Ruslan Salakhutdinov

Associate Professor
Microsoft Faculty Fellow
Sloan Fellow
Carnegie Mellon University
CV Google Scholar  

I am an associate professor in the Machine Learning Department, School of Computer Science at Carnegie Mellon University. I work in the field of statistical machine learning (See my CV.)

My research interests include Deep Learning, Probabilistic Graphical Models, and Large-scale Optimization.

Prospective students: Please read this to ensure that I read your email.

Recent Research Highlights:

Recent Papers:

  • A Comparative Study of Word Embeddings for Reading Comprehension
    Bhuwan Dhingra, Hanxiao Liu, Ruslan Salakhutdinov, William W. Cohen
    arXiv [arXiv].

  • Neural Map: Structured Memory for Deep Reinforcement Learning
    Emilio Parisotto, Ruslan Salakhutdinov
    arXiv [arXiv].

  • Improved Variational Autoencoders for Text Modeling using Dilated Convolutions
    Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, Taylor Berg-Kirkpatrick
    ICML 2017, arXiv [arXiv].

  • Controllable Text Generation
    Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, Eric P. Xing
    ICML 2017, arXiv [arXiv].

  • Semi-Supervised QA with Generative Domain-Adaptive Nets
    Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, William W. Cohen
    ACL 2017, arXiv].

  • Gated-Attention Readers for Text Comprehension
    Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W. Cohen, Ruslan Salakhutdinov
    ACL 2017, [arXiv], [Code].

  • The More You Know: Using Knowledge Graphs for Image Classification
    Kenneth Marino, Ruslan Salakhutdinov, Abhinav Gupta
    CVPR 2017, [arXiv].

  • Spatially Adaptive Computation Time for Residual Networks
    Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, Ruslan Salakhutdinov
    CVPR 2017, [arXiv], [Code].

  • Transfer Learning for Sequence Tagging with Hierarchical Recurrent Networks
    Zhilin Yang, Ruslan Salakhutdinov, William W. Cohen
    ICLR 2017, [arXiv].

  • On the Quantitative Analysis of Decoder-Based Generative Models
    Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, Roger Grosse
    ICLR 2017, [arXiv], [Code].

  • Words or Characters? Fine-grained Gating for Reading Comprehension
    Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, Ruslan Salakhutdinov
    ICLR 2017, [arXiv].

  • Transfer Deep Reinforcement Learning in 3D Environments: An Empirical Study
    Devendra Singh Chaplot, Guillaume Lample, Kanthashree Mysore Sathyendra, Ruslan Salakhutdinov
    Deep Reinforcement Learning Workshop, NIPS 2016

  • Deep Neural Networks with Massive Learned Knowledge
    Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, and Eric Xing
    Conference on Empirical Methods in Natural Language Processing (EMNLP'16).
    [pdf], [supp].

  • Iterative Refinement of Approximate Posterior for Training Directed Belief Networks
    Devon Hjelm, Kyunghyun Cho, Junyoung Chung, Ruslan Salakhutdinov, Vince Calhoun, Nebojsa Jojic
    NIPS 2016, [arXiv].

  • Path-Normalized Optimization of Recurrent Neural Networks with ReLU Activations
    Behnam Neyshabur, Yuhuai Wu, Ruslan Salakhutdinov, Nathan Srebro
    NIPS 2016, [arXiv].

  • Stochastic Variational Deep Kernel Learning
    Andrew Gordon Wilson, Zhiting Hu, Eric Xing, Ruslan Salakhutdinov
    NIPS 2016, [arXiv], [Code].

  • On Multiplicative Integration with Recurrent Neural Networks
    Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, Ruslan Salakhutdinov
    NIPS 2016, [arXiv].

  • Encode, Review, and Decode: Reviewer Module for Caption Generation
    Zhilin Yang, Ye Yuan, Yuexin Wu, Ruslan Salakhutdinov, William W. Cohen
    NIPS 2016, [arXiv], [Code].

  • Architectural Complexity Measures of Recurrent Neural Networks
    Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan Lin, Roland Memisevic, Ruslan Salakhutdinov, Yoshua Bengio
    NIPS 2016, [arXiv].

  • Multi-Task Cross-Lingual Sequence Tagging from Scratch
    Zhilin Yang, Ruslan Salakhutdinov, William Cohen

  • Revisiting Semi-Supervised Learning with Graph Embeddings
    Zhilin Yang, William Cohen, Ruslan Salakhutdinov
    ICML 2016, [arXiv], [Code].

  • Importance Weighted Autoencoders
    Yuri Burda, Roger Grosse, Ruslan Salakhutdinov
    ICLR, 2016, [arXiv]. Code is available [here].

  • Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning
    Emilio Parisotto, Jimmy Lei Ba, Ruslan Salakhutdinov
    ICLR, 2016, [arXiv].

  • Generating Images from Captions with Attention
    Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, Ruslan Salakhutdinov
    ICLR, 2016, oral [arXiv]. [Generated Samples].

  • Data-Dependent Path Normalization in Neural Networks
    Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, Nathan Srebro
    ICLR, 2016, [arXiv].

  • Action Recognition using Visual Attention
    Shikhar Sharma, Ryan Kiros, Ruslan Salakhutdinov
    ICLR workshop, 2016 [arXiv]. [Code]. [Project Website].

  • Deep Kernel Learning
    Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, Eric Xing
    AI and Statistics, 2016, [arXiv].

  • Human-level concept learning through probabilistic program induction
    Brenden Lake, Ruslan Salakhutdinov, and Joshua Tenenbaum (2015),
    Science, 350(6266), 1332-1338, [paper], [Supporting Info.], [visual Turing tests], [Omniglot data set], [Code].

  • Learning Wake-Sleep Recurrent Attention Models
    Lei Jimmy Ba, Roger Grosse, Ruslan Salakhutdinov, Brendan Frey
    NIPS 2015. [arXiv].

  • Skip-Thought Vectors
    Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler
    NIPS 2015, [arXiv].

  • Path-SGD: Path-Normalized Optimization in Deep Neural Networks
    Behnam Neyshabur, Ruslan Salakhutdinov, Nathan Srebro
    NIPS 2015, [arXiv].

  • Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books
    Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, Sanja Fidler
    ICCV 2015, [arXiv], oral , [ project page ]

  • Predicting Deep Zero-Shot Convolutional Neural Networks using Textual Descriptions
    Jimmy Ba, Kevin Swersky, Sanja Fidler, Ruslan Salakhutdinov
    ICCV 2015, [arXiv].

  • Learning Deep Generative Models
    Ruslan Salakhutdinov
    Annual Review of Statistics and Its Application, Vol. 2, pp. 361–385, 2015

  • Scaling Up Natural Gradient by Sparsely Factorizing the Inverse Fisher Matrix
    Roger Grosse, Ruslan Salakhutdinov
    ICML, 2015. [pdf].

  • Unsupervised Learning of Video Representations using LSTMs
    Nitish Srivastava, Elman Mansimov, Ruslan Salakhutdinov
    ICML, 2015, [arXiv], [Code]

  • Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
    Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio
    ICML, 2015, [arXiv], [project page],
  • Siamese neural networks for one-shot image recognition.
    Gregory Koch, Richard Zemel, Ruslan Salakhutdinov
    ICML 2015 Deep Learning Workshop (2015), [pdf].

  • Exploiting Image-trained CNN Architectures for Unconstrained Video Classification
    Shengxin Zha, Florian Luisier, Walter Andrews, Nitish Srivastava, Ruslan Salakhutdinov
    BMVC 2015, [arXiv], 2015

  • segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
    Y. Zhu, R. Urtasun, R. Salakhutdinov and S.Fidler
    In Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, June 2015,
    [ arXiv ]

  • Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models
    Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel.
    To appear in Transactions of the Association for Computational Linguistics (TACL), 2015.
    [ arXiv], [ results], [ demo ].
    An encoder-decoder architecture for ranking and generating image descriptions.
    Previous version appeared in NIPS Deep Learning Workshop, 2014.

  • Accurate and Conservative Estimates of MRF Log-likelihood using Reverse Annealing
    Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov,
    AI and Statistics, 2015 [arXiv]