Deep Learning |
Supervised Learning

Russ Salakhutdinov

Machine Learning Department
Carnegie Mellon University
Canadian Institute for Advanced Research

(Carnegie
Mellon

University

Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.

Images & Video Text & Language Speech & Audio
flickr &gg@ m“‘ REUTERS WMW Gene Expression
e AP Associated Press corro e

CO &)gle m \ZVIKLPI;IBIJA it

(1 Tube,

Relational Data/
Product —m—
, Social Network ——="==
Recommendation =

.y e
T €b S

* Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data in unsupervised or semi-supervised way.
* Multiple application domains.

Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.

Images & Video Text & Language Speech & Audio
= R = [T — g s |
flickr Eoeas &

et T #°.% REUTERS B
Google mmﬁ"%Q Wil | AP hosooiaed Pres

i
o D€Ep Learning I\/Iodels that
Recomt support inferences and discover
m structure at multiple levels.

Gene Expression

You

* Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data in unsupervised or semi-supervised way.
* Multiple application domains.

Impact of Deep Learning

== Microsoft

* Speech Recognition

Google

* Computer Vision
<k

NETIELX

* Recommender Systems

* Language Understanding

* Drug Discovery and Medical

Image Analysis €9 MERCK e MIND

) NOVARTIs EEARCH

Deep Generative Model

Model P(document) Reuters dataset: 804,414
hewswire stories: unsupervised

\ European Community

ﬁ @ Interbank Markets Monetary/Economic

[OOOO] Eneray Markes "‘:.‘ ~' ..= '5
w2 L
@ @ o) "-,.: LR f_-.*:.. -
\"‘- o, S N TR

Indicators f
: iy

e NS Disasters and
iy 8t re - Accidents

Legal/Judicial

Bag of words Government

Accounts/ % i
ccounts ¥ Borrowings

Earnings ¥

(Hinton & Salakhutdinov, Science 2006)

Example: Understanding Images

TAGS:

strangers, coworkers, conventioneers,
attendants, patrons

Nearest Neighbor Sentence:

people taking pictures of a crazy person

Model Samples

* a group of people in a crowded area .
* a group of people are walking and talking .
* a group of people, standing around and talking .

Caption Generation

i a wooden table and chairs
a car is parked in arranged in a room .
the middle of nowhere .

a ferry boat on a marina
with a group of people .

of friends on the street .

Talk Roadmap
Part 1: Supervised Learning: Deep Networks

 Definition of Neural Networks

* Training Neural Networks
* Recent Optimization / Regularization Techniques

Part 2: Unsupervised Learning: Learning Deep
Generative Models

Part 3: Open Research Questions

Learning Feature Representations

Learning
Algorithm
['I' Segway }
Input Space = Non-Segway
X + =
- _

Learning Feature Representations

Handle

I N Feature . Learning
¥ Representation Algorithm
Wheel
+ Segway }
Input Space = Non-Segway Feature Space
A + A +
3 - g b
Sk o= NN
- S
[+ - — \\\
- S
> >

Traditional Approaches

Feature Learning
Data
— — algorithm

extraction

Object
detection

Recognition

Audio
classification

Speaker

Audio audio features identification

Computer Vision Features

P =l B PRI
AU E
7
AR T &
= o7 % | N x| W
N e et -
- Al - Scale | <2
= i = l (first
NN e octave) |
N «* e = k& 4

Image gradients Keypoint descriptor S i Caussan (506)

SIFT

Orientation Voting

Gradient Image *." '

Input Image

Audio Features

afterenog HTK - mefico

A
ar?a' !J

S0 aa 0 o

= ® e
L e

"~

HEREHTR wav
T

L
15 2 25
Sec

Zero Crossing Rate

ZCR Rolloff

Audio Features

: \
\ P
g : 2
B LR ' . 7 -
13 ¥ | s | P, 3 0
0 : " » %
2 - = =T ,
- » v g
w0 1 =0 0 0 3
a o8 HTK - mefico

Representation Learning:
Can we automatically learn
these representations?

Rolloff

Neural Networks Online Course

e Disclaimer: Some of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

http://info.usherbrooke.ca/hlarochelle/neural_networks

e Hugo’s class covers

many other topics:
convolutional networks, RESTRICTED BOLTZMANN MACHINE

neural language model,

Click with the mouse or tablet to draw with pen 2

Topics: RBM, visible layer; hidden layer; energy function
Boltzmann machines, OOO000) h-
autoencoders, sparse -
coding, etc. SO0 x -

~h"™Wx—-c'x—b'h

=Y > Wjkhjzi — > cexi — »_ bjih;
Jj k J

A.

« We will use his e

material for some of the
other lectures.

tion: p(x,h) = vxp(—l:'(x.h))/Z.\ :

Feedforward Neural Networks

» Definition of Neural Networks
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training

Artificial Neuron

e Neuron pre-activation (or input activation):

a(x)=b+> wiz;=b+w'x

e Neuron output activation:

h(x) = gla(x)) = g(b+), wiz;)

where
W are the weights (parameters)
b is the bias term
g() is called the activation function

Artificial Neuron

e Output activation of the neuron:

Range is
determined

by g\
() Bias only changes

the position of the
riff

(from Pascal Vincent’s slides)

Activation Function

e Sigmoid activation function:

> Squashes the neuron’s 9(a) = sigm(a) = 1—l—exi)(—a)
output between 0 and 1

> Always positive |

o ;

> Strictly Increasing 0:5

Activation Function

» Rectified linear (ReLU) activation function:

> Bounded below by 0

(always non-negative) g(a) = reclin(a) = max(0, a)

3.0

» Tends to produce units A I N R W
with sparse activities 0l R R B R

LS|

L EE L ST

> Not upper bounded 0 N R

00 i 1 1 s -

> Strictly increasing 5 R N N S

O

I | R R D R PP PR SRR

30

Single Hidden Layer Neural Net

e Hidden layer pre-activation:

a(x) =bM + Wilbx
(ax)i = b + 55, W)

e Hidden layer activation:

h(x) = g(a(x))

e Output layer activation:

f(x) = o (b<2> L w® ThDx

Output activation
function

Multilayer Neural Net

e Consider a network with L hidden layers.

— layer pre-activation for k>0

a®) (x) = b®) + WE Rk (x)

- hidden layer activation

' ' (2)
from 1 to L: w2 - b

h®(x) = g(a®) (x))

— output layer activation (k=L+1):

h(Z+) (x) = o(a+V (x)) = £(x) (h® (x) = x)

Capacity of Neural Nets

e Consider a single layer neural network

Input

(from Pascal Vincent’s slides)

Capacity of Neural Nets

e Consider a single layer neural network

>x1

(from Pascal Vincent’s slides)

Universal Approximation

e Universal Approximation Theorem (Hornik, 1991):

- “a single hidden layer neural network with a linear output
unit can approximate any continuous function arbitrarily well,
given enough hidden units”

e This applies for sigmoid, tanh and many other activation
functions.

* However, this does not mean that there is learning algorithm that
can find the necessary parameter values.

Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training

Training

e Empirical Risk Minimization:

arg min — Zl x(): 0), 4y + \Q(0)

v J\Yj

Loss function Regularizer

e Learning is cast as optimization.

» For classification problems, we would like to minimize
classification error.

> Loss function can sometimes be viewed as a surrogate for
what we want to optimize (e.g. upper bound)

Stochastic Gradient Descend

e Perform updates after seeing each example:
- Initialize: § = {WW bW . WD) pE+)}
- Fort=1:T

- for each training example (X(t),y(t)) N
Training epoch

A = Vol (f(x";0),y") = AVeQ(0) =

0 —0+aA lteration of all examples
/

e To train a neural net, we need:

> Loss function: [(f(x(!); @), y®)
> A procedure to compute gradients: Vgl (f(x(); 0), y*)
> Regularizer and its gradient: 2(0),V$2(0)

Computational Flow Graph

e Forward propagation can be represented
as an acyclic flow graph ’

e Forward propagation can be implemented
In @ modular way:

> Each box can be an object with an fprop
method, that computes the value of the
box given its children

> Calling the fprop method of each box in
the right order yields forward propagation

Computational Flow Graph

e Each object also has a bprop method

— it computes the gradient of the loss with }

respect to each child box.

By calling bprop in the reverse order, we
obtain backpropagation

Model Selection

 Training Protocol:

- Train your model on the Training Set D31

- For model selection, use Validation Set DVald

» Hyper-parameter search: hidden layer size, learning rate,
number of iterations/epochs, etc.

- Estimate generalization performance using the Test Set D't

e Generalization is the behavior of the model on unseen
examples.

Early Stopping

 To select the number of epochs, stop training when validation set
error increases (with some look ahead).

O Training O Validation
0,5
0.4 underfitting overfitting
0,3
0,2
0,1

' +

0,0 : OO0

number of epochs

Mini-batch, Momentum

 Make updates based on a mini-batch of examples (instead of a
single example):

> the gradient is the average regularized loss for that mini-batch
» can give a more accurate estimate of the gradient

» can leverage matrix/matrix operations, which are more efficient

 Momentum: Can use an exponential average of previous
gradients:
=(t—1)

Vy = Vel(F(x1),y®) + gV,

> can get pass plateaus more quickly, by “gaining momentum”

Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training

Learning Distributed Representations

» Deep learning is research on learning models with multilayer
representations

> multilayer (feed-forward) neural networks
> multilayer graphical model (deep belief network, deep Boltzmann

machine)
e Each layer learns “distributed representation”

> Units in a layer are not mutually exclusive
each unit is a separate feature of the input
two units can be “active” at the same time
> Units do not correspond to a partitioning (clustering) of the inputs

in clustering, an input can only belong to a single cluster

Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models

()

* Parameters for each region.
 # of regions is linear with
of parameters.

Cl1 C2 C3 e

Learned
prototypes

(Bengio, 2009, Foundations and
Trends in Machine Learning)

Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,

Neighbors, RBF SVM, local PCA, Sparse Coding,

density estimators Deep models | ¢l=1
4 N\ -\ C2=1

* Parameters for each region. . C3=1

* # of regions is linear with
of parameters.

Y, .
C1=1 C1=0
C2=0 C2=1
C3=O C1=0 ' C3=1
C2=0 SN
C3=0 | T~o
c1 C2 3 : S~
\ ci1=0
| C2=0
C3=1

Learned
prototypes

Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models | ¢1=1
s \ (-)
* Parameters for each region. * Each parameter affects many
 # of regions is linear with regions, not just local.
. # of parameters. y * # of regions grows (roughly)

pronenhally in # of parameters. y

CI=T =< C2Z=T CI=0
C2=0 S~ _ C3=0 \ Cc2=1
C3:O C1=0 “ ~ ~ y C3:1

C2=0 SN
C3=0 | T~o
c1 C2 3 : S~
\ ci1=0
| C2=0
C3=1

Learned
prototypes

Inspiration from Visual Cortex

Categorical judgments,

r muscle = 160-220 ms
0-260 ms

[picture from Simon Thorpe]

.

Why Training is Hard

 First hypothesis: Hard optimization
problem (underfitting)

> vanishing gradient problem
> saturated units block gradient

propagation

e This is a well known problem in
recurrent neural networks

Why Training is Hard

e Second hypothesis: Overfitting

> we are exploring a space of complex functions

> deep nets usually have lots of parameters

e Might be in a high variance / low bias situation

Q@+ B

possible f possible f

low variance/

high bias good trade-off

Why Training is Hard

 First hypothesis (underfitting): better optimize

> Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

e Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training ‘

> Stochastic drop-out training

e For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

Unsupervised Pre-training

e |nitialize hidden layers using unsupervised learning

» Force network to represent latent structure of input distribution

Why is one
a character
and the other

Is not ?
l /

character image random image

> Encourage hidden layers to encode that structure

Unsupervised Pre-training

e |nitialize hidden layers using unsupervised learning

> This is a harder task than supervised learning (classification)

Why is one
a character
and the other

Is not ?
l /

character image random image

> Hence we expect less overfitting

Autoencoders: Preview

e Feed-forward neural network trained to reproduce its input at the
output layer

Decoder
x (O@0O000) X = oa(x))
—— = \&gm(cj—l— W*h(x))
(tied weights) ForEnary units
h(x) (OBOO0)
W Encoder

h(x) = g(a(x))

x (OOO0000) — sigm(b+ Wx)

Autoencoders: Preview

e Loss function for binary inputs

I(f(x)) = = > (wrlog(Z) + (1 — mx) log(1 —)

» Cross-entropy error function f(X) =X

e Loss function for real-valued inputs
[(f(x)) = 52 %@k — 21)°

> sum of squared differences

> we use a linear activation function at the output

Pre-training

* We will use a greedy, layer-wise procedure

> Train one layer at a time with unsupervised criterion

» Fix the parameters of previous hidden layers

> Previous layers can be viewed as feature extraction

Fine-tuning

e Once all layers are pre-trained

> add output layer
» train the whole network using
supervised learning

» We call this last phase fine-tuning

> all parameters are “tuned” for the
supervised task at hand

> representation is adjusted to be more
discriminative

Why Training is Hard

 First hypothesis (underfitting): better optimize

> Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

e Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training

> Stochastic drop-out training ‘

e For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

Dropout

e Key idea: Cripple neural network by removing hidden units
stochastically

> each hidden unit is set to 0 with
probability 0.5

> hidden units cannot co-adapt to
other units

> hidden units must be more
generally useful h()(x)

e Could use a different dropout
probability, but 0.5 usually works well

Dropout

e Use random binary masks m®

> layer pre-activation for k>0

a®) (x) = bK) + WFp(k=1) (x)

> hidden layer activation (k=1 to L):

h®) (x) = g(a® (x)) om(®

> Output activation (k=L+1) () (x)

h(Z+D) (x) = o(al+V (x)) = f(x) w

Dropout at Test Time

* At test time, we replace the masks by their expectation

> This is simply the constant vector 0.5 if dropout probability is 0.5
> For single hidden layer: equivalent to taking the geometric average

of all neural networks, with all possible binary masks

e Can be combined with unsupervised pre-training

e Beats regular backpropagation on many datasets

 Ensemble: Can be viewed as a geometric average of exponential
number of networks.

Why Training is Hard

 First hypothesis (underfitting): better optimize

> Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

e Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training

> Stochastic drop-out training

e For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

Batch Normalization

 Normalizing the inputs will speed up training (Lecun et al. 1998)

» could normalization be useful at the level of the hidden layers?

e Batch normalization is an attempt to do that (loffe and Szegedy, 2014)

> each unit’s pre-activation is normalized (mean subtraction, stddev
division)

» during training, mean and stddev is computed for each minibatch

> backpropagation takes into account the normalization

> at test time, the global mean / stddev is used

Batch Normalization

Input: Values of z over a mini-batch: B = {z1. . };
Parameters to be learned: v, 3
Output: {y; = BN, s5(z;)}

1 — -
UB — Z; T; // mini-batch mean
1=
1 m
05 — (z; — puB)? // mini-batch variance
i=1
T; Ti — P8 // normalize
- Nemte
: Y; < vZ; + B = BN, g(x;) : // scale and shift

Learned linear transformation to adapt to non-linear
activation function (y and 3 are trained)

Batch Normalization

 Why normalize the pre-activation?

> can help keep the pre-activation in a non-saturating regime
(though the linear transform y; < vx; + 3 could cancel this
effect)

e Use the global mean and stddev at test time.

» removes the stochasticity of the mean and stddev

> requires a final phase where, from the first to the last hidden layer
propagate all training data to that layer
compute and store the global mean and stddev of each unit

» for early stopping, could use a running average

Optimization Tricks

e SGD with momentum, batch-normalization, and dropout usually
works very well

* Pick learning rate by running on a subset of the data

> Start with large learning rate & divide by 2 until loss does not diverge

> Decay learning rate by a factor of ~100 or more by the end of training
» Use RelLU nonlinearity

e Initialize parameters so that each feature across layers has
similar variance. Avoid units in saturation.

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

Visualization

e Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

e Good training: hidden units
are sparse across samples

samples

hidden unit

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

Visualization

e Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

e Visualize parameters: learned features should exhibit structure
and should be uncorrelated and are uncorrelated

GOOD BAD BAD BAD

_-l“
Raw
a

Yl
‘.

L -
"I*L‘
oG

- -

too noisy too correlated

e
\FL'C - Y ‘-sl

e P T
-

-
Ll

e

. ™ R
LELDALNS

L R

h-i\-h
’

-

T

ack structure

Visualization

e Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

e Bad training: many hidden
units ignore the input and/or
exhibit strong correlations

i .
k|
L

I |

.[l

q

hidden unit

Computer Vision

» Design algorithms that can process visual data to accomplish a given task:

> For example, object recognition: Given an input image, identify

which object it contains

| 12 pixels

» “sun flower”

| 50 pixels

Deep Convolutional Nets

Very deep network Predlct|on
.- Convolution High-level feature

- Pooling space
- Normalization
- Densely connected

Deep Convolutional Nets

\ / \ .\

\J/ Convolutlon

P ,q-‘d»,,ﬁ

ConvNets: Examples

e Optical Character Recognition, House Number and Traffic Sign
classification

234

ARl 1107 O R G

i-ﬂlllﬂllm
|V VMO TS W
- BRI
5050 0] | B
I T R
0 [T
i DERET - oM

CRRME: o 4'3:5
: nili:

Ciresan et al. “MCDNN for image classification” CVPR 2012

Wan et al. “Regularization of neural networks using dropconnect” ICML 2013
Goodfellow et al. “Multi-digit nuber recognition from StreetView...” ICLR 2014

Jaderberg et al. “Synthetic data and ANN for natural scene text recognition” arXiv 2014

ConvNets: Examples

e Pedestrian detection

(Sermanet et al., Pedestrian detection with unsupervised multi-stage, CVPR 2013)

ConvNets: Examples

e Object Detection

beanGonio®3

Sermanet et al., OverFeat: Integrated recognition, localization, 2013

Girshick et al., Rich feature hierarchies for accurate object detection, 2013
Szegedy et al., DNN for object detection, NIPS 2013

ImageNet Dataset

* 1.2 million images, 1000 classes

Examples of Hammer
3 \ -_ = @_ >

2 e
¥ s {

S b & 8
\-.\\\]

(Deng et al., Imagenet: a large scale hierarchical image database, CVPR 2009)

Important Breakthrough

* Deep Convolutional Nets for Vision (Supervised)

Krizhevsky, A., Sutskever, I. and Hinton, G. E., ImageNet Classification with Deep
Convolutional Neural Networks, NIPS, 2012.

24 . Rl L e
Rl] AT | ek, P AU e |\ 3 [dense dense| mite container s 1p motor scooter eopard

.\ mite tai ship ‘motor scooter legpard

\ 197 W 198 Max black widow lifeboat go-kart jaguar

Stnd Max - Mox pooling 2048 cockroach amphibian moped cheetah

of 4 pooling pooling tick fireboat bumper car snow leopard

3 a8 starfish drilling platform golfcart Egyptian cat

1.2 million training images e et o e AN

vertible agaric ﬁlmaﬂnh squirrel monkey

1 OOO C I asses grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri

fire engi dead ‘s-fingers currant howler monkey

Architecture

 How can we select the right architecture:

» Manual tuning of features is now replaced with the manual tuning

of architechtures

e Depth
e Width

e Parameter count

How to Choose Architecture

e Many hyper-parameters:

»> Number of layers, number of feature maps

e Cross Validation
e Grid Search (need lots of GPUs)

e Smarter Strategies

» Random search

> Bayesian Optimization

AlexNet

. 8 layers total \ Softmax Output
1

Layer 7: Full
=S
Layer 6: Full
4
* 18.2% top-5 error Layer 5: Conv + Pool
ZAS
Layer 4: Conv
ZER

e Trained on Imagenet
dataset [Deng et al. CVPR’09]

Layer 3: Conv

[From Rob Fergus’ CIFAR 2016 tutorial] [Input Image }

AlexNet

 Remove top fully connected layer 7

[Softmax Output]

e Drop ~16 million parameters T_T

Layer 6 Full

e Only 1.1% drop in performance!

Layer 4 Conv

Layer 3 Conv

[Layer 5: Conv + Pool

[From Rob Fergus’ CIFAR 2016 tutorial] [Input Image }

AlexNet

« Let us remove upper feature extractor layers [SO GUpUL]

and fully connected: ﬁ

> Layers 3,4,6and 7)
Layer 6: Full
2R
e Drop ~50 million parameters [Layer 5: Conv + Pool
Z\

e 33.5 drop in performance!

e Depth of the network is the key.

[From Rob Fergus’ CIFAR 2016 tutorial] [Input Image }

GooglLeNet

'
2
g 4 Hygilgg.0;
14 i pigHye ﬁgﬁﬂgﬂﬂ‘ﬁ
aaaaeiigiigyd Eﬁgﬁﬁﬁ iy HH
1ty T
TRT EE Eﬁiiﬂ
Eﬁiiﬂ@
* 24 layer model that uses so-called inception Convolution
module. Pooling
Other

(Szegedy et al., Going Deep with Convolutions, 2014)

GooglLeNet

e GoogLeNet inception module:

> Multiple filter scales at each layer

> Dimensionality reduction to keep computational requirements down

A n u m be r Filter
f f. I t 1 X1 concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
3X3 1x1 convolutions A) T

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

(Szegedy et al., Going Deep with Convolutions, 2014)

GooglLeNet

13
I
1 1A HgE
@ a : 5 sagaagggﬁﬁﬁagaaggi
afaadag; ﬁaéggé iy HH
| E i TEERE

%E EE

e Width of inception modules ranges from 256 filters (in early modules) to
1024 in top inception modules.

e Can remove fully connected layers on top completely
e Number of parameters is reduced to 5 million

* 6.7% top-5 validation error on Imagnet

(Szegedy et al., Going Deep with Convolutions, 2014)

Residual Networks

Really, really deep convnets do not train well,

E.g. CIFAR10:

20r
5 S
E 10F g 1ok 20-13.}/61'
,Eﬂ 56-layer 2
g 38
S ~—
= 20-layer
O i 2 3 3 5 6 0 2 3 3 5 6
iter. (1e4) iter. (1e4)
H . 1
Key idea: introduce “pass
y method top-1 err. top-5 err.
through” into each layer VGG [41] (LSVRC'14) S
GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
. PReLU-net [13] 21.59 571
Thus Only residual now BN-inception [16] 2199 58
ResNet-34 B 21.84 571
needS tO be |ea rned ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
X ResNet-152 19.38 4.49

A
weight layer

y

relu
\ 4

weight layer

X

(He, Zhang, Ren, Sun, CVPR 2016)

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except ' reported on the test set).

With ensembling, 3.57% top-5
identity test error on ImageNet

output
size: 224

output
size: 112

output
size: 56

output
size: 28

output
size: 14

output
size: 7

output
size: 1

VGG-19
image
pool, /2

3x3 conv, 128

34-layer plain

image

34-layer residual

image

[33conv,128 |

7x7 conv, 64, /2

[7x7conv,64,/2 |

pool, /2 pool, /2 pool, /2
[33conv,256 | 3x3 conv, 64 3x3 conv, 64
v
I 3x3 conv, 256 I 3x3 conv, 64 3x3 conv, 64
[33conv,256 | 3x3 conv, 64 3x3 conv, 64
| 3x3 conv, 256 | 3x3 conv, 64 3x3 conv, 64

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3cony, 128,/2 |

3x3 conv, 512

3x3 conv, 128

3x3cony, 128 |

3x3 conv, 512

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 512

3x3 conv, 256

3x3conv, 256,/2 |
3x3 conv, 256 I

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

v

v

v

3x3 conv, 256

3x3 conv, 256

[|
[|
| 3x3 conv, 512 |
[|

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

v
pool, /2 3x3 convy, 512, /2 3x3 conv, 512, /2 I
3x3 conv, 512 3x3 conv, 512 _'_."
L 2.
3x3 conv, 512 3x3 conv, 512
3x3 conv, 512 3x3 conv, 512
3x3 conv, 512 3x3 conv, 512
3x3 convy, 512 3x3 conv, 512
\ 4 v
fc 4096 avg pool avg pool
| fc 4096] | fc 1000] | fc 1000]

fc 1000

Choosing the Architecture

e Task dependent
e Cross-validation
e [Convolution — pooling]* + fully connected layer

e The more data: the more layers and the more kernels

> Look at the number of parameters at each layer

> Look at the number of flops at each layer

e Computational resources

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

End of Part 1

