
Probabilistic Graphical Models

Exact Inference

Eric Xing
Lecture 4, January 27, 2020

© Eric Xing @ CMU, 2005-2020 1
Reading: see class homepage

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm

E F

H

E F

H

E F

H

A

E F

A

E F

A

E F

B A

C

B A

C

B A

C

E

G

E

G

E

G

A

DC

E

A

DC

E

A

DC

E

A

DC

A

DC

B AB A AA

hm
gm

em
fm

bmcm

dm

hm
gm

em
fm

bmcm

dm

Probabilistic Inference and Learning

q We now have compact representations of probability distributions:
Graphical Models

q A GM M describes a unique probability distribution P
q Typical tasks:

q Task 1: How do we answer queries about PM, e.g., PM(X|Y) ?
q We use inference as a name for the process of computing answers to such queries

q Task 2: How do we estimate a plausible model M from data D?
i. We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.
iii. When not all variables are observable, even computing point estimate of M need to do inference to

impute the missing data.

© Eric Xing @ CMU, 2005-2020 2

å å=
1

1
x x

k
k

,,x,xPP)()(ee !"

Query 1: Likelihood

q Most of the queries one may ask involve evidence
q Evidence e is an assignment of values to a set E variables in the domain
q Without loss of generality E = { Xk+1, …, Xn }

q Simplest query: compute probability of evidence

q this is often referred to as computing the likelihood of e

© Eric Xing @ CMU, 2005-2020 3

å =
==

x

x,XP
X,P

P
X,PXP

)(
)(

)(
)()|(

e
e

e
ee

å ==
z

ezZYY)|()|(,PeP

Query 2: Conditional Probability

q Often we are interested in the conditional probability distribution of a
variable given the evidence

q this is the a posteriori belief in X, given evidence e

q We usually query a subset Y of all domain variables X={Y,Z} and "don't
care" about the remaining, Z:

q the process of summing out the "don't care" variables z is called marginalization, and the resulting P(y|e) is
called a marginal prob.

© Eric Xing @ CMU, 2005-2020 4

A CB

A CB

?

?

Applications of a posteriori Belief

q Prediction: what is the probability of an outcome given the starting condition

q the query node is a descendent of the evidence

q Diagnosis: what is the probability of disease/fault given symptoms

q the query node an ancestor of the evidence

q Learning under partial observation
q fill in the unobserved values under an "EM" setting (more later)

q The directionality of information flow between variables is not restricted by the directionality
of the edges in a GM

q probabilistic inference can combine evidence form all parts of the network

© Eric Xing @ CMU, 2005-2020 5

2W

3W

1W

visible nodes (data)
V

H1

H2

H3

Example: Deep Belief Network

q Deep Belief Network (DBN) [Hinton et al., 2006]
q Generative model or RBM with multiple hidden layers
q Successful applications

q Recognizing handwritten digits
q Learning motion capture data
q Collaborative filtering

© Eric Xing @ CMU, 2005-2020 6

åÎÎ ==
z

yy ezyeyeY)|,(maxarg)|(maxarg)|(MPA PP YY

Query 3: Most Probable Assignment

q In this query we want to find the most probable joint assignment (MPA)
for some variables of interest

q Such reasoning is usually performed under some given evidence e, and
ignoring (the values of) other variables z :

q this is the maximum a posteriori configuration of y.

© Eric Xing @ CMU, 2005-2020 7

Applications of MPA

q Classification
q find most likely label, given the evidence

q Explanation
q what is the most likely scenario, given the evidence

Cautionary note:

q The MPA of a variable depends on its "context"---the set of variables
been jointly queried

q Example:
q MPA of Y1 ?
q MPA of (Y1, Y2) ?

© Eric Xing @ CMU, 2005-2020 8

y 1 y 2 P(y 1 ,y 2)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3

Complexity of Inference

q Thm:
Computing P(X = x | e) in a GM is NP-hard

q Hardness does not mean we cannot solve inference

q It implies that we cannot find a general procedure that works efficiently for arbitrary GMs
q For particular families of GMs, we can have provably efficient procedures

© Eric Xing @ CMU, 2005-2020 9

Approaches to inference

q Exact inference algorithms

q The elimination algorithm
q Message-passing algorithm (sum-product, belief propagation)
q The junction tree algorithms

q Approximate inference techniques

q Stochastic simulation / sampling methods
q Markov chain Monte Carlo methods
q Variational algorithms

© Eric Xing @ CMU, 2005-2020 10

Variable Elimination on Hidden Markov Model

p(x, y) = p(x1……xT, y1, ……, yT)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)

Conditional probability:

© Eric Xing @ CMU, 2005-2020 11

A AA Ax2 x3x1 xT

y2 y3y1 yT...

...

Variable Elimination on Hidden Markov Model

Conditional probability:

© Eric Xing @ CMU, 2005-2020 12

A AA Ax2 x3x1 xT

y2 y3y1 yT...

...

The Sum-Product Operation

q In general, we can view the task at hand as that of computing the value
of an expression of the form:

where F is a set of factors

q We call this task the sum-product inference task.

© Eric Xing @ CMU, 2005-2020 13

åÕ
Îz Ff
f

å ååÕ=
nx

x x i
ii paxPXP

3 2

)|(),(1 !e

å
=

1

1

1
1

x

X
XXP

),(
),()|(
e
ee

f
f

Inference on General GM via Variable Elimination

q General idea:
q Write query in the form

q this suggests an "elimination order" of latent variables to be marginalized

q Iteratively

q Move all irrelevant terms outside of innermost sum
q Perform innermost sum, getting a new term
q Insert the new term into the product

q wrap-up

© Eric Xing @ CMU, 2005-2020 14

Variable Elimination on a general BN

q Query: P(A |h)
q Need to eliminate: B,C,D,E,F,G,H

q Initial factors:

q Choose an elimination order: H,G,F,E,D,C,B

q Step 1:
q Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,)):

q This step is isomorphic to a marginalization step:

© Eric Xing @ CMU, 2005-2020 15

B A

DC

E F

G H

),|()|()|(),|()|()|()()(fehPegPafPdcePadPbcPbPaP

),|~(),(fehhpfemh ==
h~

å ==
h

h hhfehpfem)~(),|(),(d

B A

DC

E F

G

Variable Elimination on a general BN

q Query: P(B |h)
q Need to eliminate: B,C,D,E,F,G

q Initial factors:

q Step 2: Eliminate G
q compute

© Eric Xing @ CMU, 2005-2020 16

B A

DC

E F

G H
),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(
femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

hÞ

1)|()(==å
g

g egpem
B A

DC

E F),()|(),|()|()|()()(
),()()|(),|()|()|()()(

femafPdcePadPbcPbPaP
fememafPdcePadPbcPbPaP

h

hg

=

Þ

Variable Elimination on a general BN

q Query: P(B |h)
q Need to eliminate: B,C,D,E,F

q Initial factors:

q Step 3: Eliminate F
q compute

© Eric Xing @ CMU, 2005-2020 17

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

h

h

Þ
Þ

å=
f

hf femafpaem),()|(),(

),(),|()|()|()()(eamdcePadPbcPbPaP fÞ

B A

DC

E

B A

DC

E

Variable Elimination on a general BN

q Query: P(B |h)
q Need to eliminate: B,C,D,E

q Initial factors:

q Step 4: Eliminate E
q compute

© Eric Xing @ CMU, 2005-2020 18

B A

DC

E F

G H
),(),|()|()|()()(

),()|(),|()|()|()()(
),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

f

h

h

Þ
Þ
Þ

å=
e

fe eamdcepdcam),(),|(),,(

),,()|()|()()(dcamadPbcPbPaP eÞ

B A

DC

Variable Elimination on a general BN

q Query: P(B |h)
q Need to eliminate: B,C,D

q Initial factors:

q Step 5: Eliminate D
q compute

© Eric Xing @ CMU, 2005-2020 19

B A

DC

E F

G H

),,()|()|()()(
),(),|()|()|()()(

),()|(),|()|()|()()(
),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPbcPbPaP
eamdcePadPbcPbPaP

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

e

f

h

h

Þ

Þ
Þ
Þ

å=
d

ed dcamadpcam),,()|(),(

),()|()()(camdcPbPaP dÞ

B A

C

Variable Elimination on a general BN

q Query: P(B |h)
q Need to eliminate: B,C

q Initial factors:

q Step 6: Eliminate C
q compute

© Eric Xing @ CMU, 2005-2020 20

B A

DC

E F

G H

),()|()()(camdcPbPaP dÞ

å=
c

dc cambcpbam),()|(),(

),()|()()(
),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

d

e

f

h

h

Þ
Þ

Þ
Þ
Þ

B A

Variable Elimination on a general BN

q Query: P(B |h)
q Need to eliminate: B

q Initial factors:

q Step 7: Eliminate B
q compute

© Eric Xing @ CMU, 2005-2020 21

B A

DC

E F

G H

),()()(
),()|()()(

),,()|()|()()(
),(),|()|()|()()(

),()|(),|()|()|()()(
),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

bambPaP
camdcPbPaP

dcamadPdcPbPaP
eamdcePadPdcPbPaP

femafPdcePadPdcPbPaP
femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

c

d

e

f

h

h

Þ
Þ
Þ

Þ
Þ
Þ

å=
b

cb bambpam),()()(

)()(amaP bÞ

A

Variable Elimination on a general BN

q Query: P(B |h)
q Need to eliminate: B

q Initial factors:

q Step 8: Wrap-up

© Eric Xing @ CMU, 2005-2020 22

B A

DC

E F

G H

)()(
),()()(

),()|()()(
),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

amaP
bambPaP

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

b

c

d

e

f

h

h

Þ
Þ
Þ
Þ

Þ
Þ
Þ

,)()()~,(amaphap b=

å
=Þ

a
b

b

amap
amaphaP
)()(
)()()~|(

å=
a

b amaphp)()()~(

Outcome of elimination

q Let X be some set of variables,
let F be a set of factors such that for each f Î F , Scope[f] Î X,
let Y Ì X be a set of query variables,
and let Z = X−Y be the variable to be eliminated

q The result of eliminating the variable Z is a factor

q This factor does not necessarily correspond to any probability or conditional probability in this network.
(example forthcoming)

© Eric Xing @ CMU, 2005-2020 23

åÕ
Î

=
z

Y
Ff
ft)(

Dealing with evidence

q Conditioning as a Sum-Product Operation

q The evidence potential:

q Total evidence potential:

q Introducing evidence --- restricted factors:

© Eric Xing @ CMU, 2005-2020 24

î
í
ì

¹
º

=
ii

ii
ii eE

eE
eE

 if 0
 if

),(
1

d

åÕ
Î

´=
ez

eEeY
,

),(),(
Ff

dft

Õ
Î

=
E

eE
Ii

ii eE),(),(dd

The elimination algorithm

Procedure Elimination (
G, // the GM
E, // evidence
Z, // Set of variables to be eliminated
X, // query variable(s)
)

1. Initialize (G)
2. Evidence (E)
3. Sum-Product-Elimination (F, Z, ≺)
4. Normalization (F)

© Eric Xing @ CMU, 2005-2020 25

The elimination algorithm

Procedure Initialize (G, Z)
1. Let Z1, . . . ,Zk be an ordering of Z such that Zi ≺ Zj iff i < j
2. Initialize F with the full the set of factors

Procedure Evidence (E)
1. for each iÎIE ,

F =F Èd(Ei, ei)

Procedure Sum-Product-Variable-Elimination (F, Z, ≺)
1. for i = 1, . . . , k

F← Sum-Product-Eliminate-Var(F, Zi)
2. f∗← ÕfÎF f
3. return f∗

4. Normalization (f∗)

© Eric Xing @ CMU, 2005-2020 26

The elimination algorithm

Procedure Initialize (G, Z)
1. Let Z1, . . . ,Zk be an ordering of Z such that Zi ≺ Zj iff i < j
2. Initialize F with the full the set of factors

Procedure Evidence (E)
1. for each iÎIE ,

F =F Èd(Ei, ei)

Procedure Sum-Product-Variable-Elimination (F, Z, ≺)
1. for i = 1, . . . , k

F← Sum-Product-Eliminate-Var(F, Zi)
2. f∗← ÕfÎF f
3. return f∗

4. Normalization (f∗)

© Eric Xing @ CMU, 2005-2020 27

Procedure Normalization (f∗)
1. P(X|E)=f∗(X)/åxf∗(X)

Procedure Sum-Product-Eliminate-Var (
F, // Set of factors
Z // Variable to be eliminated
)

1. F ′ ← {f Î F : Z Î Scope[f]}
2. F ′′ ← F − F ′
3. y ←ÕfÎF ′ f
4. t← åZ y
5. return F ′′ È {t}

Complexity of variable elimination

q Suppose in one elimination step we compute

This requires
multiplications

q For each value for x, y1, …, yk, we do k multiplications

additions
q For each value of y1, …, yk , we do |Val(X)| additions
Complexity is exponential in number of variables
in the intermediate factor

© Eric Xing @ CMU, 2005-2020 28

Õ••
i

CiXk)Val()Val(Y

Õ•
i

CiX)Val()Val(Y

å=
x

kxkx yyxmyym),,,('),,(11 !!

Õ
=

=
k

i
cikx i

xmyyxm
1

1),(),,,(' y!

Understanding Variable Elimination

q A graph elimination algorithm

© Eric Xing @ CMU, 2005-2020 29

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

Graph elimination

q Begin with the undirected GM or moralized BN

q Graph G(V, E) and elimination ordering I

q Eliminate next node in the ordering I
q Removing the node from the graph
q Connecting the remaining neighbors of the nodes

q The reconstituted graph G'(V, E')
q Retain the edges that were created during the elimination procedure
q The graph-theoretic property: the factors resulted during variable elimination

are captured by recording the elimination clique

© Eric Xing @ CMU, 2005-2020 30

Understanding Variable Elimination

q A graph elimination algorithm

q Intermediate terms correspond to the cliques resulted from elimination

© Eric Xing @ CMU, 2005-2020 31

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

Elimination Cliques

© Eric Xing @ CMU, 2005-2020 32

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

E F

G

B A

DC

E F

G H

B A

DC

B A

DC

E F

B A

DC

E

B A

C

B A A

),(femh)(emg),(aemf),,(dcame

),(camd),(bamc)(amb

Graph elimination and marginalization

q Induced dependency during marginalization vs. elimination clique
q Summation <-> elimination
q Intermediate term <-> elimination clique

© Eric Xing @ CMU, 2005-2020 33

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

)()(
),()()(

),()|()()(
),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

amaP
bambPaP

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

b

c

d

e

f

h

h

Þ
Þ
Þ
Þ

Þ
Þ
Þ

A clique tree

© Eric Xing @ CMU, 2005-2020 34

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm

å=
e

fg

e

eamemdcep
dcam

),()(),|(
),,(

Complexity

q The overall complexity is determined by the number of the largest
elimination clique

q What is the largest elimination clique? – a pure graph theoretic question

q Tree-width k: one less than the smallest achievable value of the cardinality of
the largest elimination clique, ranging over all possible elimination ordering

q “good” elimination orderings lead to small cliques and hence reduce
complexity (what will happen if we eliminate "e" first in the above graph?)

q Find the best elimination ordering of a graph --- NP-hard
à Inference is NP-hard

q But there often exist "obvious" optimal or near-opt elimination ordering

© Eric Xing @ CMU, 2005-2020 35

Examples

q Star

q Tree

© Eric Xing @ CMU, 2005-2020 36

More example: Ising model

© Eric Xing @ CMU, 2005-2020 37

Summary

q The simple Eliminate algorithm captures the key algorithmic Operation underlying
probabilistic inference:

--- That of taking a sum over product of potential functions

q What can we say about the overall computational complexity of the algorithm? In
particular, how can we control the "size" of the summands that appear in the sequence
of summation operation.

q The computational complexity of the Eliminate algorithm can be reduced to purely
graph-theoretic considerations.

q This graph interpretation will also provide hints about how to design improved inference
algorithm that overcome the limitation of Eliminate.

© Eric Xing @ CMU, 2005-2020 38

From Elimination to Message Passing

q Our algorithm so far answers only one query (e.g., on one node), do we need to do a
complete elimination for every such query?

q Elimination º message passing on a clique tree

q Messages can be reused
© Eric Xing @ CMU, 2005-2020 39

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

º

å=
e

fg

e

eamemdcep
dcam

),()(),|(
),,(

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

cm bm

gm

em

dm
fm

hm

From Elimination to Message Passing

q Our algorithm so far answers only one query (e.g., on one node), do we need to do a
complete elimination for every such query?

q Elimination º message passing on a clique tree
q Another query ...

q Messages mf and mh are reused, others need to be recomputed
© Eric Xing @ CMU, 2005-2020 40

Message passing on a tree

q Elimination on trees is equivalent to message passing along tree
branches!

© Eric Xing @ CMU, 2005-2020 41

f

i

j

k l

m24(X4)

X1

X2

X3 X4

The message passing protocol:

q A two-pass algorithm:

© Eric Xing @ CMU, 2005-2020 42

m21(X1)

m32(X2) m42(X2)

m12(X2)

m23(X3)

Message Passing for HMMs (cont.)

q A junction tree for the HMM

q Rightward pass

q This is exactly the forward algorithm!
q Leftward pass …

q This is exactly the backward algorithm!
© Eric Xing @ CMU, 2005-2020 43

A AA Ax2 x3x1 xT

y2 y3y1 yT...

...

),(11 xyy),(21 yyy),(32 yyy),(TT yy 1-y

),(22 xyy),(33 xyy),(TT xyy

)(2yz)(3yz)(Tyz
)(1yf)(2yfÞ

),(1+tt yyy)(ttt y®-1µ

),(11 ++ tt xyy

)(11 ++® ttt yµ

)(1+­ tt yµ

å
+

+­++¬+¬- =
1

11111
ty

tttttttttt yyyyy)()(),()(µµyµ

å

å

®-++

++®-+

+
=

=

t

tt

t

y
tttyytt

y
ttttttt

yayxp

yxpyyyp

)()|(

)|()()|(

, 111

1111

1
µ

µ

å +­®-+++® =
ty

tttttttttt yyyyy)()(),()(11111 µµyµ

å
+

++++¬+=
1

11111
ty

ttttttt yxpyyyp)|()()|(µ

),(1+tt yyy)(ttt y¬-1µ)(11 ++¬ ttt yµ

),(11 ++ tt xyy

)(1+­ tt yµ

Belief Propagation (SP-algorithm): Parallel
synchronous implementation

q For a node of degree d, whenever messages have arrived on any subset of d-1 node, compute
the message for the remaining edge and send!

q A pair of messages have been computed for each edge, one for each direction
q All incoming messages are eventually computed for each node

© Eric Xing @ CMU, 2005-2020 44

Correctness of BP on tree

q Collollary: the synchronous implementation is "non-blocking"

q Thm: The Message Passage Guarantees obtaining all marginals in the
tree

q What about non-tree? (a home work problem)
q Please do message passing from B->D->C->A
q And from C->D->B->A
q Compare the marginals of A

© Eric Xing @ CMU, 2005-2020 45

A B

C D

Inference on general GM

q Now, what if the GM is not a tree-like graph?

q Can we still directly run
message-passing protocol along its edges?

q For non-trees, we do not have the guarantee that message-passing will be consistent!

q Then what?
q Construct a graph data-structure from P that has a tree structure, and run message-passing on it!

à Junction tree algorithm
à Messaging passing on a JT

© Eric Xing @ CMU, 2005-2020 46

© Eric Xing @ CMU, 2005-2020 47

Supplementary materials

Examples of VE on chain GMs

© Eric Xing @ CMU, 2005-2020 48

Message Passing

© Eric Xing @ CMU, 2005-2020 56

Undirected tree: a
unique path between
any pair of nodes

Directed tree: all
nodes except the root
have exactly one
parent

Poly tree: can have
multiple parents

We will come back to
this later

Tree GMs

© Eric Xing @ CMU, 2005-2020 57

Equivalence of directed and undirected trees

q Any undirected tree can be converted to a directed tree by choosing a root node and directing all
edges away from it

q A directed tree and the corresponding undirected tree make the same conditional independence
assertions

q Parameterizations are essentially the same.

q Undirected tree:

q Directed tree:

q Equivalence:

q Evidence:?

© Eric Xing @ CMU, 2005-2020 58

From elimination to message passing

q Recall ELIMINATION algorithm:
q Choose an ordering Z in which query node f is the final node
q Place all potentials on an active list
q Eliminate node i by removing all potentials containing i, take sum/product over xi.
q Place the resultant factor back on the list

© Eric Xing @ CMU, 2005-2020 59

f

i

j

k l

Elimination on a tree

© Eric Xing @ CMU, 2005-2020 60

Let mji(xi) denote the factor resulting from
eliminating variables from bellow up to i,
which is a function of xi:

This is reminiscent of a message sent
from j to i.

mij(xi) represents a "belief" of xi from xj!

Message passing on a tree

q Elimination on trees is equivalent to message passing along tree
branches!

© Eric Xing @ CMU, 2005-2020 61

f

i

j

k l

From elimination to message passing

q Recall ELIMINATION algorithm:
q Choose an ordering Z in which query node f is the final node
q Place all potentials on an active list
q Eliminate node i by removing all potentials containing i, take sum/product over xi.
q Place the resultant factor back on the list

q For a TREE graph:
q Choose query node f as the root of the tree
q View tree as a directed tree with edges pointing towards leaves from f
q Elimination ordering based on depth-first traversal
q Elimination of each node can be considered as message-passing (or Belief Propagation)

directly along tree branches, rather than on some transformed graphs
à thus, we can use the tree itself as a data-structure to do general inference!!

© Eric Xing @ CMU, 2005-2020 62

X1

X4X3

X2

Computing P(X1)

m32(x2) m42(x2)

m21(x1)

The message passing protocol:

q A node can send a message to its neighbors when (and only when) it has received
messages from all its other neighbors.

q Computing node marginals:
q Naïve approach: consider each node as the root and execute the message passing algorithm

© Eric Xing @ CMU, 2005-2020 63

X1

X4X3

X2

Computing P(X2)

m32(x2) m42(x2)

m12(x2)

The message passing protocol:

q A node can send a message to its neighbors when (and only when) it has received
messages from all its other neighbors.

q Computing node marginals:
q Naïve approach: consider each node as the root and execute the message passing algorithm

© Eric Xing @ CMU, 2005-2020 64

X1

X4X3

X2

Computing P(X3)

m23(x3) m42(x2)

m12(x2)

The message passing protocol:

q A node can send a message to its neighbors when (and only when) it has received
messages from all its other neighbors.

q Computing node marginals:
q Naïve approach: consider each node as the root and execute the message passing algorithm

© Eric Xing @ CMU, 2005-2020 65

Computing node marginals

q Naïve approach:
q Complexity: NC

q N is the number of nodes
q C is the complexity of a complete message passing

q Alternative dynamic programming approach
q 2-Pass algorithm (next slide è)
q Complexity: 2C!

© Eric Xing @ CMU, 2005-2020 66

m24(X4)

X1

X2

X3 X4

The message passing protocol:

q A two-pass algorithm:

© Eric Xing @ CMU, 2005-2020 67

m21(X1)

m32(X2) m42(X2)

m12(X2)

m23(X3)

Belief Propagation (SP-algorithm): Sequential
implementation

© Eric Xing @ CMU, 2005-2020 68

Belief Propagation (SP-algorithm): Parallel
synchronous implementation

q For a node of degree d, whenever messages have arrived on any subset of d-1 node, compute
the message for the remaining edge and send!

q A pair of messages have been computed for each edge, one for each direction
q All incoming messages are eventually computed for each node

© Eric Xing @ CMU, 2005-2020 69

Correctness of BP on tree

q Collollary: the synchronous implementation is "non-blocking"

q Thm: The Message Passage Guarantees obtaining all marginals in the
tree

q What about non-tree?

© Eric Xing @ CMU, 2005-2020 70

Another view of SP: Factor Graph

q Example 1

© Eric Xing @ CMU, 2005-2020 71

X1

X2

X3

X5

X4

X1

X2

X3

X5

X4

P(X1) P(X2) P(X3|X1,X2) P(X5|X1,X3) P(X4|X2,X3)

fa(X1) fb(X2) fc(X3,X1,X2) fd(X5,X1,X3) fe(X4,X2,X3)

fa

fb

fc

fd

fe

Factor Graphs

q Example 2

q Example 3

© Eric Xing @ CMU, 2005-2020 72

X1

X2

y(x1,x2,x3) = fa(x1,x2)fb(x2,x3)fc(x3,x1)

y(x1,x2,x3) = fa(x1,x2,x3)

X3

fa fc

fb

X1

X2 X3

X1

X2 X3

fa

X1

X2 X3

Factor Tree

q A Factor graph is a Factor Tree if the undirected graph obtained by
ignoring the distinction between variable nodes and factor nodes is an
undirected tree

© Eric Xing @ CMU, 2005-2020 73

y(x1,x2,x3) = fa(x1,x2,x3)

X1

X2 X3

fa

X1

X2 X3

xi

f1

fs

f3

xj

xi

xk

fs

Message Passing on a Factor Tree

q Two kinds of messages
1. n: from variables to factors
2. µ: from factors to variables

© Eric Xing @ CMU, 2005-2020 74

Message Passing on a Factor Tree, con'd

q Message passing protocol:
q A node can send a message to a neighboring node only when it has received

messages from all its other neighbors
q Marginal probability of nodes:

© Eric Xing @ CMU, 2005-2020 75

xi

f1

fs

f3

xj

xi

xk

fs

P(xi) µ Õs Î N(i) µsi(xi)

µ nis(xi)µsi(xi)

X1 X2 X3

X1 X2 X3fd fe

fa fcfb

µa1 µb2
µc3

n1d n3eµd2 µe2

n2d n2e
n2b

µd1 µe3
n1a

n3c

BP on a Factor Tree

© Eric Xing @ CMU, 2005-2020 76

Why factor graph?

q Tree-like graphs to Factor trees

© Eric Xing @ CMU, 2005-2020 77

X1

X2

X3 X4

X5 X6

X1

X2

X3 X4

X5
X6

Poly-trees to Factor trees

© Eric Xing @ CMU, 2005-2020 78

X1 X2

X3

X5

X4

X1 X2

X3

X5

X4

Why factor graph?

q Because FG turns tree-like graphs to factor trees,
q and trees are a data-structure that guarantees correctness of BP !

© Eric Xing @ CMU, 2005-2020 79

X1

X2

X3 X4

X5 X6

X1

X2

X3 X4

X5
X6

X1 X2

X3

X5

X4

X1 X2

X3

X5

X4

Max-product algorithm: computing MAP probabilities

© Eric Xing @ CMU, 2005-2020 80

f

i

j

k l

Max-product algorithm:
computing MAP configurations using a final bookkeeping backward pass

© Eric Xing @ CMU, 2005-2020 81

f

i

j

k l

Summary

q Sum-Product algorithm computes singleton marginal probabilities on:
q Trees
q Tree-like graphs
q Poly-trees

q Maximum a posteriori configurations can be computed by replacing sum
with max in the sum-product algorithm

q Extra bookkeeping required

© Eric Xing @ CMU, 2005-2020 82

Inference on general GM

q Now, what if the GM is not a tree-like graph?

q Can we still directly run
message-passing protocol along its edges?

q For non-trees, we do not have the guarantee that message-passing will be consistent!

q Then what?
q Construct a graph data-structure from P that has a tree structure, and run message-passing on it!

à Junction tree algorithm

© Eric Xing @ CMU, 2005-2020 83

Elimination Clique

q Recall that Induced dependency during marginalization is captured in
elimination cliques

q Summation <-> elimination
q Intermediate term <-> elimination clique

q Can this lead to an generic inference algorithm?

© Eric Xing @ CMU, 2005-2020 84

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

cm bm

gm

em

dm
fm

hm

Moral Graph

q Note that for both directed GMs and undirected GMs, the joint probability is in a
product form:

q So let’s convert local conditional probabilities into potentials; then the second
expression will be generic, but how does this operation affect the directed graph?

q We can think of a conditional probability, e.g,. P(C|A,B) as a function of the three variables A, B, and C (we
get a real number of each configuration):

q Problem: But a node and its parent are not generally in the same clique in a BN
q Solution: Marry the parents to obtain the "moral graph"

© Eric Xing @ CMU, 2005-2020 85

Õ
=

=
di

i i
XPP

:
)|()(

1
pXX Õ

Î

=
Cc

ccZ
P)()(XX y1

BN: MRF:

A

B
C

P(C|A,B)

A

B
C

Y(A,B,C) = P(C|A,B)

Moral Graph (cont.)

q Define the potential on a clique as the product over all conditional probabilities
contained within the clique

q Now the product of potentials gives the right answer:

© Eric Xing @ CMU, 2005-2020 86

),,(),,(),,(
),|()|()|(),|()()(

),,,,,(

654543321

546353421321

654321

XXXXXXXXX
XXXPXXPXXPXXXPXPXP

XXXXXXP

yyy=
=

),|()()(),,(21321321 XXXPXPXPXXX =y

)|()|(),,(3534543 XXPXXPXXX =y

),|(),,(546654 XXXPXXX =y

where

X1

X2

X3

X4

X5

X6

X1

X2

X3

X5

X4

X6

Note that here the
interpretation of potential
is ambivalent:
it can be either marginals
or conditionals

Clique trees

q A clique tree is an (undirected) tree of cliques

q Consider cases in which two neighboring cliques V and W have an overlap S (e.g., (X1,
X2, X3) overlaps with (X3, X4, X5)),

q Now we have an alternative representation of the joint in terms of the potentials:

© Eric Xing @ CMU, 2005-2020 87

X1

X2

X3

X5

X4

X6

X3, X4, X5 X4, X5, X6X1, X2, X3

V WS

)(Wy)(Vy)(Sf

X3, X4, X5 X4, X5, X6X1, X2, X3

X3 X4

Clique trees

q A clique tree is an (undirected) tree of cliques

q The alternative representation of the joint in terms of the potentials:

q Generally:

© Eric Xing @ CMU, 2005-2020 88

X1

X2

X3

X5

X4

X6 X3, X4, X5 X4, X5, X6X1, X2, X3

X3 X4, X5,

),(
),,(

)(
),,(),,(

),(
),,(

)(
),,(),,(

),|()|()|(),|()()(
),,,,,(

54

654

3

543
321

54

654

3

543
321

546353421321

654321

XX
XXX

X
XXXXXX

XXP
XXXP

XP
XXXPXXXP

XXXPXXPXXPXXXPXPXP
XXXXXXP

f
y

f
yy=

=

=

Õ
Õ=

S SS

C CCP
)(
)(

)(
X
X

X
f
y

Now each potential is
isomorphic to the cluster
marginal of the attendant
set of variables

Why this is useful?

q Propagation of probabilities
q Now suppose that some evidence has been "absorbed" (i.e., certain values of some nodes have been

observed). How do we propagate this effect to the rest of the graph?

q What do we mean by propagate?
Can we adjust all the potentials {y}, {f} so that they still represent the correct cluster marginals (or
unnormalized equivalents) of their respective attendant variables?

q Utility?

© Eric Xing @ CMU, 2005-2020 89

X1

X2

X3

X4

X5

X6

X1

X2

X3

X5

X4

X6

X3, X4, X5 X4, X5, X6X1, X2, X3

X3 X4),,()|(
,

321661
32

XXXxXXP
XX
å== y

)()|(3663 XxXXP f== Local operations!
),,()(

,
6546

54

xXXxP
XX
å= y

Local Consistency

q We have two ways of obtaining p(S)

and they must be the same

q The following update-rule ensures this:
q Forward update:

q Backward update

q Two important identities can be proven

© Eric Xing @ CMU, 2005-2020 90

V WS

)(Wy)(Vy)(Sf

)()(
\

VSP
SV
å= y)()(

\
WSP

SW
å= y

å=
SV

VS
\

** yf W
S

S
W y

f
fy
*

* =

å=
SW

WS
\

*** yf *
*

**
**

V
S

S
V y

f
fy =

**

\

*

\

**
S

SW
W

SV
V fyy ==åå

S

WV

S

WV

S

WV

f
yy

f
yy

f
yy == **

*

**

Local Consistency Invariant Joint

Message Passing Algorithm

q This simple local message-passing algorithm on a clique tree defines the
general probability propagation algorithm for directed graphs!

q Many interesting algorithms are special cases:
q Forward-backward algorithm for hidden Markov models,
q Kalman filter updates
q Pealing algorithms for probabilistic trees

q The algorithm seems reasonable. Is it correct?

© Eric Xing @ CMU, 2005-2020 91

V WS

)(Wy)(Vy)(Sf å=
SV

S V
\

** yf W
S

S
W y

f
fy
*

* =

å=
SW

WS
\

*** yf *
*

**
**

V
S

S
V y

f
fy =

A problem

q Consider the following graph and a corresponding clique tree

q Note that C appears in two non-neighboring cliques
q Question: with the previous message passage, can we ensure that the

probability associated with C in these two (non-neighboring) cliques
consistent?

q Answer: No. It is not true that in general local consistency implies global
consistency

q What else do we need to get such a guarantee?

© Eric Xing @ CMU, 2005-2020 92

A B

C D

A,B B,D

A,C C,D

Triangulation

q A triangulated graph is one in which no cycles with
four or more nodes exist in which there is no chord

q We triangulate a graph by adding chords:

q Now we no longer have our global inconsistency
problem.

q A clique tree for a triangulated graph has the running
intersection property: If a node appears in two cliques,
it appears everywhere on the path between the cliques

q Thus local consistency implies global consistency

© Eric Xing @ CMU, 2005-2020 93

A B

C D

A B

C D

A,B,C

B,C,D

Junction trees

q A clique tree for a triangulated graph is referred to as a junction tree

q In junction trees, local consistency implies global consistency. Thus the local message-
passing algorithms is (provably) correct

q It is also possible to show that only triangulated graphs have the property that their
clique trees are junction trees. Thus if we want local algorithms, we must triangulate

q Are we now all set?
q How to triangulate?
q The complexity of building a

JT depends on how we triangulate!!
q Consider this network:

it turns out that we will need to pay an O(24)
or O(26) cost depending on how we triangulate!

© Eric Xing @ CMU, 2005-2020 94

B A

DC

E F

G H

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

How to triangulate

q A graph elimination algorithm

q Intermediate terms correspond to the cliques resulted from elimination
q “good” elimination orderings lead to small cliques and hence reduce

complexity (what will happen if we eliminate "e" first in the above graph?)

q finding the optimum ordering is NP-hard, but for many graph optimum or
near-optimum can often be heuristically found

© Eric Xing @ CMU, 2005-2020 95

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

A junction tree

© Eric Xing @ CMU, 2005-2020 96

Message-passing algorithms

q Message update
q The Hugin update

q The Shafer-Shenoy update

© Eric Xing @ CMU, 2005-2020 97

collect distribute

å=
SV

VS
\

* yf W
S

S
W y

f
fy
*

* =

å Õ
¹

®® =
iji

i
SC jk

kiikCijji SmSm
\

)()(y

A Sketch of the Junction Tree Algorithm

q The algorithm

1. Moralize the graph (trivial)
2. Triangulate the graph (good heuristic exist, but actually NP hard)
3. Build a clique tree (e.g., using a maximum spanning tree algorithm
4. Propagation of probabilities --- a local message-passing protocol

q Results in marginal probabilities of all cliques --- solves all queries in a single run
q A generic exact inference algorithm for any GM
q Complexity: exponential in the size of the maximal clique --- a good elimination order

often leads to small maximal clique, and hence a good (i.e., thin) JT

© Eric Xing @ CMU, 2005-2020 98

Recall the Elimination and Message Passing Algorithm

q Elimination º message passing on a clique tree

© Eric Xing @ CMU, 2005-2020 99

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm

A AA Ax2 x3x1 xT

y2 y3y1 yT...

...

å -==
i

ki
i
t

k
tt

k
t ayxp ,)|(11 aa

å=
k

k
TP a)(x

å=
e

fg

e

eamemdcep
dcam

),()(),|(
),,(

Shafer Shenoy for HMMs

q Recap: Shafer-Shenoy algorithm

q Message from clique i to clique j :

q Clique marginal

© Eric Xing @ CMU, 2005-2020 100

å Õ
¹

®® =
iji

i
SC jk

kiikCji S
\

)(µyµ

Õ ®µ
k

kiikCi SCp
i

)()(µy

Message Passing for HMMs (cont.)

q A junction tree for the HMM

q Rightward pass

q This is exactly the forward algorithm!
q Leftward pass …

q This is exactly the backward algorithm!
© Eric Xing @ CMU, 2005-2020 101

A AA Ax2 x3x1 xT

y2 y3y1 yT...

...

),(11 xyy),(21 yyy),(32 yyy),(TT yy 1-y

),(22 xyy),(33 xyy),(TT xyy

)(2yz)(3yz)(Tyz
)(1yf)(2yfÞ

),(1+tt yyy)(ttt y®-1µ

),(11 ++ tt xyy

)(11 ++® ttt yµ

)(1+­ tt yµ

å
+

+­++¬+¬- =
1

11111
ty

tttttttttt yyyyy)()(),()(µµyµ

å

å

®-++

++®-+

+
=

=

t

tt

t

y
tttyytt

y
ttttttt

yayxp

yxpyyyp

)()|(

)|()()|(

, 111

1111

1
µ

µ

å +­®-+++® =
ty

tttttttttt yyyyy)()(),()(11111 µµyµ

å
+

++++¬+=
1

11111
ty

ttttttt yxpyyyp)|()()|(µ

),(1+tt yyy)(ttt y¬-1µ)(11 ++¬ ttt yµ

),(11 ++ tt xyy

)(1+­ tt yµ

Summary

q Junction tree data-structure for exact inference on general graphs
q Two methods

q Shafer-Shenoy
q Belief-update or Lauritzen-Speigelhalter

q Constructing Junction tree from chordal graphs
q Maximum spanning tree approach

© Eric Xing @ CMU, 2005-2015 102

