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A Proof of Theorem 1

First, we rewrite the definition of ideal hypothesis [1] between the i" source and
the target as:
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We then denote the combined risk of the i*” ideal hypothesis as:
Ai = er(hi) + es; (h7)

Notice that the i*" ideal hypothesis is a single hypothesis that performs well on
both domains and it explicitly defines the transferability between the i** source
and the target. When J; is large, we cannot expect to transfer knowledge from
the " source to the target by minimizing source error.

Similarly, for the multi-source setting, we define the ideal hypothesis on
domains weighted by o and p as:
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The corresponding the combined risk is then defined as:
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Similar to the definition above, A, , defines the adaptability between weighted
sources and the target, where « specifies individual source importance and p
controls the importance of inter-source relationships.
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Now we can proof the bound in Theorem 1, assuming the linearity of risk:
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(Theorem 1 of Blitzer)

For the combined risks of ideal hypotheses \;, we can rearrange and show
that:
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Then, the risk bound becomes:
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(Lemma 4 of Blitzer)
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We also note that if A, is small, we can set the hypothesis space H to be the
set containing all consistent hypotheses (i.e. the version space) and the weighted
H AH-divergence would also be small.
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