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Challenge 1 – Massive Data Scale



1B+ USERS
30+ PETABYTES

645 million users
500 million tweets / day

100+ hours video 
uploaded every minute

32 million 
pages

3© Eric Xing @ CMU, 2005-2020

Challenge 1 – Massive Data Scale



Source: University of 
Bonn

Dq(D)
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Challenge 2 – Gigantic Model Size



Google Brain 
Deep Learning 

for images:
1~10 Billion

model parameters

Topic Models 
for news article 

analysis:
Up to 1 Trillion

model
parameters

Collaborative filtering 
for Video recommendation:

1~10 Billion
model

parameters

Multi-task Regression 
for simplest whole-

genome analysis:
100 million ~ 1 Billion

model 
parameters
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Challenge 2 – Gigantic Model Size
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The Scalability Challenge

© Eric Xing @ CMU, 2005-2020



q An ML program consists of:
q A mathematical “ML model” (from one of many families)…
q … which is solved by an “ML algorithm” (from one of a few types)

• Stochastic Versions of the above Algorithms

• MC and MCMC • Optimization • Matrix and 
Spectral 

Algorithms

• Nonparametric
Bayesian Models

• Graphical Models

• Sparse Structured
Input/Output
Regression

• Sparse Coding • Spectral/Matrix
Methods

• Regularized
Bayesian Methods

• Deep Learning• Large-Margin

Machine Learning Model Families

Machine Learning Algorithm Families

7

A “Classification” of ML Models and Tools
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q We can view ML programs as either
q Probabilistic programs
q Optimization programs

Probabilistic Programs Optimization Programs
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A “Classification” of ML Models and Tools



q ML models solved via iterative-convergent ML algorithms
q Iterative-convergent algorithms repeat until θ is stationary. Examples:

q Probabilistic programs: MC, MCMC, Variational Inference
q Optimization programs: Stochastic Gradient Descent, ADMM, Proximal Methods, Coordinate Descent

New Model = Old Model + 
Update(Data)

Dq(D)D q(D)
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Iterative-convergent view of ML



Example: Merge sort

Sorting 
error: 2 
after 5

Error persists and is 
not corrected 10

Most algorithms need operational correctness …
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… but ML Algorithms can Self-heal
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for (t = 1 to T) {
doThings()

doOtherThings()
}

An ML Program
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~✓t+1 = ~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model ParameterData

This computation needs to be parallelized! 

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm
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q Optimization programs:

�

A huge number of parameters 
(e.g.) M = 1B

XyN

M

M=

� 
NX

i=1

h d

d✓1
, . . . ,

d

d✓M

i
f(xi,yi; ~✓)

A huge volume of data
(e.g.) N = 1B 13

Challenge
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q Probabilistic programs  

topicdoc
(~ 1B)

topic

word (~ 1M)

topic
(~ 1M)
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Challenge

© Eric Xing @ CMU, 2005-2020



Data Parallel Model Parallel

New Model = Old Model + 
Update(Data)

Dq(D)D q(D)
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Parallelization Strategies
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q Optimization Algorithms
q Stochastic gradient descent
q Coordinate descent
q Proximal gradient methods

q ISTA, FASTA, Smoothing proximal gradient

q Markov Chain Monte Carlo Algorithms
q Auxiliary Variable methods
q Embarrassingly Parallel MCMC
q Parallel Gibbs Sampling

q Data parallel
q Model parallel

16

Optimization & MCMC Algorithms
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Data fitting Regularization

Data fitting part: 
- find β that fits into the data
- Squared loss, logistic loss, hinge loss, etc

Regularization part: 
- induces sparsity in β. 
- incorporates structured information into the model 17

Example Optimization Program:
Sparse Linear Regression
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Example Optimization Program:
Sparse Linear Regression
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q Consider an optimization problem:

q Classical gradient descent:

q Stochastic gradient descent:
q Pick a random sample di
q Update parameters based on noisy approximation of the true gradient 

min
x

E{f(x, d)}

x

(t+1)  x

(t) � �

1

n

nX

i=1

r
x

f(x(t)
, d

i

)
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(t) � �r
x

f(x(t)
, d

i

)
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Algorithm I:
Stochastic Gradient Descent
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l SGD converges almost surely to 

a global optimal for convex problems

l Traditional SGD compute gradients based on a single 

sample

l Mini-batch version computes gradients based on multiple 

samples

l Reduce variance in gradients due to multiple samples

l Multiple samples => represent as multiple vectors => use vector 

computation => speedup in computing gradients

20

Stochastic Gradient Descent
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q Parallel SGD: Partition data to different workers; all 
workers update full parameter vector

q Parallel SGD [Zinkevich et al., 2010]

q PSGD runs SGD on local copy of params in each 
machine

Input
Data

Input
Data

Input
Data

split Update local copy 
of ALL params

Update local copy 
of ALL params

aggregate

Update ALL 
params

Input
Data

Input
Data

Input 
Data

21

Parallel Stochastic Gradient Descent
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q Goal is to minimize a function in the form of

q e denotes a small subset of parameter indices
q xe denotes parameter values indexed by xe

q Key observation:
q Cost functions of many ML problems can be represented by f(x)
q In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but fe

is applied only a small number of parameters in x

f(x) =
X

e2E

fe(xe)

22

Hogwild!: Lock-free approach to PSGD [Recht et al., 2011]
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Hogwild!: Lock-free approach to PSGD [Recht et al., 2011]

q Example: 
q Sparse SVM

q z is input vector, and y is a label; (z,y) is an elements of E 
q Assume that zα are sparse

q Matrix Completion

q Input A matrix is sparse

q Graph cuts

q W is a sparse similarity matrix, encoding a graph

min

x

X

↵2E

max(1� y

↵
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Hogwild! Algorithm [Recht et al., 2011]

q Hogwild! algorithm: iterate in parallel for each core
q Sample e uniformly at random from E
q Read current parameter xe; evaluate gradient of function fe
q Sample uniformly at random a coordinate v from subset e
q Perform SGD on coordinate v with small constant step size

q Advantages
q Atomically update single coordinate, no mem-locking
q Takes advantage of sparsity in ML problems
q Near-linear speedup on various ML problems, on single machine

q Excellent on single machine, less ideal for distributed
q Atomic update on multi-machine challenging to implement; inefficient and slow
q Delay among machines requires explicit control… why? (see next slide)
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The cost of uncontrolled delay – slower convergence 
[Dai et al. 2015]

q Theorem: Given lipschitz objective ft and step size ηt,

q where
q Where L is a lipschitz constant, and εm and εv are the mean and variance of the delay

q Intuition: distance between current estimate and optimal value decreases 
exponentially with more iterations

q But high variance in the delay εv incurs exponential penalty!
q Distributed systems exhibit much higher delay variance, compared to single 

machine
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The cost of uncontrolled delay – unstable convergence
[Dai et al. 2015]

q Theorem: the variance in the parameter estimate is

q Where
q and       represents 5th order or higher terms, as a function of the delay εt

q Intuition: variance of the parameter estimate decreases near the optimum
q But delay εt increases parameter variance => instability during convergence

q Distributed systems have much higher average delay, compared to 
single machine
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Parallel SGD with Key-Value Stores

q We can parallelize SGD via
q Distributed key-value store to share parameters
q Synchronization scheme to synchronize parameters

q Shared key-value store provides easy interface to read/write shared 
parameters 

q Synchronization scheme determines how parameters are shared among 
multiple workers

q Bulk synchronous parallel (e.g., Hadoop)
q Asynchronous parallel [Ahmed et al., 2012, Li et al., 2014]

q Stale synchronous parallel [Ho et al., 2013, Dai et al., 2015]
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Parallel SGD with Bounded Async KV-store

q Stale synchronous parallel (SSP) is a synchronization model with 
bounded staleness – “bounded async”

q Fastest and the slowest workers are ≤s clocks apart
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Example KV-Store Program: Lasso

q Lasso example: want to optimize

q Put β in KV-store to share among all workers
q Step 1: SGD: each worker draws subset of samples Xi

q Compute gradient for each term ||yi–Xiβ||2 with respect to β; update 
β with gradient

q Step 2: Proximal operator: perform soft thresholding on β

q Can be done at workers, or at the key-value store itself
q Bounded Asynchronous synchronization allows fast read/write 

to β, even over slow or unreliable networks

29© Eric Xing @ CMU, 2005-2020



Bounded Async KV-store:
Faster and better convergence
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Algorithm II: Coordinate Descent
Update each regression coefficient in a cyclic manner

1st iteration

1b 2b 3b Jb
2st iteration

1b 2b 3b Jb

l Pros and cons
l Unlike SGD, CD does not involve learning rate
l If CD can be used for a model,  it is often comparable to the state-of-the-art

(e.g. lasso, group lasso)
l However, as sample size increases, time for each iteration also increases
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Example: Coordinate Descent for Lasso 

q Set a subgradient to zero:

q Assuming that                , we can derive update rule:

å+-=
j

jbl2
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Example: Block Coordinate Descent for Group Lasso 

q Set it to zero:

q In a similar fashion, we can derive update rule for group g

å+-=
j

jbl2

22
1minˆ Xβyβ

β

gXβyx Î"=+-- ju j
T
j ,0)( l

Iterate over each
group of coefficients
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Parallel Coordinate Descent
[Bradley et al. 2011]

q Shotgun, a parallel coordinate descent algorithm
q Choose parameters to update at random
q Update the selected parameters in parallel
q Iterate until convergence

q When features are nearly independent, Shotgun scales almost linearly 
q Shotgun scales linearly up to             workers, where ρ is spectral radius of 

ATA
q For uncorrelated features, ρ=1; for exactly correlated features ρ=d
q No parallelism if features are exactly correlated!

P  d

2⇢
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Intuitions for Parallel Coordinate Descent

q Concurrent updates of parameters are useful when features are 
uncorrelated

q Updating parameters for correlated features may slow down 
convergence, or diverge parallel CD in the worst case

q To avoid updates of parameters for correlated features, block-greedy CD has 
been proposed

35

Uncorrelated features Correlated features

Source:
[Bradley et al., 2011]
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Block-greedy Coordinate Descent
[Scherrer et al., 2012]

q Block-greedy coordinate descent generalizes various parallel CD 
strategies

q e.g. Greedy-CD, Shotgun, Randomized-CD
q Alg: partition p params into B blocks; iterate:

q Randomly select P blocks
q Greedily select one coordinate per P blocks
q Update each selected coordinate

q Sublinear convergence O(1/k) for separable regularizer r :

q Big-O constant depends on the maximal correlation among the B blocks
q Hence greedily cluster features (blocks) to reduce correlation

min
x

X
i

f

i

(x) + r(x
i

)
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Parallel Coordinate Descent with Dynamic Scheduler
[Lee et al., 2014]

q STRADS (STRucture-Aware Dynamic Scheduler) allows scheduling of 
concurrent CD updates

q STRADS is a general scheduler for ML problems
q Applicable to CD, and other ML algorithms such as Gibbs sampling

q STRADS improves CD performance via
q Dependency checking  

q Update parameters which are nearly independent => small parallelization error
q Priority-based updates  

q More frequently update those parameters which decrease objective function faster
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Example Scheduler Program: Lasso

q Schedule step:
q Prioritization: choose next variables βj to update, with probability proportional to their 

historical rate of change

q Dependency checking: do not update βj, βk in parallel if feature dimensions j and k 
are correlated

q Update step:
q For all βj chosen in Schedule step, in parallel, perform coordinate descent update

q Repeat from Schedule step
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q Priority-based scheduling converges faster than Shotgun (random) 
scheduling

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

 

 

STRADS
Lasso−RR

Comparison: Priority vs. Random-scheduling 
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Priority-based scheduling + 

dep. checker

b
e
tt

e
r Shotgun scheduling [Bradley et al. 2011]
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Advanced Optimization Techniques

q What if simple methods like SPG, CD are not adequate? 

q Advanced techniques at hand
q Complex regularizer: PG
q Complex loss: SPG
q Overlapping loss/regularizer: ADMM

q How to parallelize them? Must understand math behind algorithms
q Which terms should be computed at server 
q Which terms can be distributed to clients 
q … 
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q f: loss term, smooth (continuously differentiable)
q g: regularizer, non-differentiable (e.g. 1-norm)

Proximal gradient
• g represents some simple function

• e.g., 1-norm, constraint C, etc.

Projected gradient
• g represents some constraint

min
w

f(w) + g(w)

g(w) = ◆C(w) =

(
0, w 2 C

1, otherwise

w w � ⌘rf(w)

w argmin
z

1
2⌘kw � zk2 + ◆C(z)

= argmin
z2C

1
2kw � zk2

w w � ⌘rf(w) gradient

w argmin

z

1
2⌘kw � zk2 + g(z)

| {z }
proximal map
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When Constraints Are Complex: 
Algorithm III: Proximal Gradient (a.k.a. ISTA)
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Background: Proximal Gradient (a.k.a. ISTA)

q PG hinges on the proximal map [Moreau, 1965]:

q Treated as black-box in PG
q Need proximal map efficiently computable, better closed-form

q True when g is separable and “simple”, e.g. 1-norm (separable in each 
coordinate), non-overlapping group norm, etc.

q Can be demanding if g = g1+g2, but vars in g1, g2 overlap
q [Yu, 2013] gave sufficient conditions for when g = g1+g2 can be easily 

handled:

q Useful when      and       available in closed-forms
q E.g. fused lasso (Friedman et al.'07): 

P⌘
g(w) = argmin

z

1
2⌘kw � zk2 + g(z)

P⌘
g1 P⌘

g2

P⌘
g1+g2(w) = P⌘

g1

⇣
P⌘
g2(w)

⌘

P⌘
k·k1+k·ktv

(w) = P⌘
k·k1

⇣
P⌘
k·ktv

(w)
⌘
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Improvement #1: Accelerated PG (a.k.a. FISTA)
[Beck & Teboulle, 2009; Nesterov, 2013; Tseng, 2008]

q PG convergence rate 
q Can be boosted to  

q Same Lipschitz gradient assumption on f; similar per-step complexity!
q Lots of follow-up work to the papers cited above

P⌘
g(w) := argmin

z

1
2⌘kw � zk22 + g(z)

Proximal Gradient Accelerated Proximal Gradient

O(1/(⌘t))

O(1/(⌘t2))

vt  wt � ⌘rf(wt)

ut  P⌘

g

(vt)

wt+1  ut + 0|{z}
no

· (ut � ut�1)| {z }
momentum

vt  wt � ⌘rf(wt)

ut  P⌘

g

(vt)

wt+1  ut +
t� 1

t+ 2| {z }
⇡1

(ut � ut�1)| {z }
momentum

43© Eric Xing @ CMU, 2005-2020



Parallel (Accelerated) PG

q Bulk Synchronous Parallel Accelerated PG (exact)
q [Chen and Ozdaglar, 2012]

q Asynchronous Parallel (non-accelerated) PG (inexact)
q [Li et al., 2014] Parameter Server

q General strategy:
1. Compute gradients on workers
2. Aggregate gradients on servers
3. Compute proximal operator on servers
4. Compute momentum on servers
5. Send result wt+1 to workers and repeat

q Can apply Hogwild-style asynchronous updates to non-accelerated PG, for 
empirical speedup

q Open question: what about accelerated PG? What happens theoretically and 
empirically to accelerated momentum under asynchrony?

vt  wt � ⌘rf(wt)

ut  P⌘

g

(vt)

wt+1  ut +
t� 1

t+ 2| {z }
⇡1

(ut � ut�1)| {z }
momentum
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q So far need f to have Lipschitz cont grad, obtained O(1/t2)
q What if not ?
q Can use subgradient, with diminishing step size     O(1/sqrt(t))

q Huge gap !!
q Smoothing comes into rescue, if f itself is H-Lipschitz cont

q Approx f with something nicer, like Taylor expansion in calculus 101
q Replace f with its Moreau envelope function

q f(w) = |w|, envelope        is Huber’s func (blue curve)
q Minimizer gives the proximal map       (red curve)

Prop.
M⌘

f

P⌘
f

M⌘
f (w) := min

z

1
2⌘kw � zk22 + f(z)

8w , 0  f(w)�M⌘
f (w)  ⌘H2/2
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Improvement #2:
Non-Smooth Objectives: Moreau Envelope Smoothing
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Smoothing Proximal Gradient
[Chen et al., 2012]

q Use Moreau envelope as smooth approximation
q Rich and long history in convex analysis [Moreau, 1965; Attouch, 1984]

q Inspired by proximal point alg [Martinet, 1970; Rockafellar, 1976]
q Proximal point alg = PG, when 

q Rediscovered in [Nesterov, 2005], led to SPG [Chen et al., 2012]

q With , SPG converges at

q Improves subgradient
q Requires both efficient        and        

f ⌘ 0

Smoothing Proximal Gradientoriginal
approx.

P⌘
f P⌘

g

min
w

f(w) + g(w)
⇡ min

w
M⌘

f (w) + g(w)

vt  

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut  P⌘

g

(vt)

wt+1  ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum

⌘ = O(1/t)
O(1/(⌘t2)) = O(1/t)

O(1/
p
t)
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Parallel SPG?

q Difficulty: Gradients replaced by

q Requires             to be parallelizable
q Assuming this can be done, then:
1. Parallel-compute on workers
2. Aggregate on servers
3. Compute proximal operator on servers
4. Compute momentum on servers
5. Send result wt+1 to workers and repeat

q Above strategy is exact under Bulk Synchronous Parallel (just like accelerated 
PG)

q Not clear how asynchronous updates impact smoothing+momentum
q Not clear which              can be parallelized
q Open research topic

vt  

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut  P⌘

g

(vt)

wt+1  ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum
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t+ 2
(ut � ut�1)| {z }
momentum

vt  
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f (w

t)
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wt � ⌘rM⌘

f

(wt)
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g

(vt)
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q Optimization Algorithms
q Stochastic gradient descent
q Coordinate descent
q Proximal gradient methods

q ISTA, FASTA, Smoothing proximal gradient

q Markov Chain Monte Carlo Algorithms
q Auxiliary Variable methods
q Embarrassingly Parallel MCMC
q Parallel Gibbs Sampling

q Data parallel
q Model parallel

48

Optimization & MCMC Algorithms
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q Generative model
q Fit topics to each word xij in each doc i
q Uses categorical distributions with parameters δ and B

q Parameter priors
q Induce sparsity in δ and B
q Can also incorporate structure

q E.g. asymmetric prior doc
(~ 1B)

topic

δi topic

word (~ 1M)

Bk

Generative 
model of data

Priors on 
parameters
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Example Probabilistic Program: Topic Models
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50

Inference for Probabilistic Programs: MCMC and SVI

δi

zij

xijB

Ni

N

K

Markov Chain Monte Carlo:
Randomly sample each variable in sequence

Next set of slides on this

Variational Inference:
Gradient ascent on variables

Can be treated as an optimization problem

δi

zij

xijB

Ni

N

K
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Preliminaries:
Speeding up sequential MCMC

q Technique 1: Alias tables
q Sample from categorical distribution in amortized O(1)
q “Throw darts at a dartboard”
q Ex: probability distribution [0.5, 0.25, 0.25]

q => alias table {1, 1, 2, 3} => draw from table uniformly at random

q Technique 2: Cyclic Metropolis Hastings [Yuan et al., 2015]
q Exploit Bayesian form P(z=k) = Pevidence(k) * Pprior(k)

q Propose z1 from Pevidence(k)
q Accept/Reject z1
q Propose z2 from Pprior(k)
q Accept/Reject z2 … repeat

q Pprior(k), Pevi(k) cheap to compute with alias table

q Other speedup techniques
q Stochastic Gradient MCMC
q Stochastic Variational Inference

51

Pevidence(z = k)Pprior(z = k)
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Parallel and Distributed MCMC: Classic methods

q Classic parallel MCMC solution 1
q Take multiple chains in parallel, take average/consensus between chains.

q But what if each chain is very slow to converge?
q Need full dataset on each process – no data parallelism!

Chain on core 1

Chain on core 2

Chain on core 3

Not converged Converged
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Parallel and Distributed MCMC: Classic methods

q Classic parallel MCMC solution 2
q Sequential Importance Sampling (SIS)
q Rewrite distribution over n variables as telescoping product over proposals q():

q SIS algorithm:
● Parallel draw samples xi

n ~ qn(xn|xi
1:n-1)

● Parallel compute unnorm. wgts.

● Compute normalized weights wi
n by normalizing ri

n

q Drawback: variance of SIS samples increases exponentially with n
q Need resampling + take many chains to control variance

q Let us look at newer solutions to parallel MCMC…

where
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Solution I: Induced Independence via Auxiliary Variables 
[Dubey et al. 2013, 2014]

q Auxiliary Variable Inference: reformulate model as P independent models
q Example below: Dirichlet Process for mixture models
q Also applies to Hierarchical Dirichlet Process for topic models

q AV model (left) equivalent to standard DP model (right)
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● Why does it work? A mixture over Dirichlet processes is 
equivalent to a Dirichlet processes

DP on Processor 1

DP on Processor P

Dirichlet Mixture over 
Processor DPs 1...P
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Solution I: Induced Independence via Auxiliary Variables 
[Dubey et al. 2013, 2014]
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Solution I: Induced Independence via Auxiliary Variables 
[Dubey et al. 2013, 2014]

q Parallel inference algorithm:
q Initialization: assign data randomly across P Dirichlet Processes; assign each 

Dirichlet Process to one worker p=1..P
q Repeat until convergence:

q Each worker performs Gibbs sampling on local data within its DP
q Each worker swaps its DP’s clusters with other workers, via Metropolis-Hastings:

q For each cluster c, propose a new DP q=1..P
q Compute proposal probability of c moving to p
q Acceptance ratio depends on cluster size

q Can be done asynchronously in parallel without affecting performance
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Solution II: Embarrassingly Parallel (but correct) MCMC 
[Neiswanger et al., 2014]

q High-level idea:
q Run MCMC in parallel on data subsets; no communication between machines.
q Combine samples from machines to construct full posterior distribution samples.

q Objective: recover full posterior distribution

q Definitions:
q Partition data into M subsets
q Define m-th machine’s “subposterior” to be 

q Subposterior: “The posterior given a subset of the observations with an underweighted 
prior”.
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Embarrassingly Parallel MCMC

q Algorithm
1. For m=1…M independently in parallel, draw samples from each subposterior
2. Estimate subposterior density product                               (and thus the full 

posterior              ) by “combining subposterior samples”

q “Combine subposterior samples” via nonparametric estimation
1. Given T samples                 from each subposterior :

q Construct Kernel Density Estimate (Gaussian kernel, bandwidth h):

2. Combine subposterior KDEs:

q where
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Embarrassingly Parallel MCMC

q Simulations:
q More subposteriors = tighter estimates
q EPMCMC recovers correct parameter
q Naïve subposterior averaging does not!
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Solution III: Parallel Gibbs Sampling

q Many MCMC algorithms
q Sequential Monte Carlo [Canini et al., 2009]
q Hybrid VB-Gibbs [Mimno et al., 2012]
q Langevin Monte Carlo [Patterson et al., 2013]
q …

q Common choice in tech/internet industry:
q Collapsed Gibbs sampling [Griffiths and Steyvers, 2004]
q e.g. topic model Collapsed Gibbs sampler:
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Properties of Collapsed Gibbs Sampling (CGS)

q Simple equation: easy for system engineers to scale up
q Good theoretical properties

q Rao-Blackwell theorem guarantees CGS sampler has lower variance (better 
stability) than naïve Gibbs sampling

q Empirically robust
q Errors in δ, B do not affect final stationary distribution by much

q Updates are sparse: fewer parameters to send over network
q Model parameters δ, B are sparse: less memory used

q If it were dense, even 1M word * 10K topic ≈ 40GB already!
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docs i
(~ 1B)

topics k words v (~ 1M)

62

“Word-topic 
summary table”

B

δ

topics k topics k

CGS Example: Topic Model sampler
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Data Parallelization for
CGS Topic Model Sampler

doc 
partition

words v (~ 1M)

doc 
partition

doc 
partition

model 
replica

model 
replica

model 
replica
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δ1

δ2

δ3

B

B

B

topics k
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Data-Parallel Strategy: Approx. Distributed LDA
[Newman et al., 2009]

q Step 1: broadcast central model
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Data-Parallel Strategy: Approx. Distributed LDA
[Newman et al., 2009]

q Step 1: broadcast central model
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Data-Parallel Strategy: Approx. Distributed LDA
[Newman et al., 2009]

q Step 2: Perform Gibbs sampling in parallel
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Data-Parallel Strategy: Approx. Distributed LDA
[Newman et al., 2009]

q Step 3: commit changes back to the central model
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Data-Parallel Strategy: Approx. Distributed LDA
[Newman et al., 2009]

q Approximate
q Convergence not guaranteed – Markov Chain ergodicity broken
q Results generally “good enough” for industrial use

q Bulk synchronous parallel
q CPU cycles are wasted while synchronizing the model
q Asynchronous and bounded-asynchronous extensions possible [Smola et al., 

2010; Ahmed et al., 2012, Dai et al., 2015]

q How to overlap communication and computation for better efficiency?
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Error in data-parallel LDA

q Consider the CGS equation:

q Data-parallelism incurs error in B (the pink box) and the summation term 
(the gray box)

q Both quantities are duplicated onto workers; their values become stale as 
sampling proceeds

q True even for bulk synchronous parallel execution!
q Asynchrony helps somewhat

q Communicate very frequently to reduce staleness
q Is there a better solution?
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Model-Parallel Strategy 1: GraphLab LDA
[Low et al., 2010; Gonzalez et al., 2012]

q Think graphically: token = edge

docs
words

70

Column 
= topic k

Row = 
topic k

Column 
= topic k

Word-topic 
summary table
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Model-Parallel Strategy 1: GraphLab LDA
[Low et al., 2010; Gonzalez et al., 2012]

q Model-parallel via graph structure

doc word

71

Worker 1

Worker 2

Word-topic 
summary table 

(copy on worker 1)

Word-topic 
summary table 

(copy on worker 2)
© Eric Xing @ CMU, 2005-2020



Model-Parallel Strategy 1: GraphLab LDA
[Low et al., 2010; Gonzalez et al., 2012]

q Asynchronous communication
q Overlaps computation and communication – iterations are faster

q Model-parallelism means each machine only stores a subset of statistics
q Less memory usage if implemented well

q Drawback: need to convert problem into a graph
q Vertex-cut duplicates lots of vertices, canceling out savings

q Are there other ways to partition the problem?

72© Eric Xing @ CMU, 2005-2020



Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q Topic model matrix structure:

q Idea: non-overlapping matrix partition:

Source: [Gemulla et al., 2011]

topic

doc
(~ 1B)

topic word (~ 1M)

topic
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Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q Non-overlapping partition of the word count matrix
q Fix data at machines, send model to machines as needed

74

Source: [Gemulla et al., 2011]
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Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q During preprocessing: determine set of words used in each data block
q Begin training: load each data block from disk

disk

sequential read
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Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q Pull the set of words
from Key-Value store

disk

=

sequential read
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Local copy of word-
topic summary table

Key-value store

Local model copy
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Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q Sample, write result to disk,
send changes back to KV-store

disk

sequential read

sequential write

=

77

Local copy of word-
topic summary table

Key-value store
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Model-Parallel Strategy 2: LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

q Model-parallel advantage: disjoint words/docs on each machine
q Gibbs sampling almost equivalent to sequential case
q More accurate than data-parallel LDA
q Fast, asynchronous execution possible

q Compared to GraphLab LDA:
q Simple partitioning strategy – less system overheads, easier to implement
q Need to be careful about load imbalance (some docs will touch a particular 

word more times than others)
q Solution: pre-group documents by word frequency
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Error in model-parallel LDA

q Recall the CGS equation:

q Model-parallelism only has error in summation term (gray box)
q Summation term is very large for Big Data (billions of docs) => error 

negligible
q Compared to data-parallelism: error due to B (pink box) eliminated
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Distributed ML Algorithms – Summary

q Parallel algos for Optimization and MCMC share common themes
q Embarrassingly parallel: combine results from multiple independent problems, e.g. 

PSGD, EP-MCMC
q Stochastic over data: approximate functions/ gradients with expectation over subset 

of data, then parallelize over data subsets, e.g. SGD
q Model-parallel: parallelize over model variables, e.g. Coordinate Descent
q Auxiliary variables: decompose problem by decoupling dependent variables, e.g. 

ADMM, Auxiliary Variable MCMC

q Considerations
q Regularizers, model structure: may need sequential proximal or projection step, e.g. 

Stochastic Proximal Gradient
q Data partitioning: for data-parallel, how to split data over machines?
q Model partitioning: for model-parallel, how to split model over machines? Need to be 

careful as model variables are not necessarily independent of each other.

80© Eric Xing @ CMU, 2005-2020



Part 2: Distributed Systems for ML
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Distributed Systems for ML

q Just now: Exploit algorithmic and mathematical properties of ML learning 
and inference algorithms, to create efficient distributed ML algorithms

q Once model has been learnt, prediction is (usually) embarrassingly parallel –
given n machines, duplicate the learnt model and give each machine 1/n of 
the samples to be predicted

q What about the systems properties of real-world machines? 
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q Two distributed challenges:
q Networks are (relatively) slow
q “Identical” machines rarely perform equally

Low bandwidth,
High delay

Unequal
performance

0 
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Compute vs Network 
LDA 32 machines (256 cores) 

Network waiting time 

Compute time 

BSP execution:
Long sync time

Async execution:
May diverge
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There Is No Ideal Distributed System!
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There Is No Ideal Distributed System!

q Implementing high-performance distributed ML is not easy
q If not careful, can end up slower than single machine!

q System bottlenecks (load imbalance, network bandwidth & latency) are not trivial to 
engineer around

q Even if algorithm is theoretically sound and has attractive properties, still need 
to pay attention to system aspects

q Bandwidth (communication volume limits)
q Latency (communication timing limits)
q Data and Model partitioning (machine memory limitation, also affects comms volume)
q Data and Model scheduling (affects convergence rate, comms volume & timing)
q Non-ideal systems behavior: uneven machine performance, other cluster users
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Read
Read + 

Write

Data

Model Parameters

at iteration (t-1)

Iterative Algorithm

Intermediate Updates

Aggregate + 

Transform

Updates

A General Picture of ML Iterative-Convergent Algorithms
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Issues with Hadoop and
I-C ML Algorithms?

Naïve MapReduce not best for ML

● Hadoop can execute iterative-convergent, data-parallel ML...
o map() to distribute data samples i, compute update Δ(Di)
o reduce() to combine updates Δ(Di)
o Iterative ML algo = repeat map()+reduce() again and again

● But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!

HDFS Bottleneck

Image source: dzone.com

Iteration 1 Iteration 2
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for (t = 1 to T) {
doThings()
parallelUpdate(x,θ)
doOtherThings()

}

θ

θ θ

θ

θ

θ θ θ

θθ

θ θθ

Good Parallelization Strategy is Important

ML on

epoch 1

ML on
epoch 2

ML on
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ML on
epoch m

Barrier ?

Write 

outcome to 

KV store

Write 
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Write 
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Collect 

outcomes and 
aggregate 

Do nothing Do nothing Do nothing 0 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 

0 8 16 24 32 40 48 

Se
co

n
d

s 

  

Compute vs Network 
LDA 32 machines (256 cores) 

Network waiting time 

Compute time 

87© Eric Xing @ CMU, 2005-2020



Additive Updates

88

Data Parallelism
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Concatenating updates

Scheduling 
Function

Read + 
Write

model parameters not 
updated in this 
iteration 89

Model Parallelism
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Di?Dj | ✓, 8i 6= j ~✓i 6? ~✓j | D, 9(i, j)

Data Parallelism Model Parallelism

90

A Dichotomy of Data and Model in ML Programs
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Data+Model Parallel:
Solving Big Data+Model

Model (edge weights)
Data (images)

Update 
(backpropagation)

Data & Model both big!
Millions of images,
Billions of weights

What to do?
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Data+Model Parallel:
Solving Big Data+Model

BackP algo BackP algo BackP algo BackP algo BackP algo BackP algoBackP algo BackP algo BackP algo

Parameter Synchronization Channel

Tackle Deep Learning scalability 

challenges by combining 

data+model parallelism
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How difficult is data/model-parallelism?

q Certain mathematical conditions must be met

q Data-parallelism generally OK when data IID (independent, identically 
distributed)

q Very close to serial execution, in most cases

q Naive Model-parallelism won’t work
q NOT equivalent to serial execution of ML algo
q Need carefully designed schedule

93© Eric Xing @ CMU, 2005-2020



Intrinsic Properties of ML Programs

q ML is optimization-centric, and admits an iterative convergent algorithmic solution 
rather than a one-step closed form solution

q Error tolerance: often robust against limited
errors in intermediate calculations

q Dynamic structural dependency: changing correlations 
between model parameters critical to efficient parallelization 

q Non-uniform convergence: parameters
can converge in very different number of steps

q Whereas traditional programs are transaction-centric, thus only guaranteed by atomic 
correctness at every step 
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Challenges in Data Parallelism

q Existing ways are either safe/slow (BSP), or fast/risky (Async)

q Challenge 1: Need “Partial” synchronicity
q Spread network comms evenly (don’t sync unless needed)
q Threads usually shouldn’t wait – but mustn’t drift too far apart!

q Challenge 2: Need straggler tolerance
q Slow threads must somehow catch up
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1

Thread 1

Thread 2

Thread 3

Thread 4
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1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

???

BSP Async

Is persistent memory really necessary for ML?
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q Challenge 1: “Partial” synchronicity
q Spread network comms evenly (don’t sync unless needed)
q Threads usually shouldn’t wait – but mustn’t drift too far apart!

q Challenge 2: Straggler tolerance
q Slow threads must somehow catch up

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3
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4

4

4

5

5

5 6

6

6

Force threads to sync 
up

2 3 4 5 6

Thread 1 catches up by 
reducing network comms

Time 96

Is there a middle ground for data-parallel consistency?
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Stale Synchronous Parallel (SSP), a “bounded-asynchronous” model
• Allow threads to run at their own pace, without synchronization
• Fastest/slowest threads not allowed to drift >S iterations apart
• Threads cache local (stale) versions of the parameters, to reduce network syncing

Iteration0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 2 may not see
these updates (possible error)

Consequence:
• Asynchronous-like speed, BSP-like ML correctness guarantees
• Guaranteed age bound (staleness) on reads
• Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached
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High-Performance Consistency Models
for Fast Data-Parallelism [Ho et al., 2013]
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Improving Bounded-Async via Eager Updates
[Dai et al., 2015]

q Eager SSP (ESSP) protocol
q Use spare bandwidth to push fresh parameters sooner

q Figure: difference in stale reads between SSP and ESSP
q ESSP has fewer stale reads; lower staleness variance
q Faster, more stable convergence (theorems later)

98© Eric Xing @ CMU, 2005-2020



q Scale up Data Parallelism without long BSP synchronization time

q Effective across multiple algorithms, e.g. LDA, Lasso, Matrix 
Factorization:

LASSO Matrix Fact.LDA
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Async Speed + BSP-like Guarantees, across algorithms 
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q Recall Lasso regression:

�

A huge number of parameters 
(e.g.) J = 100M

XyN

J

J

Model

=

min
�

ky �X�k22 + �
X

j

|�j |
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Challenges in Model Parallelism



q Concurrent updates of     may induce errors�

�1

�2

�1 �2

�1 �2

Sync

Sequential updates Concurrent updates

�(t)
1  S(xT

1 y � x

T
1 x2�

(t�1)
2 ,�)

Induces parallelization error

Need to check x1
Tx2

before updating 
parameters

Challenge 1: Model Dependencies
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Challenge 2: Uneven Convergence Rate on Parameters

• Time-to-convergence determined by slowest parameters
• How to make slowest parameters converge quicker?

Parameters converge at similar ratesParameters converge at different rates

C
onverged

C
onverged

Remaining time to convergence Remaining time to convergence
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Is there a middle ground for model-parallel consistency?

q Existing ways are either safe but slow, or fast but risky
q Challenge 1: need approximate but fast model partition

q Full representation of data/model, and explicitly compute all dependencies via graph cut is not 
feasible 

q Challenge 2: need dynamic load balancing 
q Capture and explore transient model dependencies 
q Explore uneven parameter convergence

???

Graph Partition Random Partition

Is full consistency really 
necessary for ML?
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Structure-Aware Parallelization (SAP)
[Lee et al., 2014; Kumar et al., 2014] schedulerkey-value 

store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

schedulerkey-value 
store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

q Careful model-parallel execution:
q Structure-aware scheduling
q Variable prioritization
q Load-balancing

schedulerkey-value 
store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

q Simple programming:
q Schedule()
q Push()
q Pull()
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Schedule 1: Priority-based [Lee et al., 2014]

q Choose params to update based on convergence progress
q Example: sample params with probability proportional to their recent change
q Approximately maximizes the convergence progress per round

Priority-based schedulingShotgun [Bradley et al. 2011]

�1 �2

�3 �4

�1 �2

�3 �4
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Uniform 
distribution
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⇣
�x
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j

⌘2
+ ✏
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Schedule 2: Block-based (with load balancing)
[Kumar et al., 2014]

Partition data & model into d × d blocks
Run different-colored blocks in parallel

Blocks with less data/para or experience less 
straggling run more iterations

Automatic load-balancing + better convergence
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Structure-aware Dynamic Scheduler (STRADS)
[Lee et al., 2014, Kumar et al., 2014]

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.
barrier

Sample Variables 

to be Updated ~ p(j)

Check 

Variable 

Dependency

All Variables 

Generate 

Blocks of 

Variables

STRADS

• Priority Scheduling

• Block scheduling  

{�j} ⇠
⇣
��(t�1)

j

⌘2
+ ⌘

[Kumar, Beutel, Ho and Xing, Fugue: 
Slow-worker agnostic distributed 
learning, AISTATS 2014]
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Avoids dependent parallel updates,
attains near-ideal convergence speed

q STRADS+SAP achieves better speed and objective

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

 

 

STRADS
Lasso−RR

0 50 100 150
0.5

1

1.5

2

2.5

80 ranks
9 machines

Seconds

R
M

SE

 

 

STRADS
GraphLab

0 1 2 3 4 5
x 104

−3.5

−3

−2.5 x 109
2.5M vocab, 5K topics

32 machines

Seconds

Lo
g−

Li
ke

lih
oo

d

 

 

STRADS
YahooLDA

Lasso MF LDA

108© Eric Xing @ CMU, 2005-2020



Efficient for large models

q Model is partitioned => can run larger models on same hardware

Lasso MF LDA
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Theory of real-world distributed ML systems

q What guarantees still hold in parallel setting? Under what conditions?

q Computational and communications costs cannot be ignored
q Real-world ML running time is heavily influenced by them

q Asynchronous or bounded-async approaches can empirically work better than 
synchronous approaches

q Async => no serializability… why does it still work?

q Parallelization requires data and/or model partitioning
q Want partitioning strategies that are provably correct
q When/where is independence violated? What is the impact on algorithm correctness?

110© Eric Xing @ CMU, 2005-2020



Background: Bridging Models for Parallel Programming

q Bulk Synchronous Parallel [Valiant, 1990] is a bridging model
q Bridging model specifies how/when parallel workers should compute, and 

how/when workers should communicate
q Key concept: barriers

q No communication before barrier, only computation
q No computation inside barrier, only communication

q Computation is “serializable” – many sequential theoretical guarantees can 
be applied with no modification

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

111© Eric Xing @ CMU, 2005-2020



Background: Bridging Models for Parallel Programming

q Bounded Asynchronous Parallel (BAP) bridging model
q Key concept: bounded staleness [Ho et al., 2013; Dai et al., 2015]

q Workers re-use old version of parameters, up to s iterations old – no need to barrier
q Workers wait if parameter version older than s iterations
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Background: Types of Convergence Guarantees

q Regret/Expectation bounds on parameters
q Better bounds => better convergence progress per iteration

q Probabilistic bounds on parameters
q Similar meaning to regret/expectation bounds, usually stronger in guarantee

q Variance bounds on parameters
q Lower variance => higher stability near optimum => easier to determine 

convergence

q Guarantees can be for Data-parallel, Model-parallel, or Data+Model-
parallel
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BAP Data Parallel: Why can’t we do value-bounding?

q Seemingly-natural Idea: limit model 
parameter difference Δθi-j = ||θi – θj|| 
between machines i,j to not exceed a 
given threshold

q Not practical!
q To guarantee that Δθi-j has not exceeded the 

threshold, machines must wait to communicate 
with each other

q No improvement over synchronous execution!

q Rather than controlling parameter 
difference via magnitude, what about via 
iteration count?

q This is the (E)SSP communication model

114

Worker 1
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Worker 3
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Stale Synchronous Parallel (SSP)
• Allow threads to run at their own pace, without synchronization
• Fastest/slowest threads not allowed to drift >S iterations apart
• Threads cache local (stale) versions of the parameters, to reduce network syncing

Iteration0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 2 may not see
these updates (possible error)

Consequence:
• Asynchronous-like speed, BSP-like ML correctness guarantees
• Guaranteed age bound (staleness) on reads
• Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached 115© Eric Xing @ CMU, 2005-2020

BAP Data Parallel: (E)SSP model
[Ho et al., 2013; Dai et al., 2015]



q Goal: minimize convex
(Example: Stochastic Gradient)
q L-Lipschitz, problem diameter bounded by F2
q Staleness s, using P threads across all machines
q Use step size

q (E)SSP converges according to
q Where T is the number of iterations

q Note the RHS interrelation between (L, F) and (s, P)
q An interaction between model and systems parameters

q Stronger guarantees on means and variances can also be proven

Difference between
SSP estimate and true optimum
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BAP Data Parallel: (E)SSP Regret Bound
[Ho et al., 2013]



Intuition: Why does (E)SSP converge?

q Number of missing updates bounded
q Partial, but bounded, loss of serializability

q Hence numeric error in parameter also bounded
q Later in this tutorial – formal theorem
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SSP versus ESSP: What is the difference?

q ESSP is a systems improvement over SSP communication
q Same maximum staleness guarantee as SSP
q Whereas SSP waits until the last second to communicate…
q … ESSP communicates updates as early as possible

q What impact does ESSP have on convergence speed and stability?
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Theorem: Given L-Lipschitz objective ft and stepsize ht,

BAP Data Parallel: (E)SSP Probability Bound
[Dai et al., 2015]

Let real staleness observed by system be
Let its mean, variance be                     , 

Explanation: the (E)SSP distance between true optima and current 
estimate decreases exponentially with more iterations. Lower staleness 
mean, variance      ,      improve the convergence rate.

Take-away: controlling staleness mean      , variance        (on top of max 
staleness s) is needed for faster ML convergence, which ESSP does.

119

Gap between current
estimate and optimum

Penalty due to high
avg. staleness ustale

Penalty due to high
staleness var. σstale
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BAP Data Parallel: (E)SSP Variance Bound
[Dai et al., 2015]

Theorem: the variance in the (E)SSP estimate is

where

and         represents 5th order or higher terms in
Explanation: The variance in the (E)SSP parameter estimate monotonically 
decreases when close to an optimum.
Lower (E)SSP staleness        => Lower variance in parameter => Less 
oscillation in parameter => More confidence in estimate quality and 
stopping criterion.
Take-away: Lower average staleness (via ESSP) not only improves 
convergence speed, but also yields better parameter estimates
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ESSP vs SSP: higher stability helps empirical performance

q Low-staleness SSP and ESSP converge equally well
q But at higher staleness, ESSP is more stable than SSP

q ESSP communicates updates early, whereas SSP waits until the last second
q ESSP better suited to real-world clusters, with straggler and multi-user issues
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q Further Reading
q On Convergence of Model Parallel Proximal Gradient Algorithm for Stale Synchronous 

Parallel System, Zhou et al., AISTATS 2016

q Intuition
q Model-parallel sub-problems become nearly independent with proper scheduling
q Has similarities to Hogwild [Recht et al., 2011], but…

q Hogwild relies on atomic operations for consistency – only practical for single-machine
q BAP+Model-parallel relies on BAP for consistency – implementable for real-world 

distributed systems

q Potentially better per-iteration convergence than BAP data-parallel
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BAP and Model-parallel?
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Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.
barrier

Sample Variables 
to be Updated ~ p(j)

Check 
Variable 

Dependency

All Variables 

Generate 
Blocks of 
Variables

STRADS
• Priority Scheduling

• Block scheduling  
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j
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Scheduled Model Parallel: Dynamic/Block Scheduling
[Lee et al. 2014, Kumar et al. 2014]
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q Goal: solve sparse regression problem
q Via coordinate descent over “SAP blocks” X(1),	X(2),	…,	X(B)

q X(b) are the data columns (features) in block (b)
q P parallel workers, M-dimensional data
q ρ = Spectral	Radius[BlockDiag[(X(1))TX(1),	…,	(X(t))TX(t)]]; this block-

diagonal matrix quantifies the maximum level of correlation (and hence 
problem difficulty) within all the SAP blocks X(1),	X(2),	…,	X(t)

q SAP converges according to
q Where t is # of iterations

q Take-away: SAP minimizes ρ by searching for feature subsets X(1),	
X(2),	…,	X(B) without cross-correlation => as close to P-fold speedup as 
possible

Gap between current

parameter estimate and optimum

min
�

ky �X�k22 + �
X

j

|�j |

SAP explicitly minimizes ρ, ensuring

as close to 1/P convergence as possible

Scheduled Model Parallel:
Dynamic Scheduling Expectation Bound
[Lee et al. 2014]
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Let                be  an ideal model-parallel schedule
Let           be the parameter trajectory due to ideal scheduling
Let          be the parameter trajectory due to SAP scheduling

Explanation: Under dynamic scheduling, algorithmic progress is nearly 
as good as ideal model-parallelism.
Intuitively, this is because both ideal and SAP model-parallelism 
minimize the parameter dependencies between parallel workers. 

Theorem: After t iterations, we have

E[|�(t)
ideal � �(t)

dyn|]  C
2M

(t+ 1)2
X>X

Sideal()
�(t)
ideal

�(t)
dyn
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Scheduled Model Parallel:
Dynamic Scheduling Expectation Bound is near-ideal
[Xing et al. 2015]
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q Dynamic Scheduling for Lasso regression (SMP-Lasso): almost-ideal 
convergence rate, much faster than random scheduling (Shotgun-Lasso)
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Scheduled Model Parallel:
Dynamic Scheduling Empirical Performance
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Partition data & model into d × d blocks
Run different-colored blocks in parallel

Blocks with less data/para or experience less 
straggling run more iterations

Automatic load-balancing + better convergence
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Scheduled Data+Model Parallel:
Block-based Scheduling (with load balancing)
[Kumar et al. 2014]
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q Variance between iterations Sn+1 and Sn is:

q Explanation:
q higher order terms (red) are negligible
q => parameter variance decreases every iteration

q Every iteration, the parameter estimates become more stable
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Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 1
[Kumar et al. 2014]
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q Intra-block variance: Within blocks, suppose we update the parameters     
using      data points. Then, variance of     after those      updates is:

q Explanation:
q Higher order terms (red) are negligible
q => doing more updates within each block decreases parameter variance, 

leading to more stable convergence
q Load balancing by doing extra updates is effective
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Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 2
[Kumar et al. 2014]
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q Slow-worker Agnostic Block-Scheduling (Fugue) faster than:
q Embarrassingly Parallel SGD (PSGD)
q Non slow-worker Agnostic Block-Scheduling (Barriered Fugue)

q Slow-worker Agnostic Block-Scheduling converges to a better optimum 
than asynchronous GraphLab

q Reason: more stable convergence due to block-scheduling

q Task: Imagenet Dictionary Learning
q 630k images, 1k features
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Scheduled Data+Model Parallel:
Block-Scheduling Empirical Performance
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Distributed ML Systems – Summary

q Real-world distributed systems are never ideal
q Slow communication, uneven computation speed
q Naïve Bulk Synchronous Parallel (BSP) can be slower than non-parallel implementation!

q Solution 1: Bounded-Asynchronous Parallel (BAP)
q Exploit properties of ML algorithm convergence
q Stale communication mitigates non-idealness in distributed systems
q Applicable to data-parallel and model-parallel strategies

q Solution 2: Scheduled Model Parallelism (SMP)
q Exploit ML model structural properties
q Re-ordering of computation mitigates non-idealness in distributed systems
q SMP is a model-parallel strategy that is compatible with data-parallelism

q Theoretical analysis
q Convergence guarantees exist for BAP, SMP
q Rates are influenced by

q ML model/algorithm properties: learning rates and model structure
q Distributed systems properties: number of parallel machines, staleness
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