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Abstract
Algorithms that are fundamentally expressions of structural in-
duction over a polynomial data type are famously awkward to
implement in object-oriented programming languages, leading to
three-day-bucket hacks like the “Visitor Pattern.” We show that the
exception-handling mechanism present in most object-oriented lan-
guages already suffices.

Conventional wisdom dictates that exceptions are in essence
about the non-local propagation of errors. Upon close scrutiny, we
find the contrary: exceptions are fundamentally about unchecked
depth-1 structural pattern matching.

We give examples of this programming idiom in Python, Perl,
and Java. JavaScript requires a language extension, which we build
and deploy. We then show how two styles by which this style may
be re-integrated into programming languages in the ML family. We
conclude by suggesting design changes that would facilitate the use
of this idiom in other languages.

Categories and Subject Descriptors D.2.3 [Coding Tools and
Techniques]: Standards

General Terms Algorithms, Design, Languages, Standardization

Keywords pattern matching, recursion schemes, structural induc-
tion, python, perl, java, javascript, types

1. Introduction
Pattern matching is a convenient way of representing polynomial
datatypes, which can be informally thought of as a generalization
of tree-like data. An extremely simple example is an abstract syntax
for a language with integers and addition:

datatype tm =
Int of int

| Plus of tm * tm

The big-step evaluation semantics for this language is quite straight-
forward:
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tm1 ⇓ x1 tm2 ⇓ x2 x1 + x2 = x3

tm1 + tm2 ⇓ x3 int(x) ⇓ x

Using the pattern matching syntax present in the ML family of
languages, the implementation of this big-step evaluation semantics
is similarly straightforward:

fun eval tm =
case tm of
Int x => x

| Plus (tm1, tm2) => eval tm1 + eval tm2

We can also similarly implement a small step semantics for this
language as defined by the following rules:

int(x) value

tm1 7→ tm ′
1

tm1 + tm2 7→ tm ′
1 + tm2

tm1 value tm2 7→ tm ′
2

tm1 + tm ′
2 7→ tm1 + tm ′

2

x1 + x2 = x3

int(x1) + int(x2) 7→ int(x3)

The ML implementation is a straightforward implementation
of these inference rules, with the exception of the need to define
an additional cast function that we call to get the value of the
enclosed integers once we know the terms to be a values.1

exception Stuck

fun value tm =
case tm of
Int x => true

| _ => false

fun cast tm =
case tm of
Int x => x

| _ => raise Stuck

fun step tm =
case tm of
Int x => raise Stuck

| Plus(tm1, tm2) =>
if value tm1
then if value tm2

then Int(cast tm1 + cast tm2)
else Plus(tm, step tm2)

else Plus(step tm1, tm2)

1 In a language without static typing and with distinct varieties of values,
these casts can, of course, fail if we get the wrong variety of value.



interface tm
{ public <T> T accept(Visitor<T> visitor); }

class Int implements tm {
int x;
public Int(int x) { this.x = x; }
public <T> T accept(Visitor<T> v)
{ return v.visit(this); }

}
class Plus implements tm {

tm e1;
tm e2;
public Plus(tm e1, tm e2) {
this.e1 = e1;
this.e2 = e2;

}
public <T> T accept(Visitor<T> v)
{ return v.visit(this); }

}

interface Visitor<T> {
public T visit(Plus p);
public T visit(Int i);

}

public class VisitorExample {
static int eval(tm tm) {
return tm.accept(new Visitor<Integer>(){

public Integer visit(Int i) { return i.x; }
public Integer visit(Plus p) {
return p.e1.accept(this)

+ p.e2.accept(this);
}

});
}

public static void main(String[] args) {
tm ex_1 =

new Plus(new Plus(new Plus(new Int(1),
new Int(2)),

new Int(3)), new Int(4));
System.out.println

("Evaluating: Plus(Plus(Plus(1,2),3),4) - "
+ eval(ex_1));

}
}

Figure 1. Case study implemented with the Visitor Pattern in Java.

While there is a somewhat more pleasant way to implement the
Step function using nested pattern matching, we will only consider
the “shallow” pattern matching we see here in this paper.

1.1 Object-Oriented languages and the Visitor Pattern
While ML-family languages suggest describing different types of
syntax as different branches of a subtype, most object oriented
languages suggest describing different types of syntax as different
objects that either implement the same interface or extend the same
subclass. The traditionally understood way of performing elegant
recursion over these structures is known as the Visitor Pattern; the
implementation of big-step evaluation using the Visitor Pattern can
be seen in Figure 1.

The Visitor Pattern, whatever its merits may be, is certainly
quite different in character from the depth-1 pattern matching used
in our ML example. However, because the exception handling

class tm:
pass

class Int(tm):
def __init__(self, x):

self.x = x
class Plus(tm):
def __init__(self, e1, e2):

self.e1 = e1
self.e2 = e2

def eval(tm):
try: raise tm
except Int: return tm.x
except Plus: return eval(tm.e1) + eval(tm.e2)

def value(tm):
try: raise tm
except Int: return True
except: return False

def step(tm):
try: raise tm
except Plus:

if(not value(tm.e1)):
return Plus(step(tm.e1), tm.e2)

elif(not value(tm.e2)):
return Plus(tm.e1, step(tm.e2))

else: return Int(tm.e1.x + tm.e2.x)

ex_1 = Plus(Plus(Plus(Int(1),Int(2)),
Int(3)),Int(4))

print ("Evaluating: Plus(Plus(Plus(1,2),3),4) - "
+ str(eval(ex_1)))

print ("Stepping x3: Plus(Plus(Plus(1,2),3),4) - "
+ str(step(step(step(ex_1))).x))

Figure 2. Python pattern matching case study.

mechanism, which Java also incorporates, is fundamentally about
unchecked depth-1 structural pattern matching, we can seek to use
exception handling to provide a similar sort of depth-1 structural
pattern matching to the Java language and other object-oriented
programming languages. The rest of the paper explores this pos-
sibility.

2. Discovery and implementation in Python
Imagine we have the abstract syntax of our example encoded in
Python in the standard way, as a class hierarchy where subclasses
Int and Plus extend the basic abstract syntax class tm.

class tm:
pass

class Int(tm):
def __init__(self, x)
self.x = x

class Plus(tm):
def __init__(self, e1, e2)
self.e1 = e1
self.e2 = e2

The big-step evaluation semantics of this language could be
written by explicitly using isinstance tests, but the repeated use
of elif isinstance(tm, ...) is bulky and unsatisfying, which
only becomes more true when the code has many, many branches:



def eval(tm):
if isinstance(tm, Int):

return tm.x
elif isinstance(tm, Plus):

return eval(tm.e1) + eval(tm.e2)
else: raise RuntimeError

Note the final line of the above code, which raises a runtime
error if the evaluated term is neither an Int nor a Plus. This is
important in case we extend the abstract syntax tree with more
branches; we want something equivalent to the “nonexhaustive
match exception” in an ML-family language.

2.1 Utilizing the exception handling mechanism
The first key observation for introducing our idiom is the fact
that every single object in Python can be treated as an exception
and thrown; the language designers suggest that exceptions derive
from the Exception class, but there is no enforcement of this
mechanism. The second key observation is that the branches of
an exception handling call can check the object’s class tag when
deciding which branch of the exception handling to consider. The
motivation is to allow, say, a divide-by-zero error or a user-input
error to be both caught at the same place but handled in different
ways; we can use it, however, to do exactly the isinstance test
from before in a more concise, pleasing notation:

def eval(tm):
try: raise tm
except Int: return tm.x
except Plus: return eval(tm.e1) + eval(tm.e2)

Furthermore, this form of evaluation introduces a natural notion
of a nonexhaustive match exception: if we add new kinds of terms
(say, a multiplication) and don’t handle them in the eval function,
the very abstract syntax tree node that we did not handle will be
thrown as an exception: an error that potentially contains much
more helpful information than an ML Match exception!

2.2 Adaptation in Java
The relatively-more-strongly-typed language Java also allows for
the expression of our idiom by simply allowing every term to ex-
tend the class RuntimeException. Technically, all that is nec-
essary for the use of our idiom is Exception, but by the use
of RuntimeException we avoid dealing with compiler warnings
caused by lack of exhaustiveness checking (similar to the use of the
MLton SML compiler’s -disable-ann nonexhaustiveMatch
option).

Our case study can be seen implemented in Java in Figure 3. It is
particularly critical that, in Java, the exception handling mechanism
handles appropriately casting the term tm to an integer Int i or
an addition Plus p. The typed nature of Java makes the repeated
instanceof tests much more painful than they were in Python,
because we must not only do repeated if-then-else statements but
also downcast terms in branches where we statically know that
the cast is safe already as a result of the instanceof test. The
exception-handling idiom is free of this particular annoyance.

3. Implementation via language extension
Some languages do not have the essential aspect required for case
analysis to be implemented in the exception-handling mechanism.
We describe an extensive effort to implement this functionality
in JavaScript, as well as commenting on a language where that
extensive effort had already been done: Perl.

class tm extends RuntimeException {}
final class Int extends tm {
final Integer x;
Int(Integer x) { this.x = x; }

}
final class Plus extends tm {
final tm e1;
final tm e2;
Plus(tm e1, tm e2) {

this.e1 = e1;
this.e2 = e2;

}
}

public class PatternMatch {

static Integer eval(tm tm) {
try{throw tm;}
catch(Int i) { return i.x; }
catch(Plus p)
{ return eval(p.e1) + eval(p.e2); }

}

static Boolean value(tm tm) {
try{throw tm;}
catch(Int i) { return true; }
catch(Plus p) { return false; }

}

static tm step(tm tm) {
try{throw tm;}
catch(Plus p) {
if( !value(p.e1) )

return new Plus(step(p.e1), p.e2);
else if( !value(p.e2) )

return new Plus(p.e1, step(p.e2));
else

return new Int
( ((Int)p.e1).x + ((Int)p.e2).x );

}
}

public static void main(String[] args) {
tm ex_1 =
new Plus(new Plus(new Plus(new Int(1),

new Int(2)),
new Int(3)), new Int(4));

System.out.println
("Evaluating: Plus(Plus(Plus(1,2),3),4) - "
+ eval(ex_1));

}
}

Figure 3. Java pattern matching example.

3.1 JavaScript
JavaScript is a curly-like language oriented on the concept of
JavaScript objects, which are functions [1]. The typical way to im-
plement pattern matching would be to use a series of instanceof
tests, like in Java or Python. As before, we’d like to improve this
code to something like what appears in Figure 4.

Unfortunately this does not work because it is not legal JavaScript
code. It doesn’t parse or run or anything. A typical blunder:
JavaScript denies the nature of exceptions by only allowing them to



var Int = function(i) { this.i = i; };
var Plus = function(tm1, tm2) {

this.tm1 = tm1; this.tm2 = tm2;
};

function big_eval(tm) {
try {
throw tm;

} catch (Int(e)) {
return e;

} catch (Plus(e)) {
return new Int(big_eval(e.tm1).i +

big_eval(e.tm2).i);
} catch (e) {
throw ’stuck’;

}
}

Figure 4. Desired JavaScript code.

function big_eval(tm) {
try {
throw tm;

} catch (e) {
throw ’stuck’;

} with (Int(e)) {
return e;

} with (Plus(e)) {
return new Int(big_eval(e.tm1).i +

big_eval(e.tm2).i);
}

}

Figure 5. Big-step evaluator, using the language extension.

be used for the non-local propagation of errors, requiring a different
language feature to be used for pattern matching (instanceof). In
many languages we would be at an impasse. Luckily, the authors
of JavaScript had the foresight to foresee the need to improve the
language; it is possible for us to build language extensions within
our programs. We can create a full-featured exception mechanism
that we can then use to encode our programming technique.

The extension works by co-opting the rarely-used with key-
word to create a new iterated, pattern-matching try . . .catch con-
struct. The above big-step evaluation code can then be written as in
Figure 5. This is basically the same as in the previous languages,
except as a stylistic choice the required default case is written first
(it is legal for it to be blank or to re-raise the same exception).

You can’t run this code because it is not legal JavaScript. If you
try to run it JavaScript will be like, huh? because this is not what
the with keyword does. To run the code you must first enhance the
big_eval function using our language extension:

var tm = new Plus(new Int(5), new Int(2));
var f = big_eval.enhance();
alert(f(tm).i);

The enhance property is added to every function by our lan-
guage extension. It enhances the semantics of the language to add
the iterated try. . .catch. . .with construct. Running enhance re-
turns a new function that works right.

The extension works by converting the function value to source
code, modifying the source code, and then evaluating the source
code to get a new function value.

Function.prototype.enhance = function() {
var s = ’’ + this;
var name;
if (s.indexOf(’function (’) == 0) {

s = ’function $(’ + s.substr(’function (’.length);
name = ’$’;

} else {
name = /function *([a-zA-Z0-9_$]+) *\(.*/m.

exec(s)[1];
}
var s = ’(function(){’ + rewrite(s) +

’\nreturn ’ + name + ’})()’;
return eval(s);

};

A function value’s source code might be a function declaration
or a function expression.2 We put it in a normalized declaration
form, giving the function the name $ if it doesn’t have one. We
wrap the function declaration in another function and call it im-
mediately, because functions are the only way3 to introduce new
scopes in JavaScript (here thankfully the designers understood that
the essence of functions is scope delineation).

The bulk of the language extension is implemented in the recur-
sive rewrite function. The function rewrites a source code string;
the source code can represent a declaration or an expression or any-
thing. Using strings to represent data helps us avoid tricky type er-
rors that can arise when there’s a difference between expressions
and declarations. The implementation of rewrite appears in Fig-
ure 7.

The rewrite function parses the source code to find appearances
of the catch keyword, then takes any with blocks that appear
after them, and rearranges the code just so. It correctly handles the
case that uses of the extension are nested, as well as recursively-
enhanced functions. The details of the implementation are subtle,
mainly having to do with fiddly bits. An example may help the
reader; the big-step evaluation from Figure 5 is translated to the
code in Figure 7.

It is worth noting in a smaller font that the language extension does not handle the
case that source code appears inside string or regular-expression literals. Another way
to put this is that the language extension successfully ferrets out not just uses of the
new feature but mentions of it as well.

3.2 Perl
Because of the pun on “Functional Pearl” we really wanted to
implement this in Perl, but none of the co-authors really wanted
to learn Perl and we couldn’t find Jason [4].

However, while Perl lacks the instanceof-checking exception
capability that is critical to our purposes, there is a Perl module,
Error.pm, that appears to enrich Perl with the necessary features
by a strategy similar to the one we investigated for JavaScript.4 Un-
fortunately the name of this module also describes what happens
when the authors tried to use it.

4. Re-incorporation in ML
Of course, this observation that case analysis can be implemented
by pattern matching can be ported back into Standard ML. Standard
ML includes a single extensible datatype, named exn, which also

2 It might also be a native function, in which case we cannot enhance it.
This is okay, because native functions probably did not use our language
extension.
3 One can also use the with keyword but that might mess up the language
extension, like if someone tries to enhance an already-enhanced function,
or the enhancer function itself.
4 http://search.cpan.org/ shlomif/Error-0.17016/lib/Error.pm



function next(s) {
var depth = 0;
for (var i = 0; i < s.length; i++) {
if (s[i] == ’{’ || s[i] == ’(’) {

depth++;
} else if (s[i] == ’}’ || s[i] == ’)’) {

depth--;
if (depth == 0) return { p: s.substr(0, i + 1),

s: s.substr(i + 1) };
if (depth < 0) throw ’parse error’;

}
}
throw ’parse error 2’;

}

function rewrite(s) {
var out = ’’;
for(;;) {
var pos = s.indexOf(’catch’);
if (pos >= 0) {

pos += ’catch’.length;
out += s.substr(0, pos);
s = s.substr(pos);
var parens = next(s);
var body = next(parens.s);
out += parens.p;
var def = body.p;
out += ’{\nif(0);’;
for (;;) {
s = /[ \n\t]*([\s\S]*)/m.exec(body.s)[1];
if (s.indexOf(’with’) == 0) {

var s = s.substr(’width’.length);
var pp = next(s);
var body = next(pp.s);
var ce = pp.p.substr(1, pp.p.length - 2);
var ctor = ce.substr(0, ce.indexOf(’(’));
var e =

next(ce.substr(ce.indexOf(’(’))).p;
out += ’ else if (’ + e + ’ instanceof ’ +

ctor + ’) ’ + rewrite(body.p);
s = body.s;

} else {
break;

}
}
out += ’ else ’ + rewrite(def) + ’}’;

} else {
out += s;
break;

}
}
return out;

}

Figure 6. The rewrite function, which implements the bulk of
the language extension.

happens to be the type of ML exceptions. A typical elegance: ML
emphasizes the dual purpose of exceptions as both a mechanism for
non-local error propagation and for pattern matching by using the
exception keyword to extend the exn datatype:

exception Int of int
exception Plus of exn * exn

(function(){function big_eval(tm) {
try {

throw tm;
} catch (e){

if(0); else if ((e) instanceof Int) {
return e;

} else if ((e) instanceof Plus) {
return new Int(big_eval(e.tm1).i +

big_eval(e.tm2).i);
} else {

throw "stuck";
}}}

return big_eval})()

Figure 7. The automatically-enhanced version of Figure 5.

structure PatternMatch = struct

exception Int of int
exception Plus of exn * exn

fun eval tm =
(raise tm) handle
Int x => x

| Plus (tm1, tm2) => eval tm1 + eval tm2

fun value tm =
(raise tm) handle
Int x => true

| _ => false

fun cast tm =
(raise tm) handle
Int x => x

fun step tm =
(raise tm) handle
Plus(tm1, tm2) =>
if value tm1
then if value tm2

then Int(cast tm1 + cast tm2)
else Plus(tm, step tm2)

else Plus(step tm1, tm2)

val main =
let val ex_1 =
Plus(Plus(Plus(Int 1,Int 2),Int 3),Int 4)

in
print
("Evaluating: Plus(Plus(Plus(1,2),3),4) - "
^ Int.toString (eval ex_1) ^ "\n\n");
print
("Stepping x3: Plus(Plus(Plus(1,2),3),4) - "
^ Int.toString

(cast(step(step(step(ex_1)))))
^ "\n\n")

end
end

Figure 8. Re-implementation into SML.

The SML parser requires that (raise tm) be surrounded by
parenthesis, but otherwise the code retains the essential character,



as shown in Figure 8. Of course, because the extensible datatype
exn is itself amenable to standard case-analysis, we could instead
define our syntax as branches of the exn as we do in Figure 8 and
still do a regular pattern-match on it:

fun eval tm =
case tm of

Int x => x
| Plus (tm1, tm2) => eval tm1 + eval tm2

There are two problems with this approach, however. First, in
the case of an unhandled piece of syntax we get an uninformative
Match exception instead of the offending piece of syntax itself.
Second, we because SML attempts to do exhaustiveness checking
on case analysis, every case analysis on an exn that does not have
a catch-all case runs afoul of the static exhaustiveness checking.
Getting a lot of non-exhaustive match warnings when compiling
doesn’t bother some people, but it can be annoying [3].

5. Conclusion and future work
There is much work to be done in exploring the beautiful synthesis
of exception-handling and pattern matching. For instance, a seri-
ous shortcoming of our exception-handling case analysis is that it
does not allow nested case analysis, which suggests a new language
feature – nested exception handling – for Java/Python family lan-
guages.

Similarly, the exception-handling idiom allows Java/Python
family languages to do a particularly crazy duck-typing-ish thing.
Say I want to just enumerate all the integer subterms of my expres-
sion, which is extended from the example in the paper to include
Plus, Minus, Times, and Div. As long as I called the left hand
subterm e1 and the right-hand subterm e2 across these different
terms, I can write this code very concisely in Python:

def subterms(tm):
try: raise tm
except Int: print "Subterm: " + str(tm.x)
except (Plus, Minus, Times, Div):

subterms(tm.e1)
subterms(tm.e2)

ex_1 = Plus(Times(Div(Int(1),Int(2)),
Int(3)),Minus(Int(4),Int(9)))

subterms(ex_1)

Similarly, in Java this could be done by making all the binary
operations extend a tmBinary class that, in turn, extends the tm
class. In JavaScript, we can continue our approach of implementing
Java- and Python-like extensions via syntactic rewrites and then use
them in an idiomatic way to simulate a native pattern matching fea-
ture. We might think to ask that such functionality be incorporated
into ML family languages, were it not for the fact that it’s already
there by way of one of the wackier SML-NJ-specific extensions
of Standard ML, “or-patterns,” which apparently aren’t any more
insane insane than focusing was already [2].

fun subterms tm =
case tm of

Int x =>
print("Subterm: " ^ Int.toString x ^ "\n")

| (Plus(t1,t2) | Times(t1,t2) | Mult(t1,t2)
| Div(t1,t2)) => (subterms t1; subterms t2)

For a larger code example (the implementation of the static and
dynamic semantics of Plotkin’s PCF), see our extended technical
report [5].
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