Linear Algebra Review

Matrix addition

• For two matrices of the same size and type, $A, B \in \mathbb{R}^{m \times n}$ addition is just sum of corresponding elements

$$A + B = C \in \mathbb{R}^{m \times n} \iff C_{ij} = A_{ij} + B_{ij}$$

• Addition is *undefined* for matrices of different sizes $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times q}$

Matrix multiplication

• For two matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, their product is

$$AB = C \in \mathbb{R}^{m \times p} \iff C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

• Multiplication is undefined when number of columns in A doesn't equal number or rows in B (one exception: cA for $c \in \mathbb{R}$ taken to mean scaling A by c)

• Some imporant properties

- Associative: $(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times q})$

$$A(BC) = (AB)C$$

- Distributive: $(A \in \mathbb{R}^{m \times n}, B, C \in \mathbb{R}^{n \times p})$

$$A(B+C) = AB + AC$$

 NOT commutative: (the dimensions might not even make sense, but this doesn't hold even when the dimensions are correct)

$$AB \neq BA$$

Vector-vector Products

• Inner product: $x, y \in \mathbb{R}^n$

$$x^T y \in \mathbb{R} = \sum_{i=1}^n x_i y_i$$

• Outer product: $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$

$$xy^{T} \in \mathbb{R}^{n \times m} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{1}y_{m} \\ x_{2}y_{1} & x_{2}y_{2} & \cdots & x_{2}y_{m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}y_{1} & x_{n}y_{2} & \cdots & x_{n}y_{m} \end{bmatrix}$$

Matrix-vector Products

- $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n \iff Ax \in \mathbb{R}^m$
- Writing A by rows, each entry of Ax is an inner product between x and a row of A

$$A = \begin{bmatrix} -a_1^T & - \\ -a_2^T & - \\ \vdots \\ -a_m^T & - \end{bmatrix}, \quad Ax \in \mathbb{R}^m = \begin{bmatrix} a_1^T x \\ a_2^T x \\ \vdots \\ a_m^T x \end{bmatrix}$$

• Writing A by columns, Ax is a *linear combination* of the columns of A, with coefficients given by x

$$A = \begin{bmatrix} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{bmatrix}, \quad Ax \in \mathbb{R}^m = \sum_{i=1}^n a_i x_i$$

Matrix-matrix Products

• Write $A \in \mathbb{R}^{m \times n}$ by rows, $B \in \mathbb{R}^{n \times p}$ by columns: entries of AB are inner products of the rows of A and the columns of B

$$A = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & & \\ - & a_m^T & - \end{bmatrix}, B = \begin{bmatrix} | & | & | & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & & | \end{bmatrix}$$
$$(AB)_{ij} = a_i^T b_j$$

• Write $A \in \mathbb{R}^{m \times n}$ by columns, $B \in \mathbb{R}^{n \times p}$ by rows: AB is a sum of outer products of columns of A and rows of B

and rows of
$$B$$

$$A = \begin{bmatrix} | & | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | & | \end{bmatrix}, \quad B = \begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \\ \vdots & | - & b_n^T & - \end{bmatrix}$$

$$AB \in \mathbb{R}^{m \times p} = \sum_{i=1}^{n} a_i b_i^T$$

• Leave $A \in \mathbb{R}^{m \times n}$ as complete matrix, write $B \in \mathbb{R}^{n \times p}$ by columns: columns of AB are

matrix-vector products between
$$A$$
 and columns of B

$$B = \begin{bmatrix} | & | & | & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & | & | \end{bmatrix}$$

 $AB \in \mathbb{R}^{m \times p} = [Ab_1 \ Ab_2 \ \cdots \ Ab_p]$

matrix-vector products between
$$A$$
 and columns of B