
Escaping AutoHell: A Vision for Automated Analysis and
Migration of Autotools Build Systems

Jafar Al-Kofahi †, Tien Nguyen ‡, and Christian Kästner ∗

†Electrical and Computer Engineering Department, Iowa State University
‡School of Engineering and Computer Science, University of Texas-Dallas

∗School of Computer Science, Carnegie Mellon University

ABSTRACT
GNU Autotools is a widely used build tool in the open source
community. As open source projects grow more complex,
maintaining their build systems becomes more challenging,
due to the lack of tool support. In this paper, we propose
a platform to build support tools for GNU Autotools build
systems. The platform provides an abstraction of the build
system to be used in different analysis techniques.

CCS Concepts
•Software and its engineering → Software maintenance
tools;

1. INTRODUCTION
Build systems are a crucial part of software systems, as

they describe how to process the system’s artifacts to pro-
duce the deliverables (i.e., executables). Build systems also
have configurations that control which features to be in-
cluded in the produced deliverables. Build systems are de-
scribed and executed using build tools; some popular build
tools are GNU Autotools, Ant, and Maven. Prior research
found that build maintenance could impose 12-36% over-
head on software development [12]. A study on Linux found
that developers have invested significant effort to make their
build system as simple as possible [6]. The authors reported
that the complexity of build code in Linux co-evolves with
fast-growing source code. For large-scale systems, build files
grow quickly and complex because they must support the
building of the same software in multiple platforms with var-
ious configuration and environment parameters [11]. McIn-
tosh et al. found that 4-27% of tasks involving source code
changes require accompanying change in corresponding build
code. They concluded that build code continually evolves
and is likely to have defects due to high churn rate [13].
Importantly, those studies call for better tool supports for
build code.

To better understand the tool support needed, we took
a closer look into open source systems and what kinds of

challenges they face with their build systems. A widely used
build tool in that community is GNU Autotools [2]. GNU
Autotools build systems have a configuration stage. A con-
figuration consists of a declaration, and a set of actions to be
taken if it was enabled/disabled, these actions usually adjust
the build logic behavior. The second stage is the build logic
stage, where developers describe how the configurations ac-
tions can adjust the build process, and how to produce the
deliverables from the system’s resources. Then to build the
system, a builder would select the build configurations, run
the configuration stage to adjust the build logic accordingly,
and then kicks-off the build by running GNU Make. More
on this in Section 2.

Autotools has its own challenges and drawbacks. Several
open source projects [3, 4] that have used Autotools, re-
cently migrated away from Autotools to CMake, or other
build tools. Looking into their commits, email archives, and
developer blogs, we identified the following common reasons
for migration: (1) steep learning curve for Autotools, (2)
multi stage build system(s), (3) lengthy and complicated
configuration stage, (4) and lack of tool support.

In this work, we aim to create visibility into Autotools
build systems, by providing a platform, AutoHaven, to serve
as the foundation for build analysis and migration tools,
to help developers overcome the challenges associated with
build systems. AutoHaven would provide an abstraction of
the build system using parsing and symbolic analysis. This
abstraction can be leveraged by support tools to perform
their analyses on build systems. For example, to help build
system migration, a tool can use our abstraction to extract
the build system semantics (e.g. configurations), and use
that to reduce the effort needed in the migration process.
We already started in our endeavored to build this platform;
at this time, we can parse the configuration stage, and are
building an Abstract Syntax Tree (AST) and planning sym-
bolic execution for it. The AST is not sound or complete,
due to the nature of staged applications, but, from studying
open source systems, we noticed that developers follow com-
mon patterns for declaring configurations and their actions,
this helps us define the structure for our AST. The AST will
provide sufficient information about the configurations and
their actions. Eventually we are planning to also build an
AST for build logic, more on this and example applications
later in Section 3.

2. GNU AUTOTOOLS

2.1 Overview
Figure 1 shows a typical GNU Autotools build system.

For a given system, the developers provides Makefile.am
Automake files, to describe how to build the system on a
high level; they also provide configure.ac Autoconf file, to
describes the system external dependencies, and the build
system configurations. Autoconf is written using GNU M4
macros, shell scripting, and other programming languages.
GNU Automake processes the Makefile.am files to identify
the source files to be built, and then it generates Makefiles.in
templates that holds the build logic for the system. These
templates are annotated with special placeholders, that are
later used to adjust the build logic according to the selected
build configurations. GNU Autoconf processes the config-
ure.ac file, expand the M4 macros and generate the config-
ure shell script file. The configure consumes the Makefile.in
templates and generates concrete Makefiles. For example, a
template would have the following line: CC = @CC@. This
variable holds the C compiler command for the build pro-
cess. When the configure script is executed, it identifies the
default C compiler, then substitute the @CC@ placeholder
in the templates with the C compiler command (e.g. CC =
gcc). In a similar fashion the configure script can adjust the
build logic based on the selected build configurations and en-
vironment settings. After that the user can run GNU Make
on the concrete Makefiles to build the system and produce
the deliverables.

Listing 1: Snippet from Configure.ac
1 #D e c l a r e l o n g−me s s a g e f e a t u r e
2 AC ARG ENABLE(l o c a l i z a t i o n ,
3 [−−enable−l o c a l i z a t i o n=ar /en .
4 ar for Arabic , and en for eng l i s h .] ,
5 LANG=$enab leva l)
6
7 #e n s u r e p r o p e r mac ro s a r e d e f i n e d
8 #i n s o u r c e h e a d e r
9 i f test ”$LANG” = ”ar ” ; then

10 AC SUBST(LANG)
11 f i

Listing 1 shows an Autoconf file snippet, of a Hello World
system, that prints a hello world message in different lan-
guages. Lines 3-6, call the AC ARG ENABLE macro to de-
clare a feature called localization, this would be interpreted
as an argument to the configure script passed as –enable-
localization. If the user does use this argument, the value
will be stored in variable LANG at line 6. The if statement
in line 10 would check the variable LANG and if it was as-
signed ”ar”value, it then calls macro AC SUBST that would
declare a substitution variable called LANG, when consum-
ing Makefile.in templates, this substitution variable would
replace any instances of @LANG@ with the value ”ar”. Au-
toconf uses M4 macros (e.g.AC SUBST) to express certain
functionality, that get expanded to pre-defined shell script
blocks.

2.2 AutoHell, a closer look
”Some developers, not only in KDE, like to nickname the

autotools as ’auto-hell’ because of its difficult to comprehend
architecture” [14]. GNU Autotools is widely used in the open
source community, but often criticized. As systems evolve
and become more complex, many have migrated away from
GNU Autotools to other build tools, such as CMake [1]. We
investigated some recent migrations, and looked into their
code repository commits, email archives, and developer blogs

to identify the reasons for migrating.
For example, in version 4, the KDE [3] team decided to

migrate away from Autotools. They had two attempts in
this migration [15], and the second attempt succeeded in
migrating KDE to CMake [15, 14, 17]. Another example
is Map Server [4], that migrated away from Autotools to
CMake [5]. The following challenges were often mentioned
as reasons.

• Steep learning curve: Understanding the different
tools that come into play and their role in the workflow,
is not as straight forward as it looks. Also one need
to be familiar with multiple languages such as: M4,
shell scripting, make, and any other language used in
configure.ac.

• Staged build process: The workflow in Figure 1 in-
volves multiple dependent stages, when debugging the
build system, the developer need to generate the con-
figure script and makefile templates and actually run
the two stages of the build system, but any fixes must
be on his input, the .ac and .am files, which has an
associated performance and maintenance costs.

• Large Autoconf files: Maintaining configure.ac files
can be intimidating due to their complexity and large
size. Checking some popular open source systems 1,
their configure.ac files averaged at 3200 SLOC.

• Lack of tool support: Developers have limited visi-
bility into the Autotools based build systems and how
they work, and they tend to rely on domain expert for
support.

3. PROPOSAL: AutoHaven PLATFORM
To address the challenges associated with GNU Autotools,

we propose to build a platform to be used as a foundation
for creating tools to support the developers understanding,
maintaining, or migrating their GNU Autotools build sys-
tems. To accomplish this, AutoHaven will provide an ab-
stract approximation of the build system, this abstraction
would provide syntactical structure for the build system
(AST). Then analysis techniques for build systems can be
created using this abstraction. Such platform can have dif-
ferent kinds of applications depending on the developer’s
needs. Here we discuss some potential applications:

• Migration: When developers migrate to a new build
tool, they tend to consider new requirements for their
build system [15]. But one important requirement is to
ensure the configuration knowledge and build logic are
migrated in a complete and accurate fashion. This is
where AutoHaven would help, the developers can pro-
cess the generated ASTs to derive feature declarations
and their expected effect on build and source code. For
example, if the build code is expected to define certain
macros for the source code it is important to capture
those and their conditions correctly. Similarly in the
build logic, using our AST the developer can identify
the needed dependencies and build script to build any
target, thus it would avoid unnecessary errors due to
migration.

1OpenVPN, OpenSSH, Emacs, GCC, and MapServer

Figure 1: Autotools workflow

• Testing: To the best of our knowledge, there isn’t a
way for developers to test their builds, especially the
configuration space, other than manually running the
build process as much as needed. Using AutoHaven
AST, the developers can define a coverage metric for
their build system, and automate their testing entirely
or partially. Thus achieving more meaningful coverage
efficiently, compared to the developers manually iden-
tifying and running test builds.

In building this platform, we address the following chal-
lenges:

• Nature of Autoconf configure.ac script: Auto-
conf files are written using shell script, M4 macros, and
any other language the developer uses in their config-
ure.ac files. Due to this the abstract representation is
not sound nor complete, and we will be limited with
what we can represent.

• Staged Program Analysis: Autotools build systems
are split into two domains: configuration and build
logic, and they involve various generation steps to build
the system. An analysis platform need to include both
domains to allow for meaningful analysis to be per-
formed.

3.1 Autotool Build System ASTs
From studying existing Autoconf scripts, we noticed that

developers don’t have any restrictions on how to write their
scripts, and they can use any tool or language to accomplish
configuring their systems. But we also noticed that they fol-
low common patterns for declaring configurations and how
those configurations affect build and source codes. One of
those patterns already shown in the example script in List-
ing 1. Usually the developers would declare a feature using
Autoconf M4 macro AC ARG ENABLE, then this feature
is expressed via a variable (i.e.LANG), that is used later on
to adjust the build process (e.g.via calls to the AC SUBST
macro), having these common patterns, and the use of M4
macros, gives a structure to the Autoconf files, and this
allows us to actually approximate the Autoconf files. It is
important to also note that the logic within the Autoconf
usually involves simple if-statements and no loops to prop-
agate values used during executions and within constraints,
which can be executed/analyzed symbolically. For the re-
mainder of the Autoconf scripts that does not conform to
shell grammar, M4 macros, nor to those common patterns,
we will hold onto them as they were presented in the Au-
toconf script and represent them as plain-text nodes in our
representation, and leave it to the analysis tool to decide

Figure 2: Example Autoconf AST

whether and how to interpret them. Figure 2 shows an ex-
ample Autoconf-AST for the if statement in configure.ac
script in Listing 1.

The Automake makefiles are high-level description of the
build logic, and they do not describe the build for all the sys-
tem artifacts. Due to that, using the Makefile.in templates,
the output from Automake in workflow 1, would provide
more insight into the build system for our purposes. For
their AST’s we will expand on the existing work of Symake
[16]. Symake symbolically executes GNU Make makefiles, in
this work we will be expanding on that to handle the Au-
tomake makefile templates.

3.2 AutoHaven Analysis
The platform needs to represent configuration and build

logic domains to enable meaningful analysis of the build sys-
tem. To do that it will mimic the Autotools workflow and
provide the ability to symbolically execute the build pro-
cess from configuration to build logic. For a given input to
the configuration step, it evaluates the Autoconf AST and
identifies the expected outputs, then generates the proper
configuration header file (i.e. config.h) and provides the ex-
pected substitution variables to the Makefile.in ASTs. In
testing, this can help automate selecting different combina-
tions of build configurations, instead of the tedious manual
process done by the developers.

3.3 Implementation
For parsing Autoconf files, we started with an existing

grammar for Shell script, we expanded upon it to handle
the Autoconf M4 macros. Anything not recognized by those
two is considered as an unfamiliar structure and stored as
plain-text in a special node type. Using this grammar we
successfully can parse Autoconf configure.ac files of various
projects (e.g., Emacs, OpenVPN, and OpenSSH). Currently
we are building the AST from the parser output for Autoconf
files. The next step is to expand upon Symake AST to handle
variable substitutions from Makefile.in templates. Then to
build the rest of the AutoHaven platform to symbolically
execute per Autotools workflow.

4. RELATED WORK
Analyzing build files has been recognized as increasingly

important. Adams et al.[7, 6, 13] have shown how build sys-
tems continue to grow in size and complexity, emphasizing
the importance of analysis and tool support. Researchers
have investigated build system analysis from different per-
spectives. Most analysis approaches are dynamic and actu-
ally execute the build to extract information. For example,
van der Burg et al.[18] dynamically detect which files are
included in a build to check license compatibility, Metamor-
phosis [10] dynamically analyzes build system to migrate
them, and MkFault [8] combines runtime information with
some structural analysis to localize build faults. However,
such dynamic approaches can only analyze one configura-
tion at a time.

To the best of our knowledge, there are no analysis tools
support for GNU Autotools build systems. The KDE devel-
opers built am2cmake specifically for their needs, to help mi-
grating their Automake Makefile.am to CMake, but it does
not provide any means of analyzing the logic within them,
nor does it handle the Autoconf configuration scripts. On
the other hand, there is some tool support for GNU Make.
MAKAO [7], provides visualization and code smell detec-
tion support for Makefiles. Our own prior work, SYMake
[16], uses symbolic execution to conservatively analyze all
possible executions of a GNU Make Makefile. It produces
a symbolic dependency graph, which represents all possible
build rules and dependencies among targets and prerequi-
sites, as well as recipe commands. It was originally designed
to detect several types of errors in Makefiles and help build-
ing refactoring tools. MkDiff [9] expands on top of SyMake to
detect semantic differences, in the build logic, by comparing
changes on the symbolic dependency graphs between two
versions for a given Makefile. Zhou et al.[19] also expands
on top of SyMake to identify presence conditions for source
files from build code. But all of these tools are built for GNU
Make makefiles, and none can analyze GNU Autotools build
systems.

5. CONCLUSION
We investigate the pain points associated with GNU Auto-

tools build systems, and why developers migrate away from
them to other build tools. As a solution to help mitigate the
challenges associated with GNU Autotools build systems, we
propose AutoHaven, a platform to build AST representation
for such build systems, to provide a needed foundation for
building support tools for developers using GNU Autotools.
We propose how to build those ASTs, and provide potential
applications of such platform and its advantages.

6. ACKNOWLEDGEMENTS
This work was supported in part by US NSF grants CCF-

1320578, CCF-1318808, and CCF-1552944.

7. REFERENCES
[1] CMake Official Site. cmake.org.

[2] GNU Autotools. gnu.org/software.

[3] K Development Environment. kde.org.

[4] Map Server Official Site. mapserver.org.

[5] Map Server: Request to migrate to CMake.
mapserver.org/development/rfc/ms-rfc-92.html.

[6] B. Adams, K. de Schutter, H. Tromp, and
W. de Meuter. The evolution of the Linux build
system. In Electronic Communications of the
ECEASST, Aug 2008.

[7] B. Adams, H. Tromp, K. de Schutter, and
W. de Meuter. Design recovery and maintenance of
build systems. In 2007 IEEE International Conference
on Software Maintenance, pages 114–123, Oct 2007.

[8] J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen. Fault
localization for Make-Based build crashes. In 2014
IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 526–530,
Sept 2014.

[9] J. M. Al-Kofahi, H. V. Nguyen, A. T. Nguyen, T. T.
Nguyen, and T. N. Nguyen. Detecting semantic
changes in Makefile build code. In 2012 28th IEEE
International Conference on Software Maintenance
(ICSM), pages 150–159, Sept 2012.

[10] M. Gligoric, W. Schulte, C. Prasad, D. van Velzen,
I. Narasamdya, and B. Livshits. Automated migration
of build scripts using dynamic analysis and
search-based refactoring. In Proceedings of the 2014
ACM International Conference on Object Oriented
Programming Systems Languages & Applications,
OOPSLA ’14, pages 599–616. ACM, 2014.

[11] L. Hochstein and Y. Jiao. The cost of the build tax in
scientific software. In 2011 International Symposium
on Empirical Software Engineering and Measurement,
pages 384–387, Sept 2011.

[12] G. Kumfert and T. Epperly. Software in the doe: The
hidden overhead of the build. Lawrence Livermore
National Laboratory, 2002.

[13] S. McIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei,
and A. E. Hassan. An empirical study of build
maintenance effort. In 2011 33rd International
Conference on Software Engineering (ICSE), pages
141–150, May 2011.

[14] A. Neundorf. Why the KDE project switched to
CMake. lwn.net/Articles/188693/.

[15] R. Suvorov, M. Nagappan, A. E. Hassan, Y. Zou, and
B. Adams. An empirical study of build system
migrations in practice: Case studies on KDE and the
Linux kernel. In 28th IEEE International Conference
on Software Maintenance (ICSM), pages 160–169.

[16] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N.
Nguyen. Build code analysis with symbolic evaluation.
In 2012 34th International Conference on Software
Engineering (ICSE), pages 650–660, June 2012.

[17] T. Unrau. The Road to KDE 4: CMake, a New Build
System for KDE. dot.kde.org/2007/02/22/
road-kde-4-cmake-new-build-system-kde.

[18] S. van der Burg, E. Dolstra, S. McIntosh, J. Davies,
D. M. German, and A. Hemel. Tracing software build
processes to uncover license compliance
inconsistencies. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software
Engineering, ASE ’14, pages 731–742. ACM, 2014.

[19] S. Zhou, J. Al-Kofahi, T. N. Nguyen, C. KÃd’stner,
and S. Nadi. Extracting configuration knowledge from
build files with symbolic analysis. In 2015 IEEE/ACM
3rd International Workshop on Release Engineering
(RELENG), pages 20–23, May 2015.

