Step 1: broadcast central model

% Data-Parallel Strategy: Approx. Distributed LDA

[Newman et al., 2009]

o Step 1: broadcast central model

% Data-Parallel Strategy: Approx. Distributed LDA

[Newman et al., 2009]

o Step 2: Perform Gibbs sampling in parallel

N N .

% Data-Parallel Strategy: Approx. Distributed LDA

[Newman et al., 2009]

a Step 3: commit changes back to the central model

N N .

Data-Parallel Strategy: Approx. Distributed LDA

[Newman et al., 2009]

o Approximate
o Convergence not guaranteed — Markov Chain ergodicity broken
o Results generally “good enough” for industrial use

o Bulk synchronous parallel
o CPU cycles are wasted while synchronizing the model
o Asynchronous and bounded-asynchronous extensions possible [Smola et al.,
2010; Ahmed et al., 2012, Dai et al., 2015]

a How to overlap communication and computation for better efficiency?

% Error in data-parallel LDA

a Consider the CGS equation:
,:'_'3131.]. —+ Bk,m,;j

V34 Zz/: 1 B

a Data-parallelism incurs error in B (the pink box) and the summation term
(the gray box)
o Both quantities are duplicated onto workers; their values become stale as

sampling proceeds
o True even for bulk synchronous parallel execution!

o Asynchrony helps somewhat
o Communicate very frequently to reduce staleness

o Is there a better solution?

p(zij = klai, 0, B) o< (G + ax) -

% Model-Parallel Strategy 1: GraphLab LDA

[Low et al., 2010; Gonzalez et al., 2012]

o Think graphically: token = edge
,Bazij + B’C,ﬂ_’fz‘j
VB +HY o1 By

p(Zz'j = /1.";137;]', i, B) X @ik —+ Ok) .

— _ Word-topic
summary table
I
I __ words Row =
docs — topic k
/T
I —
Column

— = topic k

Column

= topic k

% Model-Parallel Strategy 1: GraphLab LDA

[Low et al., 2010; Gonzalez et al., 2012]

o Model-parallel via graph structure Word-topic
summary table

copy on worker 1
doc word (copy)

Worker 1 \ ‘//'
— -

Worker 2 '/->

Word-topic
summary table
(copy on worker 2)

© Eric Xing @ CMU, 2005-2020

Model-Parallel Strategy 1: GraphLab LDA

[Low et al., 2010; Gonzalez et al., 2012]

o Asynchronous communication
o Overlaps computation and communication — iterations are faster

o Model-parallelism means each machine only stores a subset of statistics
o Less memory usage if implemented well

o Drawback: need to convert problem into a graph
o Vertex-cut duplicates lots of vertices, canceling out savings

a Are there other ways to partition the problem?

% Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)

[Yuan et al., 2015]

topic word (~ 1M)

o Topic model matrix structure: topic topicl

doc
(~1B)

o ldea: non-overlapping matrix partition:

Source: [Gemulla et al., 2011]

% Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)

[Yuan et al., 2015]

o Non-overlapping partition of the word count matrix
o Fix data at machines, send model to machines as needed

le Zl2 213 le Zl2 Zl3 le Zl2 Z13 .
721| 722| 723 721 722|723 721| 722| 723 ,::>
ZSI 232 Z33 Z31 Z32 Z33 Z31 Z32 Z33 . .

Z1 Zo Z3

Source: [Gemulla et al., 2011]

% Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)

[Yuan et al., 2015]

o During preprocessing: determine set of words used in each data block [l
o Begin training: load each data block from disk

sequential read

)

disk == C N

% Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)

[Yuan et al., 2015]

a Pull the set of words
from Key-Value store Key-value store

sequentlal read

disk .. Local model copy

] I\

Local copy of word-
topic summary table

% Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)

[Yuan et al., 2015]

a Sample, write result to disk,
send changes back to KV-store Key-value store

sequentlal read

II
disk ..

"\/ |\

sequential write

Local copy of word-
topic summary table

Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)

[Yuan et al., 2015]

o Model-parallel advantage: disjoint words/docs on each machine
o Gibbs sampling almost equivalent to sequential case

o More accurate than data-parallel LDA
o Fast, asynchronous execution possible

o Compared to GraphLab LDA:
a Simple partitioning strategy — less system overheads, easier to implement

o Need to be careful about load imbalance (some docs will touch a particular
word more times than others)

o Solution: pre-group documents by word frequency

% Error in model-parallel LDA

o Recall the CGS equation:

Beo: By
p(zi5 = klrij, 0)O<k+0‘k)' 2 -

V34 Zz/: 1 B

o Model-parallelism only has error in summation term (gray box)
o Summation term is very large for Big Data (billions of docs) => error
negligible
o Compared to data-parallelism: error due to B (pink box) eliminated

; Distributed ML Algorithms — Summary

o Parallel algos for Optimization and MCMC share common themes

Q

Q

a
a

Embarrassingly parallel: combine results from multiple independent problems, e.g.
PSGD, EP-MCMC

Stochastic over data: approximate functions/ gradients with expectation over subset
of data, then parallelize over data subsets, e.g. SGD

Model-parallel: parallelize over model variables, e.g. Coordinate Descent

Auxiliary variables: decomposeé)roblem by decoupling dependent variables, e.Q.
ADMM, Auxiliary Variable MCM

o Considerations

Q

a
a

Regularizers, model structure: may need sequential proximal or projection step, e.g.
Stochastic Proximal Gradient

Data partitioning: for data-parallel, how to split data over machines?

Model partitioning: for model-parallel, how to split model over machines? Need to be
careful as model variables are not necessarily independent of each other.

Vo
" PETUUM

g) Carnegie Mellon University

Part 2: Distributed Systems for ML

; Distributed Systems for ML

o Just now: Exploit algorithmic and mathematical properties of ML learning
and inference algorithms, to create etficient distributed ML algorithms

o Once model has been learnt, prediction is (usually) embarrassingly parallel —
given nmachines, duplicate the learnt model and give each machine 1/7 of
the samples to be predicted

a What about the systems properties of real-world machines?

There Is No Ideal Distributed System!

o Two distributed challenges:
o Networks are (relatively) slow
o “ldentical” machines rarely perform equally

performance 1 A AV el

Low bandwidth,
High delay

Async execution:

May diverge
/

0.2

0.1
0)

//
<
1

0.5

BSP execution:
Long sync time

8000 1
7000 -
% 6000
5000 -
=
Q 4000 -
L 3000 7
wn
2000 -
1000

B Network waiting time

n Compute time

0 -
0

8 16 24 32

© Eric Xing @ CMU, 2005-2020

83

; There Is No Ideal Distributed System!

o Implementing high-performance distributed ML is not easy
o If not careful, can end up slower than single machine!

Q

System bottlenecks (load imbalance, network bandwidth & latency) are not trivial to
engineer around

a Even if algorithm is theoretically sound and has attractive properties, still need
to pay attention to system aspects

O 0 0 0 O

Bandwidth (communication volume limits)

Latency (communication timing limits)

Data and Model partitioning (machine memory limitation, also affects comms volume)
Data and Model scheduling (affects convergence rate, comms volume & timing)
Non-ideal systems behavior: uneven machine performance, other cluster users

/
(/ A General Picture of ML lterative-Convergent Algorithms

A Updates
Read +
—F— Read Write
\4
— = —
\4
——
—— Iterative Algorithm
T) |A =A(AYYD) At-1)
t) _]
D AW _F(A()7 A) Model Parameters
F() Aggregate + at iteration (t-1)
Data A Intermediate Updates

4 Issues with Hadoop and
I-C ML Algorithms?

Iterakion 1

Distributed File System

Distributed File System

Distributed File System

Image source: dzone.com

HDFS Bottleneck

Naive MapReduce not best for ML

e Hadoop can execute iterative-convergent, data-parallel ML...
o map() to distribute data samples i, compute update A(D;)
o reduce() to combine updates A(D,)
o lterative ML algo = repeat map()+reduce() again and again
e But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations! :

© Eric Xing @ CMU, 2005-2020 86

Good Parallelization Strategy is Important

0.2
<€
ML on ML on
epoch 3 - epoch m
01—
0 0.5
Write Write Write Write
outcome to outcome to outcome to - outcome to
KV store KV store KV store KV store 8000 1
7000 7 B Network waiting time

- '% 6000
Barrier ? o 5000 1
Q 4000 1
Q 3000 1

Collect

outcomes and Do nothing

B Compute time

aggregate

[75]
2000 -
. a 1000 A
DIl G I — — — - Do nothing 0
0
for (t =11toT) {
doThings()
parallelUpdate(x,0)

>

doOtherThings()
}

© Eric Xing @ CMU, 2005-2020

87

/

{/ Data Parallelism

Additive Updates

A :éAP

A = A(A(t‘l),Dl) N

|:[>
—
L

@@W

< >

t1D3

Alt) — F(A(t—l), A)

Alt=1)

(/ Model Parallelism

Read +

N Write

\ A1S1€S Atl

| == >®<}:>

— 1 Ay S, e S ,AWY D
~——
v @

Concatenating updates

A ={A,} |AY=FAED A

Scheduling
Function
S = 5(at-D p)
;91€E<S
5&)
S: €8
Alt=1)

model parameters not
updated in this

H H © Eric Xing @ CMU, 2005-2020 89
iteration

3

% A Dichotomy of Data and Model in ML Programs

Data Parallelism Model Parallelism

<€
B

\

CRIE
X
%

g
\
X

g

ATENATAYI

Shared =2
Data Data-Parallel podel Shared 'I:’n:rgﬁlel 'F"nz’;':f"ed

Partitions Workers States Data Workers States

D LD, | 0, Vi j 0; £ 0; | D, (i, 4)

% Data+Model Parallel:
Solving Big Data+Model

Model (edge weights)

Update
(backpropagation)

\\’ / S \
NS

L1l
256x256

L2

128x128| 64x64

L3

Data & Model both big!
Millions of images,
Billions of weights

What to do?

Data (images)

—

© Eric Xing @ CMU, 2005-2020

91

% Data+Model Parallel:

Solving Big Data+Model

BackP algo

Tackle Deep Learning scalability
challenges by combining
data+model parallelism

BackP algo

BackP algo

N~

BackP algo

o

BackP algo

N~

BackP algo

D= {D17D27"°7Dn}

— —

6 =10,

N~

BackP algo

T T
L

N~

BackP algo

* ek:T}T

N~

BackP algo

o,
i

© El ing @ $MU, 2005-2020

92

P

/
{/ How difficult is data/model-parallelism?

o Certain mathematical conditions must be met

a Data-parallelism generally OK when data IID (independent, identically

distributed)
o Very close to serial execution, in most cases

o Naive Model-parallelism won't work
o NOT equivalent to serial execution of ML algo
o Need carefully designed schedule

4

Intrinsic Properties of ML Programs

o ML is optimization-centric, and admits an iterative convergent algorithmic solution
rather than a one-step closed form solution

a Error tolerance: often robust against limited w)
errors in intermediate calculations =

o Dynamic structural dependency: changing correlations
between model parameters critical to efficient parallelization

a Non-uniform convergence: parameters
can converge in very different number of steps

o Whereas traditional programs are transaction-centric, thus only guaranteed by atomic
correctness at every step

© Eric Xing @ CMU, 2005-2020

94

% Challenges in Data Parallelism

o Existing ways are either safe/slow (BSP), or fast/risky (Async)

o Challenge 1: Need “Partial” synchronicity
o Spread network comms evenly (don’t sync unless needed)
o Threads usually shouldn’t wait — but mustn’t drift too far apart!

o Challenge 2: Need straggler tolerance
o Slow threads must somehow catch up

BSP Async
Thread 1 Thread 1 _—
Thread 2-» 3 2 Thread 2 .»q“»““
Thread 3 “ “ Thread 3 .»ﬂﬂl»ﬁq
Thread =) =) 2727 ivead + I NER) NER) D HER) W)

s:@ Spqr‘lgz Is persistent memory really necessary for ML? g

hadatgp © Eric Xing @ CMU, 2005-2020

/
f Is there a middle ground for data-parallel consistency?

o Challenge 1: “Partial” synchronicity

o Spread network comms evenly (don’t sync unless needed)
o Threads usually shouldn’t wait — but mustn’t drift too far apart!

o Challenge 2: Straggler tolerance
o Slow threads must somehow catch up

Force threads to sync

up

Thread 1 |

>)

Thread 2 MY MER) EEENED
Thread s MR MER HERp
Thread s iy MER) MERD

Thread 1 catches up by
reducing network comms

HcHe>D
))

RETENEN
BNENEN

Time

; High-Performance Consistency Models
for Fast Data-Parallelism et 2013

,,,,,, =) | | =) —)
,,,,,, =) —) —)
Staleness Threshold 3 - :b H? H—-»H
I R D —) m))) mxn)
Thread 1 _—- ~~~~~~))))))
A - =)) m) w3))

: : 1N .
:/r\ i i I Thread 1 will always see
Thread 2 _ : : : - these updates
g e
: : : :> Thread 2 may not see
Thread 4 _ ' ' > E these updates (possible error)
I I I I I I I l I I >
0 1 2 3 4 5 6 7 8 9 Iteration

Stale Synchronous Parallel (SSP), a “bounded-asynchronous” model

+ Allow threads to run at their own pace, without synchronization
* Fastest/slowest threads not allowed to drift >S iterations apart
 Threads cache local (stale) versions of the parameters, to reduce network syncing

Consequence:

+ Asynchronous-like speed, BSP-like ML correctness guarantees
* Guaranteed age bound (staleness) on reads
+ Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached © Eric Xing @ CMU, 2005.2020

97

; Improving Bounded-Async via Eager Updates

[Dai et al., 2015]

o Eager SSP (ESSP) protocol
o Use spare bandwidth to push fresh parameters sooner

o Figure: difference in stale reads between SSP and ESSP
o ESSP has fewer stale reads; lower staleness variance
o Faster, more stable convergence (theorems later)

0.4

0.3

0.1

0

M SsP

M ESSP

v

-10

-5

4 Async Speed + BSP-like Guarantees, across algorithms

a Scale up Data Parallelism without long BSP synchronization time

o Effective across multiple algorithms, e.g. LDA, Lasso, Matrix
Factorization:

Log-Likelihood

-9.00E+08 T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600 1800
-9.50E+08 T T T 1 + - |

-1.00E+09 7
-1.0SE+09 7
-1L10E+09 T
-1.15E+09 T
-1.20E+09 7
-1.25E+09 7

-1.30E+09

LDA on NYtimes Dataset

LDA 32 machines (256 cores), 10% docs per iter

~*=BSP (stale 0)

®=stale 32

“Frasvne

Seconds

LDA

2000

o
>
o
-
Q
o
o=
2
o

Objective function versus time .
Lasso 16 machines (128 threads) ~#BSP (stale 0)
+
4.80E-01 T “®-stale 10 1 40E+09
1.20E+09
4.70E-01 “*stale 20
o 1.00E+09
4.60E-01 1 —“stale 40 Z
£ 8.00E+08 7
5 T T s Sl .QH
4.50E-01 stale 80 5 6.00E+08 -
\ o
4.40E-01 —N \ 4.00E+08 7
430601 | ; - i 2.00E+08
£.20E.01 + | | ! | ! | ! 0.00E+00
0 500 1000 1500 2000 2500 3000 3500 4000

Seconds

LASSO

Objective function versus time
MF 32 machines (256 threads)

=*=BSP (stale 0)

“stale 7

0 500 1000 1500 2000

Seconds

Matrix Fact.

© Eric Xing @ CMU, 2005-2020

99

s

/
(/ Challenges in Model Parallelism

o Recall Lasso regression:

min |y — XAl + A) 161
J

o

Nl Y = X |
&

A huge number of parameters

(e.g.) J =100M

% Challenge 1: Model Dependencies

o Concurrent updates ofy may induce errors

Sequential updates

b
I —
B

Concurrent updates

Induces parallelization error

(t) — S(X1Y —

Need to check x4Tx,
before updating
parameters

X{Xgﬁét_l)

)

; Challenge 2: Uneven Convergence Rate on Parameters

Parameters converge at different rates Parameters converge at similar rates

R
o
=)
<
@
q
«Q
®
o

R
o
=)
<
®
q
«Q
®
o

Remaining time to convergence Remaining time to convergence

Time-to-convergence determined by slowest parameters
How to make slowest parameters converge quicker?

% Is there a middle ground for model-parallel consistency?

o Existing ways are either safe but slow, or fast but risky

a Challenge 1: need approximate but fast model partition

o Full representation of data/model, and explicitly compute all dependencies via graph cut is not
feasible

a Challenge 2: need dynamic load balancing
o Capture and explore transient model dependencies
o Explore uneven parameter convergence

Graph Partition Random Partition

@,”E{ 27272

[
: g’ Is full consistency really
7><r necessary for ML?

v y
© Eric Xing @ CMU, 2005-2020 103 g
L 4

% Structure-Aware Parallelization (SAP)

[Lee et al., 2014; Kumar et al., 2014]

O Careful model-parallel execution: O Simple programming:
_ O Structure-aware scheduling O Schedule()
_/ - - - - -
data U Variable prioritization Q Push()
partition O Load-balancing Q Pull()
~—
S
model schedule() ({
partition // Select U vars x[j] to be sent
—_— // to the workers for updating
worker Ry
return (X[.117 ey X[EHUL)
~— 1 }
data push (worker = p, vars = (x[3j_1],...,x[j_U])) {
partition // Compute partial update z for U vars x[j]
—_— // at worker p
model return z
partition }
~—
worker pull (workers = [p], vars = (x[j_1],...,x[j_U])
updates = [z]) {
// Use partial updates z from workers p to
P —— // update U vars x[j]. sync() is automatic.
~— 1
data }
partition
~—
S
model
partition
e

worker
© Eric Xing @ CMU, 2005-2020 104
L 4

; Schedule 1: Priority-based [Lee et al., 2014]

o Choose params to update based on convergence progress
o Example: sample params with probability proportional to their recent change
o Approximately maximizes the convergence progress per round

Shotgun [Bradley et al. 2011]

Uniform
distribution

A X

61 52 61 62

B3 P4

Priority-based scheduling

p(j) o (5x§.t‘1)>2 +e

/\m
N
61 52 63 64 -
B3 Ba]
N

% Schedule 2: Block-based (with load balancing)

[Kumar et al., 2014]

Partition data & model into d x d blocks
Run different-colored blocks in parallel

Vi

Vs

Vs

Vi

| %)

Vs

U,

z\M

Us

U,

Us

Blocks with less data/para or experience less
straggling run more iterations
Automatic load-balancing + better convergence

1
Z3

Us

Us

U,

Us

U;

Vi

Va

© Eric Xing @ CMU, 2005-2020

106

/
f Structure-aware Dynamic Scheduler (STRADS)

[Lee et al., 2014, Kumar et al., 2014]

STRADS
Check All Variables * Priority Scheduling
Variable
Dependency
2
. (t—1)
Generate Sample Variables {69} (561 aa
Blocks of [€ .
Variables to be Updated ~ p(/)
[S—_ .
« Block scheduling
Blocks of variables
= | I V| Vs
4 I I . s
Worker 1]I] []l L :> Sync Uy &
- | 4 4 <€ barrier
Worker 2 J I] —> 0, /X
: ! » — ug
‘ : 7
Worker 3 J]: } : JI::> Us i
) ((h [Kumar, Beutel, Ho aqd X_ing,_ Fugue:
Worker 4]] — veming TS S
L p 1 ~)I)

Round 1 Round 2 Round 3 Round 4

© Eric Xing @ CMU, 2005-2020

/
/ Avoids dependent parallel updates,
attains near-ideal convergence speed

o STRADS+SAP achieves better speed and objective

2.5M vocab, 5K topics

100M features 80 ranks
9 machines 9 machines ;
025 Y Lo xi0° Sgmechines
—STRADS —STRADS —&
---Lasso-RR ---GraphLab
0.2+
()
=
T T B - e N 8 4 ——
o]
(@]
0.1+
—STRADS
. ---YahooLDA|
0.05 T T 0.5 T T w -3.5-+ T T . x 7
0 500 1000 0 50 100 150 0 1 2 3 4 5
Seconds Seconds Seconds % 10*
Lasso MF LDA

© Eric Xing @ CMU, 2005-2020

108

Efficient for large models

o Model is partitioned => can run larger models on same hardware

Lasso LDA
< 10° 9 machines 64 machines
6 ; 900
I STRADS 1400
5 Bl LassoRR 12004 800
700+
P I 1000- k-
3 9 3
& 2 800- € 500
O3 o (e}
S o $ 400-
& D 600 a
21 N 300
400- 200-
1 M . """""""""""" 200 100
o L - k k k k
10M 50M 100M 0 40 80 160 320 1000 2000 25M/5k 2.5M/10k 21.8M/5k 21.8M/10
Features Ranks Vocab/Topics

© Eric Xing @ CMU, 2005-2020

109

/
{/ Theory of real-world distributed ML systems

o What guarantees still hold in parallel setting? Under what conditions?

o Computational and communications costs cannot be ignored
o Real-world ML running time is heavily influenced by them

o Asynchronous or bounded-async approaches can empirically work better than
synchronous approaches

o Async => no serializability... why does it still work?

o Parallelization requires data and/or model partitioning
o Want partitioning strategies that are provably correct
o When/where is independence violated? What is the impact on algorithm correctness?

© Eric Xing @ CMU, 2005-2020 110 g
L

% Background: Bridging Models for Parallel Programming

o Bulk Synchronous Parallel [vaiiant, 1990] is a bridging model
o Bridging model specifies how/when parallel workers should compute, and
how/when workers should communicate
o Key concept: barriers
o No communication before barrier, only computation
o No computation inside barrier, only communication

o Computation is “serializable” — many sequential theoretical guarantees can
be applied with no modification

Thread1 NN 2 2
Thread 2 -» “
Thread3 EEEIEEp ——
Thread 4 -» ﬂ

!

(/ Background: Bridging Models for Parallel Programming

o Bounded Asynchronous Parallel (BAP) bridging model

o Key concept: bounded staleness [Ho et al., 2013; Dai et al., 2015]
o Workers re-use old version of parameters, up to s iterations old — no need to barrier
o Workers wait if parameter version older than s iterations

Staleness Threshold 3

>
l
T
I
I

Thread 1

I
Thread 3 E

Thread 4

%
1 2 3 4 5 6 7 8 |teration

o

/
{/ Background: Types of Convergence Guarantees

o Regret/Expectation bounds on parameters
o Better bounds => better convergence progress per iteration

o Probabilistic bounds on parameters
o Similar meaning to regret/expectation bounds, usually stronger in guarantee

o Variance bounds on parameters
o Lower variance => higher stability near optimum => easier to determine
convergence

a Guarantees can be for Data-parallel, Model-parallel, or Data+Model-
parallel

% BAP Data Parallel: Why can’t we do value-bounding?

o Seemingly-natural Idea: limit model
parameter difference A6, = (|6, — 8|
between machines i,j to not exceed a
given threshold

o Not practical!

o To guarantee that AB;; has not exceeded the
threshold, machines must wait to communicate
with each other

o No improvement over synchronous execution!

o Rather than controlling parameter
difference via magnitude, what about via
iteration count?

o Thisis the (E)SSP communication model

© Eric Xing @ CMU, 2005-2020

114

% BAP Data Parallel: (E)SSP model

[Ho et al., 2013; Dai et al., 2015]

Staleness Threshold 3
<€

v

Thread 1

| l :
| 1 1 | 1 -
| | I | Thread 1 will always see
Thread 2 —::> : : : : - these updates
1 1 [1
s> | > |
I | | I : :> Thread 2 may not see
1 1 | 1 .
Thread 4 _ : > | : these updates (possible error)
1 1 I 1
| : : l :
l l l l l l l l I I >
0 1 2 3 4 5 6 7 8 9 Iteration

Stale Synchronous Parallel (SSP)

+ Allow threads to run at their own pace, without synchronization
* Fastest/slowest threads not allowed to drift >S iterations apart
 Threads cache local (stale) versions of the parameters, to reduce network syncing

Consequence:

+ Asynchronous-like speed, BSP-like ML correctness guarantees
* Guaranteed age bound (staleness) on reads
+ Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached © Eric Xing @ CMU, 2005.2020

115

BAP Data Parallel: (E)SSP Regret Bound

[Ho et al., 2013]

a Goal: minimize convex f(x) = A7, fi(x)
Example: Stochastic Gradient)

L-Lipschitz, problem diameter bounded by F?

a
o Staleness s, using P threads across all machines

i s i iy 2 A |
a USG Step Slzent = <fE with o = L\m

a (E)SSP ConvergeS according to Next state = previous state + noisy gradient
o Where T is the number of iterations Difference between
SSP estimate and true optimum
A
(A

s L (s +1)P
thz:lft(xt)] — f(x)S4FL\/ T

o Note the RHS interrelation between (L, F) and (s, P)

o Aninteraction between model and systems parameters
o Stronger guarantees on means and variances can also be proven

R[X] :=

© Eric Xing @ CMU, 2005-2020

116

4

Intuition: Why does (E)SSP converge?

SSP approximates sequential execution

Staleness Threshold 3
: > e <(C(2s—1)
Thread 1 :)
Thread 2 -2 Sequential execution
Possible error
Thread 3 > windows for this
update: = =
]
Thread 4
4 } } } ; : : . L e
0 1 2 3 4 5 6 7 8 9 Clock

o Number of missing updates bounded

o Partial, but bounded, loss of serializability
o Hence numeric error in parameter also bounded
o Later in this tutorial — formal theorem

© Eric Xing @ CMU, 2005-2020

17

/
ﬁ SSP versus ESSP: What is the difference?

a ESSP is a systems improvement over SSP communication
o Same maximum staleness guarantee as SSP

o Whereas SSP waits until the last second to communicate...
o ... ESSP communicates updates as early as possible

a What impact does ESSP have on convergence speed and stability?

0.5

—S8SP
0.4f [—ESSP

o

3

/
f BAP Data Parallel: (E)SSP Probability Bound

[Dai et al., 2015]

0.2

0.1

Let real staleness observed by system be ¢ e
Clock Differential
Let its mean, variance be 1y = E[y], o, = var(y)

Theorem: Given L-Lipschitz objective f; and stepsize h,,

RIX] 1 e i
P [X _ (nL2 +—+ 277L2/t~/> £ T] = exXP {57 : }
n 2’I7T0'7

2 ¢
/5 T 4 -snL2(2s4 L)Pr
Gap between current Penalty due to high Penalty due to high
estimate and optimum avg. staleness ug,, staleness var. o,
2714
1 2! it " - _ n°L°(nT+1)
RIX] =) fi(@) — f(x¥) nro = T . O(T)

Explanation: the (E)SSP distance between true optima and current
estimate decreases exponentially with more iterations. Lower staleness
mean, variance i~ ,% improve the convergence rate.

Take-away: controlling staleness mean .y, variance o~ (on top of max
staleness s) is needed for faster ML convergence, which ESSP does.

© Eric Xing @ CMU, 2005-2020 119 g
L 4

0.5

—S8SP
0.4f [—ESSP

% BAP Data Parallel: (E)SSP Variance Bound

[Dai et al., 2015] s

0.1

—q0—9 -8-7-6-5-4-3-2-1 0

Theorem: the variance in the (E)SSP estimate is Soek Ciferentia
Var¢41 = Var; — 2npcov(xe, B2 [gy]) + O(n:€e)
+ O(n;p7) + O,

where
cov(a,b) := Ela’b] — Ela’]E[b]

and O, represents 5th order or higher terms in ~,

Explanation: The variance in the (E)SSP parameter estimate monotonically
decreases when close to an optimum.

Lower (E)SSP staleness 7t => Lower variance in parameter => Less
oscillation in parameter => More confidence in estimate quality and
stopping criterion.

Take-away: Lower average staleness (via ESSP) not only improves
convergence speed, but also yields better parameter estimates g

© Eric Xing @ CMU, 2005-2020 120

/
f ESSP vs SSP: higher stability helps empirical performance

o Low-staleness SSP and ESSP converge equally well

a But at higher staleness, ESSP is more stable than SSP
o ESSP communicates updates early, whereas SSP waits until the last second
o ESSP better suited to real-world clusters, with straggler and multi-user issues

MF, Convergence per second
9 (10% minibatch)

x 10

SSP s=0
—SSP s=2
—3S5Pis=3

SSP s=5
—SSP s=10
-- ESSP s=0
-—ESSP §=10

200 400 600 800
Seconds

% BAP and Model-parallel?

o Further Reading
o On Convergence of Model Parallel Proximal Gradient Algorithm for Stale Synchronous
Parallel System, Zhou et al., AISTATS 2016

o Intuition
o Model-parallel sub-problems become nearly independent with proper scheduling
o Has similarities to Hogwild [Rrecht etal., 2011], but...
o Hogwild relies on atomic operations for consistency — only practical for single-machine

BAP+Model-parallel relies on BAP for consistency — implementable for real-world
distributed systems

o Potentially better per-iteration convergence than BAP data-parallel

© Eric Xing @ CMU, 2005-2020 122

/
{/ Scheduled Model Parallel: Dynamic/Block Scheduling

[Lee et al. 2014, Kumar et al. 2014]

STRADS
VCh_eck All Variables * Priority Scheduling
ariable
Dependency
2
A (t—l))
Generate Sample Variables {6‘7} (6‘7 1
Blocks of [€ .
Variables to be Updated ~ p(/)
S .
J m * Block scheduling
Blocks of variables
) @ | p | | (Vs Vs
| | -
Worker 1]I 4] []l L :> Sync v, ("
% I ¢ ((< barrier
Worker 2 J I I — Us a
> 1 Iy —
(1)
Worker 3 J]: } : 1::} Uy 2
(—1 (e e ‘1
Worker 4]] >
——— T p 1 ~)I)

Round 1 Round 2 Round 3 Round 4

© Eric Xing @ CMU, 2005-2020

o
N

Objective
o
o

Scheduled Model Parallel:
Dynamic Scheduling Expectation Bound

[Lee et al. 2014]

o
-

o
o
a

500 1000

o

o Goal: solve sparse regression problem min ||y — Xﬁ||2 + A Z |5,
a Via coordinate descent over “SAP blocks” X&), X3, ..., X(®)
o X® are the data columns (features) in block (b)
o P parallel workers, M-dimensional data
a p = Spectral Radius[BlockDiag[(X(V)"X("), . (X(t))TX(t)]] this block-
diagonal matrix quantifies the maximum Ievel of correlation (and hence
problem difficulty) within all the SAP blocks XM, X, ..., X

o SAP converges according to

o Where tis # of iterations
Gap between current SAP explicitly minimizes p, ensuring

parameter estimate and optimum as close to 1/P convergence as possible

:) T oM) 1 1
E [f(X(t)) - f(X*)] e (O(é ;=0 (ﬁ)
M

o Take- awa;/ SAP minimizes p by searching for feature subsets X4,
X, ..., X®) without cross-correlation => as close to P-fold speedup as

poss | b le
© Eric Xing @ CMU, 2005-2020 124 g
L 4

4 Scheduled Model Parallel:
Dynamic Scheduling Expectation Bound is near-ideal

[Xing et al. 2015]

Let gedeal(y be an ideal model-parallel schedule
Let 5(’5) be the parameter trajectory due to ideal scheduling

1deal

Let 555) be the parameter trajectory due to SAP scheduling
Yyn

Theorem: After t iterations, we have

2IM
(t+1)2

Explanation: Under dynamic scheduling, algorithmic progress is nearly
as good as ideal model-parallelism.

Intuitively, this is because both ideal and SAP model-parallelism
minimize the parameter dependencies between parallel workers.

XX

B8, — 80 1<C

rdeal

/
/ Scheduled Model Parallel:
Dynamic Scheduling Empirical Performance

o Dynamic Scheduling for Lasso regression (SMP-Lasso): almost-ideal
convergence rate, much faster than random scheduling (Shotgun-Lasso)

Shotgl;un-Lasslo,m=8 I
SMP-Lasso,m=8

0.016+
0.012+
0.008 -

0.004 | 1 :
0 2000 4000 6000 8000
time (seconds)

objective value

4 Scheduled Data+Model Parallel:
Block-based Scheduling (with load balancing)

[Kumar et al. 2014]

Partition data & model into d x d blocks
Run different-colored blocks in parallel

Vi

Vs

Vi

| %)

Vs

U,

zM

U

U,

Us

Blocks with less data/para or experience less
straggling run more iterations
Automatic load-balancing + better convergence

Us

Us

U,

Us

U;

Vi

Vs

© Eric Xing @ CMU, 2005-2020

127

4 Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 1

[Kumar et al. 2014]

a Variance between iterations S,+1 and S, is:

Var(‘Ilsn+1)

=Var(¥s,) —[2ns,| > niQfvar(v§))

i=1

-I2ns,, Z n,-QéCoVar(t/)gn ; Slsn) + ngn Z n,Q; +|O(As,)
i=1]

o Explanation:
a higher order terms (red) are negligible
o => parameter variance decreases every iteration

o Every iteration, the parameter estimates become more stable

4 Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 2

[Kumar et al. 2014]

a Intra-block variance: Within blocks, suppose we update the parameters ¥
using n; data points. Then, variance of) after those n; updates is:

VC”“WHM) :V‘”"(lbt) o Zmniﬂo(Var(wt))
— 20:n;QoCoV ar (v, (S_t) + ntznin

[+ O(n; pe) + O(mepy) + O(m;) + 0(77?9?%
A

o Explanation:
o Higher order terms (red) are negligible
o => doing more updates within each block decreases parameter variance,
leading to more stable convergence

o Load balancing by doing extra updates is effective

Scheduled Data+Model Parallel:
Block-Scheduling Empirical Performance

o Slow-worker Agnostic Block-Scheduling (Fugue) faster than:

o Embarrassingly Parallel SGD (PSGD)
o Non slow-worker Agnostic Block-Scheduling (Barriered Fugue)

a Slow-worker Agnostic Block-Scheduling converges to a better optimum
than asynchronous GraphlLab
o Reason: more stable convergence due to block-scheduling

0.8
0.75
0.7 |
0.65
0.6
0.55 [he .
0.5 [} *
0.45

Fugue —e—
Barriered Fugue —=—
GraphLab

SGD —»—

o Task: Imagenet Dictionary Learning
o 630k images, 1k features

——— e h

Objective Value

0 4000 8000 12000 16000 20000
Time (seconds)

© Eric Xing @ CMU, 2005-2020 130

s

Distributed ML Systems — Summary

o Real-world distributed systems are never ideal
o Slow communication, uneven computation speed
o Naive Bulk Synchronous Parallel (BSP) can be slower than non-parallel implementation!

o Solution 1: Bounded-Asynchronous Parallel (BAP)
o Exploit properties of ML algorithm convergence
o Stale communication mitigates non-idealness in distributed systems
o Applicable to data-parallel and model-parallel strategies

o Solution 2: Scheduled Model Parallelism (SMP)
o Exploit ML model structural properties
o Re-ordering of computation mitigates non-idealness in distributed systems
o SMP is a model-parallel strategy that is compatible with data-parallelism

o Theoretical analysis
o Convergence guarantees exist for BAP, SMP

o Rates are influenced by
o ML model/algorithm properties: learning rates and model structure
o Distributed systems properties: number of parallel machines, staleness

© Eric Xing @ CMU, 2005-2020

131

s

