Ruslan Salakhutdinov

Professor
Microsoft Faculty Fellow
Sloan Fellow
Carnegie Mellon University
rsalakhu[at]cs.cmu.edu
CV Google Scholar  

I am a UPMC professor of Computer Science in the Machine Learning Department, School of Computer Science at Carnegie Mellon University. I work in the field of statistical machine learning (See my CV.)

My research interests include Deep Learning, Probabilistic Graphical Models, and Large-scale Optimization.

Prospective students: Please read this to ensure that I read your email.

Recent Research Highlights:




Recent Papers:

  • Effective Data Augmentation With Diffusion Models
    Brandon Trabucco, Kyle Doherty, Max Gurinas, Ruslan Salakhutdinov
    ICLR 2023 Foundation Models Workshop [arXiv] [code]

  • Generating Images with Multimodal Language Models
    Jing Yu Koh, Daniel Fried, Ruslan Salakhutdinov
    [arXiv] [code]

  • Factorized Contrastive Learning: Going Beyond Multi-view Redundancy
    Paul Pu Liang*, Zihao Deng*, Martin Ma*, James Zou, Louis-Philippe Morency, Ruslan Salakhutdinov
    [arXiv] [code]

  • Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications
    Paul Pu Liang, Chun Kai Ling, Yun Cheng, Alex Obolenskiy, Yudong Liu, Rohan Pandey, Alex Wilf, Louis-Philippe Morency, Ruslan Salakhutdinov
    [arXiv] [code]

  • Quantifying & Modeling Feature Interactions: An Information Decomposition Framework
    Paul Pu Liang, Yun Cheng, Xiang Fan, Chun Kai Ling, Suzanne Nie, Richard Chen, Zihao Deng, Nicholas Allen, Randy Auerbach, Faisal Mahmood, Ruslan Salakhutdinov, Louis-Philippe Morency
    [arXiv] [code]

  • Imitating Task and Motion Planning with Visuomotor Transformers
    Murtaza Dalal*, Ajay Mandlekar, Caelan Garrett, Ankur Handa, Ruslan Salakhutdinov, Dieter Fox
    [arXiv] [code]

  • Graph Generative Model for Benchmarking Graph Neural Networks
    Minji Yoon, Yue Wu, John Palowitch, Bryan Perozzi, Russ Salakhutdinov
    ICML 2023 [arXiv]

  • A Connection between One-Step RL and Critic Regularization in Reinforcement Learning
    Benjamin Eysenbach, Matthieu Geist, Sergey Levine, and Ruslan Salakhutdinov
    ICML 2023 [arXiv]

  • Grounding Language Models to Images for Multimodal Inputs and Outputs
    Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried
    ICML 2023 [arXiv] [code]

  • Multimodal Fusion Interactions: A Study of Human and Automatic Quantification
    Paul Pu Liang, Yun Cheng, Ruslan Salakhutdinov, Louis-Philippe Morency
    ICMI 2023 [arXiv] [code]

  • Reasoning over Logically Interacted Conditions for Question Answering
    Haitian Sun, William W. Cohen, Ruslan Salakhutdinov
    ICLR 2023 [arXiv]

  • A Simple Approach for Visual Rearrangement: 3D Mapping and Semantic Search
    Brandon Trabucco, Gunnar Sigurdsson, Robinson Piramuthu, Gaurav S. Sukhatme, Ruslan Salakhutdinov
    ICLR 2023 [arXiv]

  • Simplifying Model-based RL: Learning Representations, Latent-space Models, and Policies with One Objective
    Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach, Sergey Levine, Ruslan Salakhutdinov
    ICLR 2023 [arXiv]

  • MultiViz: An Analysis Benchmark for Visualizing and Understanding Multimodal Models
    Paul Pu Liang, Yiwei Lyu, Gunjan Chhablani, Nihal Jain, Zihao Deng, Xingbo Wang, Louis-Philippe Morency, Ruslan Salakhutdinov
    ICLR 2023 [arXiv]