Linear Algebra Review

Range

- For $A \in \mathbb{R}^{m \times n}$, range of A is the set of all vectors that can be written $A x$ for some $x \in \mathbb{R}^{n}$

$$
\mathcal{R}(A) \subseteq \mathbb{R}^{m}=\left\{y: y=A x, x \in \mathbb{R}^{n}\right\}
$$

- The columns of A are linearly independent if no column is in the range of the remaining columns

$$
a_{i} \notin \mathcal{R}\left(A_{-i}\right), \forall i=1, \ldots, n
$$

Rank

- Rank of $A \in \mathbb{R}^{m \times n}$ is the number of linearly indpendent columns
- Some important properties

$$
-\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)
$$

- For $A \in \mathbb{R}^{n \times n}$,

$$
\operatorname{rank}(A)=n \Leftrightarrow \mathcal{R}(A)=\mathbb{R}^{n} \Leftrightarrow A \text { non-singular }
$$

Orthogonality

- Two vectors $x, y \in \mathbb{R}^{n}$ are orthogonal if

$$
x^{T} y=0
$$

- They are orthonormal if, in addition,

$$
\|x\|_{2}=\|y\|_{2}=1
$$

- A matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all it's columns are orthonormal, i.e.,

$$
U^{T} U=I=U U^{T}
$$

- Columns of an orthogonal matrix are linearly independent

Nullspace

- for $A \in \mathbb{R}^{m \times n}$, nullspace of A is set of all vectors x s.t. $A x=0$

$$
\mathcal{N}(A) \subseteq \mathbb{R}^{n}=\{x: A x=0\}
$$

- $\mathcal{R}(A)$ and $\mathcal{N}\left(A^{T}\right)$ are orthogonal complements

$$
\mathcal{R}(A) \cup \mathcal{N}\left(A^{T}\right)=\mathbb{R}^{m}, \quad \mathcal{R}(A) \cap \mathcal{N}\left(A^{T}\right)=\{0\}
$$

