Next: About this document ...
Up: AISBN: An Adaptive Importance
Previous: Acknowledgements
 Cano et al.1996

Jose E. Cano, Luis D. Hernandez, and Serafin Moral.
Importance sampling algorithms for the propagation of probabilities
in belief networks.
International Journal of Approximate Reasoning, 15:7792,
1996.
 Chavez and Cooper1990

Martin R. Chavez and Gregory F. Cooper.
A randomized approximation algorithm for probabilistic inference on
Bayesian belief networks.
Networks, 20(5):661685, August 1990.
 Cheng and Druzdzel2000a

Jian Cheng and Marek J. Druzdzel.
Computational investigations of lowdiscrepancy sequences in
simulation algorithms for Bayesian networks.
In Proceedings of the Sixteenth Annual Conference on Uncertainty
in Artificial Intelligence (UAI2000), pages 7281, San Francisco, CA,
2000. Morgan Kaufmann Publishers.
 Cheng and Druzdzel2000b

Jian Cheng and Marek J. Druzdzel.
Latin hypercube sampling in Bayesian networks.
In Proceedings of the 13th International Florida Artificial
Intelligence Research Symposium Conference (FLAIRS2000), pages 287292,
Orlando, Florida, May 2000.
 Conati et al.1997

Cristina Conati, Abigail S. Gertner, Kurt VanLehn, and Marek J. Druzdzel.
Online student modeling for coached problem solving using Bayesian
networks.
In Proceedings of the Sixth International Conference on User
Modeling (UM96), pages 231242, Vienna, New York, 1997. Springer Verlag.
 Cooper1990

Gregory F. Cooper.
The computational complexity of probabilistic inference using
Bayesian belief networks.
Artificial Intelligence, 42(23):393405, March 1990.
 Cousins et al.1993

Steve B. Cousins, William Chen, and Mark E. Frisse.
A tutorial introduction to stochastic simulation algorithm for belief
networks.
In Artificial Intelligence in Medicine, chapter 5, pages
315340. Elsevier Science Publishers B.V., 1993.
 Dagum and Luby1993

Paul Dagum and Michael Luby.
Approximating probabilistic inference in Bayesian belief networks
is NPhard.
Artificial Intelligence, 60(1):141153, 1993.
 Dagum and Luby1997

Paul Dagum and Michael Luby.
An optimal approximation algorithm for Bayesian inference.
Artificial Intelligence, 93:127, 1997.
 Dagum et al.1995

Paul Dagum, Richard Karp, Michael Luby, and Sheldon Ross.
An optimal algorithm for Monte Carlo estimation (extended
abstract).
In Proceedings of the 36th IEEE Symposium on Foundations of
Computer Science, pages 142149, Portland, Oregon, 1995.
 Diez1993

Francisco Javier Diez.
Parameter adjustment in Bayes networks. The generalized noisy
ORgate.
In Proceedings of the Ninth Annual Conference on Uncertainty in
Artificial Intelligence (UAI93), pages 99105, San Francisco, CA, 1993.
Morgan Kaufmann Publishers.
 Fishman1995

George S. Fishman.
Monte Carlo: concepts, algorithms, and applications.
SpringerVerlag, 1995.
 Fung and Chang1989

Robert Fung and KuoChu Chang.
Weighing and integrating evidence for stochastic simulation in
Bayesian networks.
In Uncertainty in Artificial Intelligence 5, pages 209219,
New York, N. Y., 1989. Elsevier Science Publishing Company, Inc.
 Fung and del Favero1994

Robert Fung and Brendan del Favero.
Backward simulation in Bayesian networks.
In Proceedings of the Tenth Annual Conference on Uncertainty in
Artificial Intelligence (UAI94), pages 227234, San Francisco, CA, 1994.
Morgan Kaufmann Publishers.
 Geman and Geman1984

S. Geman and D. Geman.
Stochastic relaxations, Gibbs distributions and the Bayesian
restoration of images.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
6(6):721742, 1984.
 Gilks et al.1996

W. Gilks, S. Richardson, and D. Spiegelhalter.
Markov chain Monte Carlo in practice.
Chapman and Hall, 1996.
 Heckerman and Breese1994

David Heckerman and John S. Breese.
A new look at causal independence.
In Proceedings of the Tenth Annual Conference on Uncertainty in
Artificial Intelligence (UAI94), pages 286292, San Mateo, CA, 1994.
Morgan Kaufmann Publishers, Inc.
 Heckerman et al.1990

David E. Heckerman, Eric J. Horvitz, and Bharat N. Nathwani.
Toward normative expert systems: The Pathfinder project.
Technical Report KSL9008, Medical Computer Science Group, Section
on Medical Informatics, Stanford University, Stanford, CA, February 1990.
 Henrion1988

Max Henrion.
Propagating uncertainty in Bayesian networks by probabilistic logic
sampling.
In Uncertainty in Artificial Intellgience 2, pages 149163,
New York, N. Y., 1988. Elsevier Science Publishing Company, Inc.
 Henrion1989

Max Henrion.
Some practical issues in constructing belief networks.
In L.N. Kanal, T.S. Levitt, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence 3, pages 161173. Elsevier Science
Publishers B.V., North Holland, 1989.
 Henrion1991

Max Henrion.
Searchbased methods to bound diagnostic probabilities in very large
belief nets.
In Proceedings of the Seventh Annual Conference on Uncertainty
in Artificial Intelligence (UAI91), pages 142150, San Mateo, California,
1991. Morgan Kaufmann Publishers.
 Hernandez et al.1998

Luis D. Hernandez, Serafin Moral, and Salmeron Antonio.
A Monte Carlo algorithm for probabilistic propagation in belief
networks based on importance sampling and stratified simulation techniques.
International Journal of Approximate Reasoning, 18:5391,
1998.
 Jacobs1988

Robert A. Jacobs.
Increased rates of convergence through learning rate adaptation.
Neural Networks, 1:295307, 1988.
 Lauritzen and
Spiegelhalter1988

Steffen L. Lauritzen and David J. Spiegelhalter.
Local computations with probabilities on graphical structures and
their application to expert systems.
Journal of the Royal Statistical Society, Series B
(Methodological), 50(2):157224, 1988.
 MacKay1998

D. MacKay.
Intro to Monte Carlo methods.
In Michael I. Jordan, editor, Learning in Graphical Models. The
MIT Press, Cambridge, Massachusetts, 1998.
 Ortiz and Kaelbling2000

Luis E. Ortiz and Leslie Pack Kaelbling.
Adaptive importance sampling for estimation in structured domains.
In Proceedings of the Sixteenth Annual Conference on Uncertainty
in Artificial Intelligence (UAI2000), pages 446454, San Francisco, CA,
2000. Morgan Kaufmann Publishers.
 Pearl1986

Judea Pearl.
Fusion, propagation, and structuring in belief networks.
Artificial Intelligence, 29(3):241288, September 1986.
 Pearl1987

Judea Pearl.
Evidential reasoning using stochastic simulation of causal models.
Artifical Intelligence, 32:245257, 1987.
 Pearl1988

Judea Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference.
Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1988.
 Pradhan and Dagum1996

Malcolm Pradhan and Paul Dagum.
Optimal Monte Carlo inference.
In Proceedings of the Twelfth Annual Conference on Uncertainty
in Artificial Intelligence (UAI96), pages 446453, San Francisco, CA,
1996. Morgan Kaufmann Publishers.
 Pradhan et al.1994

Malcolm Pradhan, Gregory Provan, Blackford Middleton, and Max Henrion.
Knowledge engineering for large belief networks.
In Proceedings of the Tenth Annual Conference on Uncertainty in
Artificial Intelligence (UAI94), pages 484490, San Francisco, CA, 1994.
Morgan Kaufmann Publishers.
 Ritter et al.1991

H.J. Ritter, T.M. Martinetz, and K.J. Schulten.
Neuronale Netze.
AddisonWesley, München, 1991.
 Rubinstein1981

Reuven Y. Rubinstein.
Simulation and the Monte Carlo Method.
John Wiley & Sons, 1981.
 Seroussi and Golmard1994

B. Seroussi and J. L. Golmard.
An algorithm directly finding the K most probable configurations in
Bayesian networks.
International Journal of Approximate Reasoning, 11:205233,
1994.
 Shachter and Peot1989

Ross D. Shachter and Mark A. Peot.
Simulation approaches to general probabilistic inference on belief
networks.
In Uncertainty in Artificial Intelligence 5, pages 221231,
New York, N. Y., 1989. Elsevier Science Publishing Company, Inc.
 Shwe and Cooper1991

M. A. Shwe and G. F. Cooper.
An empirical analysis of likelihoodweighting simulation on a large,
multiplyconnected medical belief network.
Computers and Biomedical Research, 24(5):453475, 1991.
 Shwe et al.1991

M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz, and H.P.
Lehmann.
Probabilistic diagnosis using a reformulation of the
INTERNIST1/QMR knowledge base: I. The probabilistic model and
inference algorithms.
Methods of Information in Medicine, 30(4):241255, MONTH 1991.
 Srinivas1993

Sampath Srinivas.
A generalization of the noisyOR model.
In Proceedings of the Ninth Annual Conference on Uncertainty in
Artificial Intelligence (UAI93), pages 208215, San Francisco, CA, 1993.
Morgan Kaufmann Publishers.
 York1992

Jeremy York.
Use of the Gibbs sampler in expert systems.
Artificial Intelligence, 56:115130, 1992.
Jian Cheng
20001001