4 Carnegie Mellon University
" PETUUM

Probabilistic Graphical Models

Exact Inference

Eric Xing CS
Lecture 4, January 27, 2020 C

Reading: see class homepage

% Probabilistic Inference and Learning

o We now have compact representations of probability distributions:
Graphical Models

a A GM Mdescribes a unique probability distribution A

o Typical tasks:
o Task 1: How do we answer queries about P,, e.g., Py (X|Y) 7

o We use inference as a name for the process of computing answers to such queries

a Task 2: How do we estimate a plausible model M from data D7

I. We use learning as a name for the process of obtaining point estimate of M.
Il But for Bayesian, they seek p(M|D), which is actually an inference problem.

lii. When not all variables are observable, even computing point estimate of M need to do inference to
impute the missing data.
© Eric Xing @ CMU, 2005-2020 2 g

% Query 1: Likelihood

o Most of the queries one may ask involve evidence
o Evidence e is an assignment of values to a set E variables in the domain
o Without loss of generality E = { X;,;, ..., X, }

o Simplest query: compute probability of evidence

P(e)= Z---ZP(XI,...,xk,e)

o this is often referred to as computing the likelinood of e

% Query 2: Conditional Probability

o Often we are interested in the conditional probability distribution of a
variable given the evidence

P(Xe) P(Xe)
Ple) Y P(X=xe)

a this is the a posteriori belief in X, given-evidence e

P(X |e)=

o We usually query a subset Y of all domain variables X={Y,Z} and "don't
care' about the remaining, Z.:

P(Y|e)=) P(Y,Z=z|e)

o the process of summing out the "don't care" variables zis called marginalization, and the resulting Ayje) is
called a marginal prob.

4

Applications of a posteriori Belief

o Prediction: what is the probability of an outcome given tge starting condition

o the query node is a descendent of the evidence

o Diagnosis: what is the probability of disease/fault given symptoms
?

o the query node an ancestor of the evidence

o Learning under partial observation
o fill in the unobserved values under an "EM" setting (more later)

o The directionality of information flow between variables is not restricted by the directionality

of the edges in a GM

o probabilistic inference can combine evidence form all parts of the network

© Eric Xing @ CMU, 2005-2020

5

3

% Example: Deep Belief Network

o Deep Belief Network (DBN) [Hinton et al., 2006]
o Generative model or RBM with multiple hidden layers

o Successful applications
o Recognizing handwritten digits
o Learning motion capture data
o Collaborative filtering

e dbdrd

OO Hy u’;w%‘:ﬁ'
TW3 QrcA ﬁa-;.:ﬂ
OOOO| H, et
IWz
OOOOOO
|
OOO0O00OO

visible nodes (data)

© Eric Xing @ CMU, 2005-2020 6 g

% Query 3: Most Probable Assignment

a In this query we want to find the most probable joint assignment (MPA)
for some variables of interest

O Such reasoning is usually performed under some given evidence e, and
ignoring (the values of) other variables z :

MPA(Y |e) =argmax, _, P(y|e)=argmax P(y,z|e)
Y Y

0 this is the maximum a posteriori configuration of y.

Applications of MPA

a Classification
o find most likely label, given the evidence

o Explanation
o what is the most likely scenario, given the evidence

Cautionary note:

a The MPA of a variable depends on its "context’---the set of variables
been jointly queried

yviyez Plyiyz)

o Example: 0 O 035
a MPA of ¥;?

a MPAof (Y, Y,)? 0 1 0.05

1 0 0.3

1 1 0.3

Complexity of Inference
a Thm:

Computing P(X=x|e) in a GM is NP-hard

O Hardness does not mean we cannot solve inference

0 It implies that we cannot find a general procedure that works efficiently for arbitrary GMs
0 For particular families of GMs, we can have provably efficient procedures

© Eric Xing @ CMU, 2005-2020

9

.

% Approaches to inference

o Exact inference algorithms

o The elimination algorithm
o Message-passing algorithm (sum-product, belief propagation)
o The junction tree algorithms

o Approximate inference technigues

o Stochastic simulation / sampling methods
o Markov chain Monte Carlo methods
o Variational algorithms

/
(/ Variable Elimination on Hidden Markov Model

5888

p(X,y) =p(xy...... XTy Vs oeennns V1)
=p() pCxi | y) pO | y) pCea [32) ... pOr [ye) pOer | yr)

Conditional probability:

plyilzy,...oxp) = Z . Z Z L Zp(y; YT+ T1s e s T7)
41 Hi—1 Yi41 T
= yr co ? yr o ZEJ(;Ul)p(xlyr) - - plyrlyr—1)p(er|yr)
31 Wi—1 Wig] ur

(/ Variable Elimination on Hidden Markov Model

plyilzy,. .. xp) = Z Z Z Zp(y; YT+ L1y e e s rT)
-

Hi—1 Yi41

- Z Z Z Z p(yl)p("rl |U1) - p(yleT—l)?}(5131"":’_,"1")
yr

Wi—1 Yid1

Conditional probability:

% The Sum-Product Operation

o In general, we can view the task at hand as that of computing the value
of an expression of the form:

Z ¢e7
where F is a set of factors

o We call this task the sum-productinterence task.

} Inference on General GM via Variable Elimination

O General idea:

a Write query in the form

PUX.0=Y Y Y []Pwx | pa)

X3 Xy 1
0 this suggests an "elimination order" of latent variables to be marginalized

Q lteratively

0 Move all irrelevant terms outside of innermost sum
0 Perform innermost sum, getting a new term
0 Insert the new term into the product

a wrap-up P(X, |e):£(¢i()1(,e)e)
1»

% Variable Elimination on a general BN

a Query: P(A |h) (B) (A4
a Need to eliminate: BCD.EF.6H
- ©
o Initial factors:
P(@)P(b)P(c| b)P(d |a)P(e|c,d)P(f |a)P(g|&)P(h|e, f) GG
o Choose an elimination order: H6 F.ED,CAB e @
o Step 1:
o Conditioning (fix the evidence node (i.e., A) on its observed value (i.e.,)): ;7

m,(e, f)=ph="h|e, [)

o This step is isomorphic to a marginalization step:

m,(e, /)= p(h|e,[)5(h=h)

% Variable Elimination on a general BN

a Query: P(B |h)
a Need to eliminate: BCD,EF.6

o Initial factors:
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(hle,)

= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g]|e)m, (e, f)

o Step 2: Eliminate &
o compute

m,(e)=) p(gle)=1

= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m (e)m, (e, [)
= P(a)P(b)P(c|D)P(d |a)P(e|c,d)P(f |a)m,(e, [)

% Variable Elimination on a general BN

a Query: P(B |h)
a Need to eliminate: B,C.D,EF

o Initial factors:
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h|e, [)

= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g]|e)m,(e, f)
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f | a)m, (e, [)

o Step 3: Eliminate F
o compute

mf(eaa) - ;p(f | a)mh(eaf)

= P(a)P(b)P(c|D)P(d |a)P(e|c,d)m (a,e)

% Variable Elimination on a general BN

a Query: P(B |h)
a Need to eliminate: B,C.D,E

o Initial factors:
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, [)

= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e,)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f)
= P(a)P(b)P(c|D)P(d |a)P(e|c,d)m,(a,e)
a Step 4: Eliminate £
a compute

m,(a,c,d) = Zp(e|c,d)mf(a,e)

= P(a)P(b)P(c|b)P(d |a)m,(a,c,d)

% Variable Elimination on a general BN

a Query: A(B|h) <« (A

a Need to eliminate: B0

o Initial factors:
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h|e, f) CE) CF)
= P(a)P(D)P(c|b)P(d [a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(a)P(D)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) (&) CH)
= P(a)P(D)P(c|D)P(d|a)P(e|c,d)m,(a,e)
= P(a)P(b)P(c|b)P(d|a)m, (a,c,d)

o Step 5: Eliminate D

o0 compute ’ =
md(a,c)zZp(dM)me(a,c,d) O
d

= P(a)P(b)P(c|d)m,(a,c)

% Variable Elimination on a general BN

a Query: P(B |h)
a Need to eliminate: B,C

o Initial factors:
P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]|e,[)

= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m,(e, f)

= P(a)P(D)P(c|d)P(d |a)P(e|c,d)m (a,e)

= P(a)P(Db)P(c|d)P(d |a)ym (a,c,d)

= P(a)P(b)P(c|d)m,(a,c)

o Step 6: Eliminate £
o compute

m,(a,b) =} p(c|b)m,(a,c)

= P(a)P(b)P(c|d)m,(a,c)

% Variable Elimination on a general BN

a Query: A(B|A)
o Need to eliminate: B

o Initial factors:
P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h|e, [)

= P(a)P(D)P(c|d)P(d [a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(a)P(D)P(c|d)P(d |a)P(e|c,d)P(f |a)m,(e, f)

= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m,(a,e)

= P(a)P(b)P(c|d)P(d|a)m,(a,c,d)

= P(a)P(D)P(c|d)m,(a,c)

= P(a)P(b)m_(a,b)

o Step 7: Eliminate B B
o compute m,(a) = Zb:p(b)mc(a,b)

= P(a)m,(a)

% Variable Elimination on a general BN

a Query: P(B|h) (B8)

o Need to eliminate: B

o Initial factors:
P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h|e, f) CE)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m,(e, f) (&)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)m,(a,e)
= P(a)P(b)P(c|d)P(d |a)ym (a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m_(a,b)
Step 8 W:> P(a)m,(a)
7 Step B TEpp p(a, i) = p@m(@), p(i)=Y playm,(a)
- p@m@
= =S wm (@)

Outcome of elimination

o Let X be some set of variables,
let F be a set of factors such that for each ¢ € F, Scopée[¢]| € X,

let Y < X be a set of query variables,
and let Z = X-Y be the variable to be eliminated

o The result of eliminating the variable Z is a factor

r(Y)=) 114

z ¢e7
o This factor does not necessarily correspond to any probability or conditional probability in this network.
(example forthcoming)

© Eric Xing @ CMU, 2005-2020

23

s

% Dealing with evidence

a Conditioning as a Sum-Product Operation

a The evidence potential: o(E;. €)= {O 1fE .

a Total evidence potential: S(E,;e)=]]4(E,.e)

ielg

o Introducing evidence --- restricted factors:

r(Y,e)=) | |#xS(E,®)

Z,e g7

/
{/ The elimination algorithm

Procedure Elimination (
G, // the GM

E, // evidence
Z, /| Set of variables to be eliminated

X, /] query variable(s)
)

1. Initialize (G)

. Evidence (E)

3. Sum-Product-Elimination (F, Z, <)
2. Normalization (F)

© Eric Xing @ CMU, 2005-2020 25 g
L

The elimination algorithm

Procedure Initialize (G, Z)
1. LetZ, ..., Z, be an ordering of Z such that Z; < Z; iff i <j

o Initialize F with the full the set of factors

Procedure Evidence (E)
1. foreachiel;,
F =F US(EZ', el‘)

Procedure Sum-Product-Variable-Elimination (F, Z, <)
1, fori=1,...,k
F «— Sum-Product-Eliminate-Var(F, Z,)
2. ¢ — H¢6F ¢
3. return ¢
4. Normalization (¢*)

© Eric Xing @ CMU, 2005-2020

26

s

The elimination algorithm

Procedure Initialize (G, Z)
1. LetZ, ..., Z, be an ordering of Z such that Z; < Z; iff i <j
2. Initialize F with the full the set of factors

Procedure Evidence (E)
1. foreachiel;,
F =F US(EZ', el‘)

Procedure Sum-Product-Variable-Elimination (F, Z, <)
1, fori=1,...k
F «— Sum-Product-Eliminate-Var(F, Z;)
2. ¢ — H¢6F ¢
3. return ¢
4. Normalization (¢*)

Procedure Normalization (¢*)

1. PXE)=¢"(X)/ 24" (X)

Procedure Sum-Product-Eliminate-Var (
F, /| Set of factors
Z [/ Variable to be eliminated

)

1. F'—{gpeF .Z e Scope |}
2. F""«—F —F’

3 W(_HqﬁeF ¢

4 T2y

5. return F " U {1}

© Eric Xing @ CMU, 2005-2020

27

? Complexity of variable elimination

O Suppose in one elimination step we compute
M (Vi Vi) =D M (X, Y1500, 1)

* k
m'x (xayla'--ayk) = Hmi(xaycl.)
This requires =l
ke[Val(X)le [J|Val(¥,)| multiplications

a For each value for x, y,, ..., y,, we do k multiplications
Val()le [J[Val(Y,)| additions
a Foreach value of y,, ..., y,, we do |Val(X)| additions

Complexity is exponential in number of variables
in the intermediate factor

/
ﬁ Understanding Variable Elimination

a A graph elimination algorithm

B W B W LB W B W B B (L B (D @
GHHAAY 2
&L W L W D !

P

; Graph elimination

o Begin with the undirected GM or moralized BN
o Graph G(V, E) and elimination ordering 1

o Eliminate next node in the ordering /
o Removing the node from the graph
o Connecting the remaining neighbors of the nodes

a The reconstituted graph G(V, E)
o Retain the edges that were created during the elimination procedure

o The graph-theoretic property: the factors resulted during variable elimination
are captured by recording the elimination clique

; Understanding Variable Elimination

a A graph elimination algorithm

B W B W B W B W B (B L4 @ @D @ @
!
©L W L W D L

P

o Intermediate terms correspond to the cliques resulted from elimination

-‘

O

% Elimination Cliques

B W 0‘0
03 &

& W & W B LW OP=&
© &

mh (6, f) mg (8) mf (eaa) me (d,C,d)

=>=> = &—@ = @
(—D) O

mia,c) miab) mya)

l

% Graph elimination and marginalization

o Induced dependency during marginalization vs. elimination clique
o Summation <-> elimination
o Intermediate term <-> elimination clique

P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g]|e)m, (e, [)

= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m, (e,) B—R O—@
D >—@

= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m,(a,e) G,

= P(a)P(b)P(c|d)P(d|a)m,(a,c,d) (A (D

= P(a)P(b)P(c|d)m,(a,c) (oGS, O
P(a)P(b ,b E—CA

= P(a)P(b)m, (@) [

= P(a)m,(a) <

% A clique tree

m,(a,c,d)
= Zp(@ | c,d)mg (e)mf (Cl,e)

% Complexity

o The overall complexity is determined by the number of the largest
elimination clique

o What is the largest elimination cligue? — a pure graph theoretic question

o Tree-width A one less than the smallest achievable value of the cardinality of
the largest elimination clique, ranging over all possible elimination ordering

o “good” elimination orderings lead to small cliques and hence reduce
CompIeX|ty (what will happen if we eliminate "e" first in the above graph?)

o Find the best elimination ordering of a graph --- NP-hard
- Inference is NP-hard

o But there often exist "obvious" optimal or near-opt elimination ordering

% Examples

a Star

o lree

% More example: Ising model

Summary

Q

The simple Eliminate algorithm captures the key algorithmic Operation underlying
probabilistic inference:

--- That of taking a sum over product of potential functions

What can we say about the overall computational complexity of the algorithm? In
particular, how can we control the "size" of the summands that appear in the sequence
of summation operation.

The computational complexity of the Eliminate algorithm can be reduced to purely
graph-theoretic considerations.

This graph interpretation will also provide hints about how to design improved inference
algorithm that overcome the limitation of Eliminate.

© Eric Xing @ CMU, 2005-2020 38

s

% From Elimination to Message Passing

o Our algorithm so far answers only one query (e.g., on one node), do we need to do a
complete elimination for every such query?

o Elimination = message passing on a cligue tree

® & ® @ ® @ ® @D ® & D _D ® O 0@ @
Fl-52l-l F T e

D & e.o —CD O—CbB O
© @ O & &

m,(a,c,d)
- Zp(e e, d)m,(e)m (a,e

o Messages can be reused @

; From Elimination to Message Passing

o Our algorithm so far answers only one query (e.g., on one node), do we need to do a
complete elimination for every such query?

o Elimination = message passing on a cligue tree
o Another query ...

o Messages mrand my are reused, others need to be recomputed

4 Message passing on a tree

o Elimination on trees is equivalent to message passing along tree
branches!

(@b xzaxj H ME; x])
j keN(7)\¢

/
(/ The message passing protocol:

o A two-pass algorithm:

4 Message Passing for HMMs (cont.)

o A junction tree for the HMM

v (1, X1) v, Y2) v(¥2,Ys) v (Yra:)r)
... : é/(yr)
= nghtward pPass vy, X)) w(ysXs) v(yr.Xr)
Hi i (y[+1) - Zl//(ytayHl):uz—l—n (yz):um (yH-l) teor (V) Ve Yed) ty (Vi)
- zp(y1+1 ‘ yt)/ut—l—n (yt)p(xt+1 | yz+1) t
Vi ,Uﬂ(}’m)
o - p(xt+1 ‘ yt+1)z ayt Vil M1 (yt)
o This is exactly the forward algorithm! (Yo os)
o Leftward pass ...
Hi 1t (}’r) l//(yf’yf+1) Hiti1 (YHI)
ﬂt—l(—t(yt) - Zl//(ytﬂyt+1)/ut<—l+1(yt+1)luﬂ‘(yt+1) cee = =—1{] &
Vil
= ZP(YM | Yl it (V) P(Kt | Vi) Hr)

Y

o Thisis exactly the backward algorithm! Wy Xor)

© Eric Xing @ CMU, 2005-2020

43

/
(/ Belief Propagation (SP-algorithm): Parallel
synchronous implementation

A

Z TSN

o For a node of degree d, whenever messages have arrived on any subset of d-1 node, compute
the message for the remaining edge and send!
o A pair of messages have been computed for each edge, one for each direction
o Allincoming messages are eventually computed for each node %

© Eric Xing @ CMU, 2005-2020 44

Correctness of BP on tree

a Collollary: the synchronous implementation is "non-blocking"

o Thm: The Message Passage Guarantees obtaining all marginals in the
tree

mji(z;) = Z(¢ (i,) H Mkj x])

z; keN (j)\i

o Please do message passing from B->D->C->A
o And from C->D->B->A
o Compare the marginals of A G

a What about non-tree” (a home work problem) Q.G

Inference on general GM

o Now, what if the GM is not a tree-like graph?

o Can we still directly run
message-passing protocol along its edges?

o For non-trees, we do not have the guarantee that message-passing will be consistent!

o Then what?
o Construct a graph data-structure from P that has a tree structure, and run message-passing on it!

> Junction tree algorithm
> Messaging passing on a JT

© Eric Xing @ CMU, 2005-2020

46

s

Supplementary materials

/
{/ Examples of VE on chain GMs

/
(/ Message Passing

% Tree GMs

LAV

Undirected tree: a Directed tree: all Poly tree: can have
unique path between nodes except the root multiple parents

any pair of nodes have exactly one
parent
g @ CMU, 2005-2020 57 g

/
ﬁ Equivalence of directed and undirected trees

o Any undirected tree can be converted to a directed tree by choosing a root node and directing all
edges away from it

o A directed tree and the corresponding undirected tree make the same conditional independence
assertions

o Parameterizations are essentially the same.

o Undirected tree: p(z) = ;(Hw(ﬂfi) 11 1/1(561:,%‘))

2% (i,j)€E

o Directed tree:

p(x) =p(.) [] plx;la:)

(i,J)€EE
o Equivalence:
¢(x7‘) - p(xr), w(x’ux_]) - p(:cj|a:,;);
a Evidence:? Z=1, aplE)=1

© Eric Xing @ CMU, 2005-2020 58 g
L

/
{/ From elimination to message passing

o Recall ELIMINATION algorithm:

Choose an ordering Z in which query node f'is the final node
Place all potentials on an active list
Eliminate node i by removing all potentials containing / take sum/product over x..

a
a
a
o Place the resultant factor back on the list

4 Elimination on a tree

Let m;(x;) denote the factor resulting from
eliminating variables from bellow up to i,
which is a function of x;:

myji(z;) = Z(Z/)(l'j)¢($i,l"j) H mkj(xj))

keN(G)\i

Tj

This is reminiscent of a message sent
fromj to i.

= Z Pl e, o5) H Wil 25)

T keN (j)\i

plep) o< () |[merley)
eEN(S)

m;(x;) represents a "belief" of x; from x;!

© Eric Xing @ CMU, 2005-2020

60

.

4 Message passing on a tree

o Elimination on trees is equivalent to message passing along tree
branches!

(@b xzaxj H ME; x])
j keN(7)\¢

% From elimination to message passing

o Recall ELIMINATION algorithm:

o Choose an ordering Z in which query node fis the final node

o Place all potentials on an active list

o Eliminate node i by removing all potentials containing / take sum/product over x;.
o Place the resultant factor back on the list

o Fora TREE graph:

Choose query node f'as the root of the tree
View tree as a directed tree with edges pointing towards leaves from f
Elimination ordering based on depth-first traversal

Elimination of each node can be considered as message-passing (or Belief Propagation)
directly along tree branches, rather than on some transformed graphs

- thus, we can use the tree itself as a data-structure to do general inference!!

I I I

© Eric Xing @ CMU, 2005-2020

62

/
{/ The message passing protocol:

o A node can send a message to its neighbors when (and only when) it has received
messages from all its other neighbors.

o Computing node marginals:
o Naive approach: consider each node as the root and execute the message passing algorithm

Computing P(X,)

/
{/ The message passing protocol:

o A node can send a message to its neighbors when (and only when) it has received
messages from all its other neighbors.

o Computing node marginals:
o Naive approach: consider each node as the root and execute the message passing algorithm

Computing P(X,)

/
{/ The message passing protocol:

o A node can send a message to its neighbors when (and only when) it has received
messages from all its other neighbors.

o Computing node marginals:
o Naive approach: consider each node as the root and execute the message passing algorithm

Computing P(X;)

/
{/ Computing node marginals

o Naive approach:
o Complexity: NC
o N is the number of nodes
o C isthe complexity of a complete message passing

o Alternative dynamic programming approach
o 2-Pass algorithm (next slide =)
o Complexity: 2C!

/
(/ The message passing protocol:

o A two-pass algorithm:

Sum-Probuct(T, E)

EVIDENCE(E)

f = CHOOSEROOT(V)

for e € N(f)
CoLLECT(f,e)

for e € N(f)
DISTRIBUTE(f, €)

forieVy
COMPUTEMARGINAL(%)

EVIDENCE(FE)
forie E
PE () = P(x;)d(xi, T;)
fori ¢ E
PP (i) = ()
COLLECT(3, j)
for k € N(j)\i
COLLECT(j, k)
SENDMESSAGE(], 1)

DISTRIBUTE(%,)
SENDMESSAGE(%,)
for k € N(j)\i
DISTRIBUTE(j, k)

SENDMESSAGE(7, %)
mii(@i) =Y @ (@) ¢(@iz;) [mai(z))
T KEN (j)\i

COMPUTEMARGINAL(%)

p(z;) o< Y (x;) H mji(x;)

JEN (i)

}/ Belief Propagation (SP-algorithm): Sequential
implementation

SENDMESSAGE 1

DISTRIBUTE / \ DISTRIBUTE

© Eric Xing @ CMU, 2005-2020

68

s

/
(/ Belief Propagation (SP-algorithm): Parallel
synchronous implementation

A

Z TSN

o For a node of degree d, whenever messages have arrived on any subset of d-1 node, compute
the message for the remaining edge and send!
o A pair of messages have been computed for each edge, one for each direction
o Allincoming messages are eventually computed for each node %

© Eric Xing @ CMU, 2005-2020 69

Correctness of BP on tree

o Collollary: the synchronous implementation is "non-blocking”

o Thm: The Message Passage Guarantees obtaining all marginals in the
tree

s = s 1 i)

z; keN (j)\i

o What about non-tree?

{/ Another view of SP: Factor Graph

o Example 1

fa —@— ARNCY

fe

P(X1) P(X2) P(Xs|X1,X2) P(Xs|X1,X3) P(X4]X2,X3)

ﬂ-ﬂ-ﬂ- g g

fa(Xy) To(X2) fo(X3,X1,X2) fa(X5,X1,X3) fe(Xs,X2,X3)

% Factor Graphs

o Example 2 :
W(X1,X2,X3) = Fa(X1,X2)fp(X2,X3)fc(X3,X1)

>

o Example 3

WY(X1,X2,X3) = f5(X1,X2,X3)

% Factor Tree

o A Factor graph is a Factor Tree it the undirected graph obtained by
ignoring the distinction between variable nodes and factor nodes is an
undirected tree

i

W(X1,X2,X3) = fa(X1,X2,X3)

/
{/ Message Passing on a Factor Tree

o Two kinds of messages
1. v: from variables to factors
2. w: from factors to variables

",

Vis(x;) = H i (24) psi(x;) = Z (fs(xN(s)) H Vjs(%‘))

teN(3)\ s 2 (8)\d FEN (s)\i

/
{/ Message Passing on a Factor Tree, con'd

o Message passing protocol:

o A node can send a message to a neighboring node only when it has received
messages from all its other neighbors

o Marginal probability of nodes:

by -
X; = fS Xi o= fs
M

SN

P(xi) o I s e N (i) Msi(Xi)

oc Vis(Xi)Hsi(Xi)

% BP on a Factor Tree

% Why factor graph?

o [ree-like graphs to Factor trees

/‘ >
‘\
é X “‘ -‘

P

y Poly-trees to Factor trees

< <.‘ /":i”

% Why factor graph?

o Because FG turns tree-like graphs to factor trees,
o and trees are a data-structure that guarantees correctness of BP !

Xs

: :) X4

} Max-product algorithm: computing MAP probabilities

max(v)(z s)mis (2f))

? Max-product algorithm:

computing MAP configurations using a final bookkeeping backward pass

r; = arg rrglc?;x(ip(:cf)mif (xf))
zj = argmax (W (@)Y (@}, i) myi(as))
vy = argmax (p(z;)P(ay, zj)m;(2;)mi;(z;))

J

A\

i = argmax (Y(z)P(z, 7))

4

% Summary

o Sum-Product algorithm computes singleton marginal probabilities on:
o Irees
o Tree-like graphs
o Poly-trees

o Maximum a posteriori configurations can be computed by replacing sum
with max in the sum-product algorithm

o Extra bookkeeping required

Inference on general GM

o Now, what if the GM is not a tree-like graph?

o Can we still directly run
message-passing protocol along its edges?

o For non-trees, we do not have the guarantee that message-passing will be consistent!

o Then what?
o Construct a graph data-structure from P that has a tree structure, and run message-passing on it!

—> Junction tree algorithm

© Eric Xing @ CMU, 2005-2020 83 g
L

% Elimination Clique

o Recall that Induced dependency during marginalization is captured in
elimination cliques

o Summation <-> elimination
o Intermediate term <-> elimination clique

P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(gle) P (h|e f)
P(a)P(b)P(c|b)P(d|a)P(elc,d)P(f|a)P(gle) (e,
P(a)P(b)P(c|b)P(d|a)P(e|c,d)P (fla) q(€)on ,f)
P(a)P(b)P c|b)P(d|a)P(e|c d)ops(a,e
P(a)P(b)P(c|b)P(d|a)pe(a,c,d)
P(a)P(b)P(c|b)da(a,c)

)P(b)¢c(a,b)

)ou(a)

R R R

b (a

e

o(a)
o Can this lead to an generic inference algorithm??

Moral Graph

o Note that for both directed GMs and undirected GMs, the joint probability is in a
product form:)
BN:P(X) =[] P(X, |X,) MRF: P(X)=—[Jw.(X,)

A

i=1l:d ceC

o So let’'s convert local conditional probabilities into potentials; then the second
expression will be generic, but how does this operation affect the directed graph?

o We can think of a conditional probability, e.g,. P(C|4,B) as a function of the three variables 4, B, and C (we
get a real number of each configuration):

(4
(S
e P(CI|A,B)

o Problem: But a node and its parent are not generally in the same clique in a BN
o Solution: Marry the parents to obtain the "moral graph”

¥(A,B,C) = P(C|A,B)

© Eric Xing @ CMU, 2005-2020 85

Moral Graph (cont.)

o Define the potential on a clique as the product over all conditional probabilities

contained within the clique
o Now the product of potentials gives the right answer:

P(X;, X, X3 X4, Xg, Xo)

= P(X))P(X)P(X5 [Xy, Xp)P(X 4 | X3)P(X5 | X3)P(Xg | Xy, Xs)

=Y (X, Xo, Xg)w (X5, Xy, Xg)p (X g, X5, Xo)
where (X, X,,X;) = P(X,)P(X,)P(X; | X, X,)
W (X3, X4, X5) = P(X,4 | X35)P(X5 | X5)
V(X4 X5, Xg)=P(Xo | Xy, X5)

Note that here the

interpretation of potential

iIs ambivalent:

it can be either marginals

or conditionals

© Eric Xing @ CMU, 2005-2020

86

.

% Clique trees

o A cligue tree is an (undirected) tree of cliques

o Consider cases in which two neighboring cliques V and W have an overlap S (e.qg., (X,
X,, X;) overlaps with (X35, X4, X5)),

w(V) P(S) w(W)

CO—-C

o Now we have an alternative representation of the joint in terms of the potentials:

4 Clique trees

o A cligue tree is an (undirected) tree of cliques

X4, X71

o The alternative representation of the joint in terms of the potentials:

3

P(X1, X, X5, X4, X5, Xe)
= P(X,)P(X)P(X; | X1, Xp)P(X g | X5)P(X5 | X3)P(Xy | Xgo X)
P(X3>X4’X5) P(X4aX5’X6)

P(X3) P(Xy,Xs5)

:P(X1>X2>X3)

Now each potential is
X2, X4, X Xa, Xe, X . .
=W(X1,X27X3)W(s:44:X5) Yy X5 Xe) isomorphic to the cluster

#(X3) H(X g, Xs) marginal of the attendant
Hc v (X,) set of variables

[I4s(Xs)
© Eric Xing @ CMU, 2005-2020 88

o Generally:

P(X) =

Why this is useful?

o Propagation of probabilities

o Now suppose that some evidence has been "absorbed” (i.e., certain values of some nodes have been
observed). How do we propagate this effect to the rest of the graph?

O O
{ B = (] 8
D B W
o What do we mean by propagate”?

Can we adjust all the potentials {y}, {¢#} so that they still represent the correct cluster marginals (or
unnormalized equivalents) of their respective attendant variables?

o Utility? D G G
P(X; | Xy =x¢)= D WX}, X;,X;5)

XZ’X?)

P(X3| X =x4)=0(X3) Local operations!

P(x,) = Zw(X4,X5,x6) Lg

© Eric Xing @ CMU, 2005-2020 89
X4,Xs5

% Local Consistency

- w() #(S) w (W)
o We have two ways of obtaining p(S)
OO
P(S)=) v(V) P(S)=) y() —
V\S w\S D
and they must be the same
o The following update-rule ensures this:
o Forward update: ¢; _ Z‘//*V V/;V _ ¢_SWW
Backward updat - ¢§*
o Backward update
b =2 vw Vi = Z%WV
a Two important identities can be proven ’
W;*:ZV/;V:¢;* WVI{W ZWV:{*/W _Y¥w

VAS

WA\S

Local Consistency

2 Ps P

Invariant Joint

© Eric Xing @ CMU, 2005-2020

90

.

% Message Passing Algorithm

) 9(S) w () b=V, W= Y Vi

VAS S
In= e @D Sy
¢S - ZWW Yy =—5V¥y

WAS ¢S

o This simple local message-passing algorithm on a cligue tree defines the
general probability propagation algorithm for directed graphs!

o Many interesting algorithms are special cases:
o Forward-backward algorithm for hidden Markov models,

o Kalman filter updates
o Pealing algorithms for probabilistic trees

o The algorithm seems reasonable. Is it correct?

% A problem

a Consider the following graph and a corresponding clique tree

o Note that C appears in two non-neighboring cligues

o Question: with the previous message passage, can we ensure that the
probability associated with C in these two (non-neighboring) cliques
consistent?

o Answer: No. It is not true that in general local consistency implies global
consistency

o What else do we need to get such a guarantee?

% Triangulation

o A triangulated graph is one in which no cycles with
four or more nodes exist in which there is no chord

o We triangulate a graph by adding chords:

o Now we no longer have our global inconsistency
problem.

o A clique tree for a triangulated graph has the running
Intersection property. It a node appears in two cliques,
It appears everywhere on the path between the cliques

o Thus local consistency implies global consistency

AB,C

B,C.D

]
m

Junction trees

o A clique tree for a triangulated graph is referred to as a junction tree

o Injunction trees, local consistency implies global consistency. Thus the local message-
passing algorithms is (provably) correct

o Itis also possible to show that on/y triangulated graphs have the property that their
cligue trees are junction trees. Thus if we want local algorithms, we musttriangulate

o Are we now all set?

o How to triangulate? e 0

o The complexity of building a

JT depends on how we triangulate!!
o Consider this network: e 0
it turns out that we will need to pay an O(24)
or O(2%) cost depending on how we triangulate! @ e

© Eric Xing @ CMU, 2005-2020 94

% How to triangulate

a A graph elimination algorithm

B W B W B W B W B (B L4 @ @D @ @
!
©L W L W D L

P

o Intermediate terms correspond to the cliques resulted from elimination

“‘good” elimination orderings lead to small cliques and hence reduce
Complexity (what will happen if we eliminate "e" first in the above graph?)

o finding the optimum ordering is NP-hard, but for many graph optimum or
near-optimum can often be heuristically found

© Eric Xing @ CMU, 2005-2020

95

% A junction tree

% Message-passing algorithms

collect distribute

o Message update

WW

o The Hugin update =Sy ¢s
VS V ¢S

o The Shafer-Shenoy update

m;_,;(S;) = Z ve | [m(Sw)

k#j

/" A Sketch of the Junction Tree Algorithm

o The algorithm

1. Moralize the graph (trivial)
2. Triangulate the graph (good heuristic exist, but actually NP hard)
3. Build a clique tree (e.g., using a maximum spanning tree algorithm

4. Propagation of probabilities --- a local message-passing protocol

o Results in marginal probabilities of all cligues --- solves all queries in a single run
o A generic exact inference algorithm for any GM

o Complexity: exponential in the size of the maximal clique --- a good elimination order
often leads to small maximal cligue, and hence a good (i.e., thin) JT

© Eric Xing @ CMU, 2005-2020 98 g
L

; Recall the Elimination and Message Passing Algorithm

o Elimination = message passing on a clique tree

m,(a,c,d)
= Zp(e | c,d)mg (e)mf(aae)

ON® @ @ "

% Shafer Shenoy for HMMs

o Recap: Shafer-Shenoy algorithm

o Message from clique 7to clique

:ui—>j = Z l//C,-H/ukei(Ski)

. _ Ci\S; k+j
o Clique marginal

p(C;) o« Ve, H Hi i (Sy)
k

4 Message Passing for HMMs (cont.)

o A junction tree for the HMM

v (1, X1) v, Y2) v(¥2,Ys) v (Yra:)r)
... : é/(yr)
= nghtward pPass vy, X)) w(ysXs) v(yr.Xr)
Hi i (y[+1) - Zl//(ytayHl):uz—l—n (yz):um (yH-l) teor (V) Ve Yed) ty (Vi)
- zp(y1+1 ‘ yt)/ut—l—n (yt)p(xt+1 | yz+1) t
Vi ,Uﬂ(}’m)
o - p(xt+1 ‘ yt+1)z ayt Vil M1 (yt)
o This is exactly the forward algorithm! (Yo os)
o Leftward pass ...
Hi 1t (}’r) l//(yf’yf+1) Hiti1 (YHI)
ﬂt—l(—t(yt) - Zl//(ytﬂyt+1)/ut<—l+1(yt+1)luﬂ‘(yt+1) cee = =—1{] &
Vil
= ZP(YM | Yl it (V) P(Kt | Vi) Hr)

Y

o Thisis exactly the backward algorithm! Wy Xor)

© Eric Xing @ CMU, 2005-2020

101

% Summary

o Junction tree data-structure for exact inference on general graphs

o Two methods
a Shafer-Shenoy
o Belief-update or Lauritzen-Speigelhalter

a Constructing Junction tree from chordal graphs
o Maximum spanning tree approach

