Class MultiClassifier
source code
mc = MultiClassifier()
Manages a set of classifiers for a multi-class/multi-label
classification problem. There are two ways to create a MultiClassifier.
First, manually create the classifier for each label, then add it to
MultiClasifier:
>>> mc.add(label, classifier)
Each classifier should provide a score function.
scores = mc.score(av) 'scores' is a map of label:score
Second, provide a BaseClassifier class and a multi-labeled dataset and
optimal params to be passed to BaseClassifier, in which case
MultiClassifier with binarize the dataset and do the training:
>>> mc = mekano.MultiClassifier.create(mekano.LogisticRegressionClassifier, trainset, LAMBDA=0.1, c=1.0)
|
create(BaseClassifier,
ds,
**params)
Create a MultiClassifier from a base classifier class and
multi-labeled dataset. |
source code
|
|
Score a vector av
Returns a map of label:score
|
create(BaseClassifier,
ds,
**params)
Static Method
| source code
|
Create a MultiClassifier from a base classifier class and
multi-labeled dataset.
'params' are optional parameters to pass to the BaseClassifier
constructor.
|