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Unsupervised	Learning	

Non-probabilis;c	Models	
Ø  Sparse	Coding	
Ø  Autoencoders	
Ø  Others	(e.g.	k-means)	

Explicit	Density	p(x)	

Probabilis;c	(Genera;ve)	
Models	

Tractable	Models	
Ø  Fully	observed	

Belief	Nets	
Ø  NADE	
Ø  PixelRNN	

Non-Tractable	Models	
Ø  Boltzmann	Machines	
Ø  Varia;onal	

Autoencoders	
Ø  Helmholtz	Machines	
Ø  Many	others…	

Ø  Genera;ve	Adversarial	
Networks	

Ø  Moment	Matching	
Networks	

Implicit	Density	



Talk	Roadmap	
• 	Basic	Building	Blocks:	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	Genera;ve	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Belief	Networks	and	Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	Varia;onal	Autoencoders		

• 	Genera;ve	Adversarial	Networks		

• 	Model	Evalua;on		
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Deep Belief Network Deep Boltzmann Machine

DBNs	vs.	DBMs	

DBNs	are	hybrid	models:		
• 	Inference	in	DBNs	is	problema;c	due	to	explaining	away.	
• 	Only	greedy	pretrainig,	no	joint	op/miza/on	over	all	layers.		
• 	Approximate	inference	is	feed-forward:	no	bo6om-up	and	top-down.				



Mathema;cal	Formula;on	
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model	parameters	

•  BoVom-up	and	Top-down:	

Deep	Boltzmann	Machine	

BoVom-up	 Top-Down	

Unlike	many	exis;ng	feed-forward	models:	ConvNet	(LeCun),	
HMAX	(Poggio	et.al.),	Deep	Belief	Nets	(Hinton	et.al.)	

•  Dependencies	between	hidden	variables.	
•  All	connec;ons	are	undirected.	

Input	
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Neural	Network		
Output	
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Mathema;cal	Formula;on	

Deep	Boltzmann	Machine	

h3

h2

h1

v

W3

W2

W1

Deep	Belief	Network	

Unlike	many	exis;ng	feed-forward	models:	ConvNet	(LeCun),	
HMAX	(Poggio),	Deep	Belief	Nets	(Hinton)	

Input	



h3

h2

h1

v

W3

W2

W1

h3

h2

h1

v

W3

W2

W1

Mathema;cal	Formula;on	

Deep	Boltzmann	Machine	 Deep	Belief	Network	
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Unlike	many	exis;ng	feed-forward	models:	ConvNet	(LeCun),	
HMAX	(Poggio),	Deep	Belief	Nets	(Hinton)	

inference	

Neural	Network		
Output	

Input	



Mathema;cal	Formula;on	

model	parameters	

Maximum	likelihood	learning:	

Problem:	Both	expecta;ons	are	
intractable!	

Learning	rule	for	undirected	graphical	models:		
MRFs,	CRFs,	Factor	graphs.		

•  Dependencies	between	hidden	variables.	

Deep	Boltzmann	Machine	
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Approximate	Learning	

(Approximate)	Maximum	Likelihood:	

Not	factorial	any	more!	
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•  Both	expecta;ons	are	intractable!		



Data	

Approximate	Learning	

(Approximate)	Maximum	Likelihood:	h3
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Not	factorial	any	more!	



Approximate	Learning	

(Approximate)	Maximum	Likelihood:	

Not	factorial	any	more!	
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W1 Varia;onal	
	Inference	

Stochas;c	
Approxima;on		
(MCMC-based)	



Previous	Work	
Many	approaches	for	learning	Boltzmann	machines	have	been	
proposed	over	the	last	20	years:	
• 	Hinton	and	Sejnowski	(1983),	
• 	Peterson	and	Anderson	(1987)	
• 	Galland	(1991)		
• 	Kappen	and	Rodriguez	(1998)	
• 	Lawrence,	Bishop,	and	Jordan	(1998)	
• 	Tanaka	(1998)		
• 	Welling	and	Hinton	(2002)		
• 	Zhu	and	Liu	(2002)	
• 	Welling	and	Teh	(2003)	
• 	Yasuda	and	Tanaka	(2009)			

Many	of	the	previous	approaches	were	not	successful	for	learning	
general	Boltzmann	machines	with	hidden	variables.	

Real-world	applica;ons	–	thousands		
of	hidden	and	observed	variables	
with	millions	of	parameters.	

Algorithms	based	on	Contras;ve	Divergence,	Score	Matching,	Pseudo-
Likelihood,	Composite	Likelihood,	MCMC-MLE,	Piecewise	Learning,	cannot	
handle	mul;ple	layers	of	hidden	variables.			



New	Learning	Algorithm	

Condi;onal	 Uncondi;onal	

Posterior	Inference	 Simulate	from	the	Model	

Approximate	
condi;onal	

Approximate	the	
joint	distribu;on	

(Salakhutdinov, 2008; NIPS 2009)



Condi;onal	 Uncondi;onal	

Posterior	Inference	 Simulate	from	the	Model	

Approximate	the	
joint	distribu;on	

Data-dependent	

Approximate	
condi;onal	

New	Learning	Algorithm	

Data-independent	

density	 Match		

(Salakhutdinov, 2008; NIPS 2009)



Condi;onal	 Uncondi;onal	

Posterior	Inference	

Approximate	the	
joint	distribu;on	

Data-dependent	

Approximate	
condi;onal	

New	Learning	Algorithm	

Data-independent	

Match		

Key	Idea:	

Markov	Chain	
Monte	Carlo	

Data-dependent:					Varia/onal	Inference,	mean-field	theory	
Data-independent:		Stochas/c	Approxima/on,	MCMC	based	

Mean-Field	

Simulate	from	the	Model	
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Stochas;c	Approxima;on	

Update	 Update	
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•  Generate 	 	 	 	 						by	simula;ng	from	a	Markov	chain	
that	leaves									invariant	(e.g.	Gibbs	or	M-H	sampler)	

•  Update 						by	replacing	intractable		 	 								with	a	point	
es;mate		

In	prac;ce	we	simulate	several	Markov	chains	in	parallel.	
(Robbins and Monro, Ann. Math. Stats, 1957;
 L. Younes,  Probability Theory 1989)

Update						and						sequen;ally,		where	



Learning	Algorithm	
Update	rule	decomposes:	

True	gradient	 Perturba;on	term	
Almost	sure	convergence	guarantees	as	learning	rate			

Problem:	High-dimensional	data:	
the	probability	landscape	is		
highly	mul;modal.	

Connec;ons	to	the	theory	of	stochas;c	approxima;on	and	adap;ve	MCMC.	

Key	insight:	The	transi;on	operator	can	be		
any	valid	transi;on	operator	–	Tempered		
Transi;ons,	Parallel/Simulated	Tempering.	

Markov	Chain	
Monte	Carlo	



Posterior	Inference	

Mean-Field	

Varia;onal	Inference	
Approximate	intractable	distribu;on																	with	simpler,	tractable	
distribu;on 	 					:	

Varia;onal	Lower	Bound	

Minimize	KL	between	approxima;ng	and	true	
distribu;ons	with	respect	to	varia;onal	parameters					.		



Posterior	Inference	

Mean-Field	

Varia;onal	Inference	
Approximate	intractable	distribu;on																	with	simpler,	tractable	
distribu;on 	 					:	

Mean-Field:	Choose	a	fully	factorized	distribu;on:	

with	

Nonlinear	fixed-	
point	equa;ons:	

Varia/onal	Inference:	Maximize	the	lower	bound	w.r.t.	
Varia;onal	parameters					.		

Varia;onal	Lower	Bound	



Posterior	Inference	

Mean-Field	

Varia;onal	Inference	
Approximate	intractable	distribu;on																	with	simpler,	tractable	
distribu;on 	 					:	

1.	Varia/onal	Inference:	Maximize	the	lower		
bound	w.r.t.	varia;onal	parameters						

Markov	Chain	
Monte	Carlo	

2.	MCMC:	Apply	stochas;c	approxima;on		
to	update	model	parameters					 										

Almost	sure	convergence	guarantees	to	an	asympto;cally	
stable	point.	

Uncondi;onal	Simula;on	Varia;onal	Lower	Bound	



Posterior	Inference	

Mean-Field	

Varia;onal	Inference	
Approximate	intractable	distribu;on																	with	simpler,	tractable	
distribu;on 	 					:	

1.	Varia/onal	Inference:	Maximize	the	lower		
bound	w.r.t.	varia;onal	parameters						

Markov	Chain	
Monte	Carlo	

2.	MCMC:	Apply	stochas;c	approxima;on		
to	update	model	parameters					 										

Almost	sure	convergence	guarantees	to	an	asympto;cally	
stable	point.	

Uncondi;onal	Simula;on	

Fast	Inference	

Learning	can	scale	to	
millions	of	examples	

Varia;onal	Lower	Bound	



Good	Genera;ve	Model?	
HandwriVen	Characters	



Good	Genera;ve	Model?	
HandwriVen	Characters	



Good	Genera;ve	Model?	
HandwriVen	Characters	

Real	Data	Simulated	



Good	Genera;ve	Model?	
HandwriVen	Characters	

Real	Data	 Simulated	



Good	Genera;ve	Model?	
HandwriVen	Characters	



Good	Genera;ve	Model?	
MNIST	HandwriVen	Digit	Dataset	



Handwri;ng	Recogni;on	

Learning	Algorithm	 Error	

Logis;c	regression	 12.0%	
K-NN		 3.09%	
Neural	Net	(PlaV	2005)	 1.53%	
SVM	(Decoste	et.al.	2002)	 1.40%	
Deep	Autoencoder	
(Bengio	et.	al.	2007)		

1.40%	

Deep	Belief	Net	
(Hinton	et.	al.	2006)		

1.20%	

DBM		 0.95%	

Learning	Algorithm	 Error	

Logis;c	regression	 22.14%	
K-NN		 18.92%	
Neural	Net	 14.62%	
SVM	(Larochelle	et.al.	2009)	 9.70%	
Deep	Autoencoder	
(Bengio	et.	al.	2007)		

10.05%	

Deep	Belief	Net	
(Larochelle	et.	al.	2009)		

9.68%	

DBM	 8.40%	

MNIST	Dataset	 Op;cal	Character	Recogni;on	
60,000	examples	of	10	digits	 42,152	examples	of	26	English	leVers		

Permuta;on-invariant	version.	



Genera;ve	Model	of	3-D	Objects	

24,000	examples,	5	object	categories,	5	different	objects	within	each		
category,	6	lightning	condi;ons,	9	eleva;ons,	18	azimuths.			



3-D	Object	Recogni;on	

Learning	Algorithm	 Error	
Logis;c	regression	 22.5%	
K-NN	(LeCun	2004)	 18.92%	
SVM	(Bengio	&	LeCun		2007)	 11.6%	
Deep	Belief	Net	(Nair	&	
Hinton		2009)		

9.0%	

DBM	 7.2%	

PaVern	Comple;on	

Permuta;on-invariant	version.	

Where	else	can	we	use	
genera;ve	models?	



Data	–	Collec;on	of	Modali;es	
• 	Mul;media	content	on	the	web	-	
image	+	text	+	audio.	

• 	Product	recommenda;on	
systems.	

• 	Robo;cs	applica;ons.	

Audio	
Vision	

Touch	sensors	
Motor	control	

sunset,	
pacificocean,	
bakerbeach,	
seashore,	ocean	

car,	
automobile	



Challenges	-	I		

Very	different	input	
representa;ons	

Image	 Text	

sunset,	pacific	ocean,	
baker	beach,	seashore,	

ocean	 • 	Images	–	real-valued,	dense	

Difficult	to	learn	
cross-modal	features	
from	low-level	
representa;ons.	

Dense	

• 	Text	–	discrete,	sparse		

Sparse	



Challenges	-	II		

Noisy	and	missing	data	

Image	 Text	
pentax,	k10d,	
pentaxda50200,	
kangarooisland,	sa,	
australiansealion	

mickikrimmel,	
mickipedia,	
headshot	

unseulpixel,	
naturey	

<	no	text>	



Challenges	-	II		
Image	 Text	 Text	generated	by	the	model	

beach,	sea,	surf,	strand,	
shore,	wave,	seascape,	
sand,	ocean,	waves	

portrait,	girl,	woman,	lady,	
blonde,	preVy,	gorgeous,	
expression,	model	

night,	noVe,	traffic,	light,	
lights,	parking,	darkness,	
lowlight,	nacht,	glow	

fall,	autumn,	trees,	leaves,	
foliage,	forest,	woods,	
branches,	path	

pentax,	k10d,	
pentaxda50200,	
kangarooisland,	sa,	
australiansealion	

mickikrimmel,	
mickipedia,	
headshot	

unseulpixel,	
naturey	

<	no	text>	



A	Simple	Mul;modal	Model	
• 	Use	a	joint	binary	hidden	layer.	
• 	Problem:		Inputs	have	very	different	sta;s;cal	
proper;es.	

• 	Difficult	to	learn	cross-modal	features.	

0	
0	
1	
0	

0	
Real-valued	

1-of-K	



0	
0	
1	
0	

0	
Dense,	real-valued	
image	features	

Gaussian	model	
Replicated	Soumax	

Mul;modal	DBM	

Word	
counts	

(Srivastava & Salakhutdinov, NIPS 2012, JMLR 2014)



Mul;modal	DBM	

0	
0	
1	
0	

0	
Dense,	real-valued	
image	features	

Gaussian	model	
Replicated	Soumax	

Word	
counts	

(Srivastava & Salakhutdinov, NIPS 2012, JMLR 2014)



Gaussian	model	
Replicated	Soumax	

0	
0	
1	
0	

0	

Mul;modal	DBM	

Word	
counts	

Dense,	real-valued	
image	features	

(Srivastava & Salakhutdinov, NIPS 2012, JMLR 2014)



0	
0	
1	
0	

0	
Dense,	real-valued	
image	features	

Word	
counts	

Gaussian	model	
Replicated	Soumax	

Mul;modal	DBM	

BoVom-up	
+	

Top-down	

(Srivastava & Salakhutdinov, NIPS 2012, JMLR 2014)



Text	Generated	from	Images	

canada,	nature,	
sunrise,	ontario,	fog,	
mist,	bc,	morning	

insect,	buVerfly,	insects,	
bug,	buVerflies,	
lepidoptera	

graffi;,	streetart,	stencil,	
s;cker,	urbanart,	graff,	
sanfrancisco	

portrait,	child,	kid,	
ritraVo,	kids,	children,	
boy,	cute,	boys,	italy	

dog,	cat,	pet,	kiVen,	
puppy,	ginger,	tongue,	
kiVy,	dogs,	furry	

sea,	france,	boat,	mer,	
beach,	river,	bretagne,	
plage,	briVany	

Given Generated 	 		 Given Generated 	 		



Text	Generated	from	Images	
Given Generated 	 		

water,	glass,	beer,	boVle,	
drink,	wine,	bubbles,	splash,	
drops,	drop	

portrait,	women,	army,	soldier,	
mother,	postcard,	soldiers	

obama,	barackobama,	elec;on,	
poli;cs,	president,	hope,	change,	
sanfrancisco,	conven;on,	rally	



Genera;ng	Text	from	Images	

Samples	drawn	auer	
every	50	steps	of	
Gibbs	updates	



MIR-Flickr	Dataset	

(Huiskes et al., 2010)

• 	1	million	images	along	with	user-assigned	tags.	

sculpture,	beauty,	
stone	

nikon,	green,	light,	
photoshop,	apple,	d70	

white,	yellow,	
abstract,	lines,	bus,	
graphic	

sky,	geotagged,	
reflec;on,	cielo,	
bilbao,	reflejo	

food,	cupcake,	
vegan	

d80	

anawesomeshot,	
theperfectphotographer,	
flash,	damniwishidtakenthat,	
spiritofphotography	

nikon,	abigfave,	
goldstaraward,	d80,	
nikond80	



Results	
• 	Logis;c	regression	on	top-level	representa;on.	
• 	Mul;modal	Inputs	

Learning	Algorithm	 MAP	 Precision@50	

Random	 0.124	 0.124	
LDA	[Huiskes	et.	al.]	 0.492	 0.754	
SVM	[Huiskes	et.	al.]	 0.475	 0.758	
DBM-Labelled	 0.526	 0.791	
Deep	Belief	Net	 0.638	 0.867	
Autoencoder	 0.638	 0.875	
DBM	 0.641	 0.873	

Mean	Average	Precision	

Labeled	
25K	
examples	

+	1	Million	
unlabelled	



Talk	Roadmap	
• 	Basic	Building	Blocks:	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	Genera;ve	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Belief	Network,	Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	Varia;onal	Autoencoders		

• 	Genera;ve	Adversarial	Networks		

• 	Model	Evalua;on	



Helmholtz	Machines	
• 	Hinton,	G.	E.,	Dayan,	P.,	Frey,	B.	J.	and	Neal,	R.,	Science	1995	

Input	data	
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h1

v

W3

W2

W1

Genera;ve	
Process	Approximate	

Inference	

• 	Kingma	&	Welling,	2014	

• 	Rezende,	Mohamed,	Daan,	2014	

• 	Mnih	&	Gregor,	2014		

• 	Bornschein	&	Bengio,	2015	

• 	Tang	&	Salakhutdinov,	2013			



Helmholtz	Machines,	DBNs,	DBMs	
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Varia;onal	Autoencoders	(VAEs)		
• 	The	VAE	defines	a	genera;ve	process	in	terms	of	ancestral	
sampling	through	a	cascade	of	hidden	stochas;c	layers:		

h3

h2

h1

v

W3

W2

W1

Each	term	may	denote	a	
complicated	nonlinear	rela;onship		

•  Sampling	and	probability	
evalua;on	is	tractable	for	
each																						.		

Genera;ve	
Process	

•  					denotes	parameters	
of	VAE.		

•  				is	the	number	of	
stochas/c	layers.	

Input	data	



VAE:	Example	
• 	The	VAE	defines	a	genera;ve	process	in	terms	of	ancestral	
sampling	through	a	cascade	of	hidden	stochas;c	layers:		

This	term	denotes	a	one-layer	
neural	net.	

Determinis;c	
Layer	

Stochas;c	Layer	

Stochas;c	Layer	

•  					denotes	parameters	
of	VAE.		

•  Sampling	and	probability	
evalua;on	is	tractable	for	
each																						.		

•  				is	the	number	of	
stochas/c	layers.	



Varia;onal	Bound	
• 	The	VAE	is	trained	to	maximize	the	varia;onal	lower	bound:	

Input	data	

h3

h2

h1

v

W3

W2

W1

•  Hard	to	op;mize	the	varia;onal	bound	
with	respect	to	the	recogni;on	network	
(high-variance).		

•  Key	idea	of	Kingma	and	Welling	is	to	use	
reparameteriza;on	trick.		

•  Trading	off	the	data	log-likelihood	and	the	KL	divergence	
from	the	true	posterior.		



Reparameteriza;on	Trick	
• 	Assume	that	the	recogni;on	distribu;on	is	Gaussian:	

				with	mean	and	covariance	computed	from	the	state	of	the	hidden	
units	at	the	previous	layer.		

•  Alterna;vely,	we	can	express	this	in	term	of	auxiliary	variable:			



• 	Assume	that	the	recogni;on	distribu;on	is	Gaussian:	

•  Or	

Determinis;c	
Encoder	

•  The	recogni;on	distribu;on																										can	be	expressed	in	
terms	of	a	determinis;c	mapping:				

Distribu;on	of			
does	not	depend	on	

Reparameteriza;on	Trick	



Compu;ng	the	Gradients	
•  The	gradient	w.r.t	the	parameters:	both	recogni;on	and	
genera;ve:	

Gradients	can	be	
computed	by	backprop	

The	mapping	h	is	a	determinis;c	
neural	net	for	fixed				.		

Autoencoder	



Importance	Weighted	Autoencoders	
•  Can	improve	VAE	by	using	following	k-sample	importance	
weigh;ng	of	the	log-likelihood:		

				where																								are	sampled	
from	the	recogni;on	network.	

Input	data	

h3

h2

h1

v

W3

W2

W1

unnormalized	
importance	weights		

 (Burda, Grosse, Salakhutdinov, ICLR 2016)



Importance	Weighted	Autoencoders	
•  Can	improve	VAE	by	using	following	k-sample	importance	
weigh;ng	of	the	log-likelihood:		

•  This	is	a	lower	bound	on	the	marginal	log-likelihood:	

•  Special	Case	of	k=1:	Same	as	standard	VAE	objec;ve.		

•  Using	more	samples	à	Improves	the	;ghtness	of	the	bound.	



Tighter	Lower	Bound	

•  For	all	k,	the	lower	bounds	sa;sfy:	

•  Using	more	samples	can	only	improve	the	;ghtness	of	the	
bound.	

•  Moreover	if																													is	bounded,	then:	



Compu;ng	the	Gradients	
•  We	can	use	the	unbiased	es;mate	of	the	gradient	using	
reparameteriza;on	trick:	

where	we	define	normalized	importance	weights:	



IWAEs	vs.	VAEs	
•  Draw	k-samples	form	the	recogni;on	network			

-  or	k-sets	of	auxiliary	variables				.							
•  Obtain	the	following	Monte	Carlo	es;mate	of	the	gradient:	

•  Compare	this	to	the	VAE’s	es;mate	of	the	gradient:		



Mo;va;ng	Example	
• 	Can	we	generate	images	from	natural	language	descrip;ons?	

A	stop	sign	is	flying	in	
blue	skies		

A	pale	yellow	school	bus	
is	flying	in	blue	skies		

A	herd	of	elephants	is	
flying	in	blue	skies		

A	large	commercial	airplane	
is	flying	in	blue	skies		

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015) 



Genera;ng	Images	from	Cap;ons	

• 	Genera;ve	Model:	Stochas;c	Recurrent	Network,	chained	
sequence	of	Varia;onal	Autoencoders,	with	a	single	stochas;c	layer.	

• 	Recogni;on	Model:	Determinis;c	Recurrent	Network.	

Stochas;c	
Layer	

(Gregor et al., 2015) 



Flipping	Colors	
A	yellow	school	bus	parked	
in	the	parking	lot	

A	red	school	bus	parked	in	
the	parking	lot	

A	green	school	bus	parked	in	
the	parking	lot	

A	blue	school	bus	parked	in	
the	parking	lot	



Novel	Scene	Composi;ons	
A	toilet	seat	sits	open	in	the	
bathroom	

Ask	Google?	

A	toilet	seat	sits	open	in	the	
grass	field	

Bloomberg	News	


