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A Proof of Theorem 1

First, we rewrite the definition of ideal hypothesis [1] between the ith source and
the target as:

h∗i = arg min
h∈H

εT (h) + εSi(h)

We then denote the combined risk of the ith ideal hypothesis as:

λi = εT (h∗i ) + εSi(h
∗
i )

Notice that the ith ideal hypothesis is a single hypothesis that performs well on
both domains and it explicitly defines the transferability between the ith source
and the target. When λi is large, we cannot expect to transfer knowledge from
the ith source to the target by minimizing source error.

Similarly, for the multi-source setting, we define the ideal hypothesis on
domains weighted by α and µ as:

h∗α,µ = arg min
h∈H

εT (h) +

K∑
i

(αiµ+ (1− αi)
1− µ
K − 1

)εSi
(h)

The corresponding the combined risk is then defined as:

λα,µ = εT (h∗α,µ) +

K∑
i

(αiµ+ (1− αi)
1− µ
K − 1

)εSi
(h∗α,µ)

Similar to the definition above, λα,µ defines the adaptability between weighted
sources and the target, where α specifies individual source importance and µ
controls the importance of inter-source relationships.
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Now we can proof the bound in Theorem 1, assuming the linearity of risk:

εT (ĥ) = εT (

K∑
i

αiĥi) =

K∑
i

αiεT (ĥi) =

K∑
i

αi
[
µεT (ĥi) +

1− µ

K − 1

K∑
j 6=i

εT (ĥi)
]

≤
K∑
i

αi

[
µ
[
εSi(ĥi) +

1

2
d̂H4H(USi , UT ) + 4

√
2d log(2m′) + log( 4

δ
)

m′
+ λi

]
+

1− µ

K − 1

K∑
j 6=i

[
εSj (ĥi) +

1

2
d̂H4H(USj , UT ) + 4

√
2d log(2m′) + log( 4

δ
)

m′
+ λj

]]
(Theorem 1 of Blitzer)

For the combined risks of ideal hypotheses λi, we can rearrange and show
that:

K∑
i

αi
[
µλi +

1− µ

K − 1

∑
j 6=i

λj
]

=

K∑
i

αi
[
µ(εT (h

∗
i ) + εSi(h

∗
i )) +

1− µ

K − 1

∑
j 6=i

(εT (h
∗
j ) + εSj (h

∗
j ))
]

≤
K∑
i

αi
[
µ(εT (h

∗
α,µ) + εSi(h

∗
α,µ)) +

1− µ

K − 1

∑
j 6=i

(εT (h
∗
α,µ) + εSj (h

∗
α,µ))

]

= εT (h
∗
α,µ) +

K∑
i

(αiµ+ (1− αi)
1− µ

K − 1
)εSi(h

∗
α,µ)

= λα,µ

Then, the risk bound becomes:

≤

[
K∑
i

αi

[
µ
[
εSi(ĥi) +

1

2
d̂H4H(USi , UT )

]
+

1− µ

K − 1

K∑
j 6=i

[
εSj (ĥi) +

1

2
d̂H4H(USj , UT )

]]]
+

4

√
2d log(2m′) + log( 4

δ
)

m′
+ λα,µ

≤

[
K∑
i

αi

[
µ
[
ε̂Si(ĥi) +

1

2
d̂H4H(USi , UT )

]
+

1− µ

K − 1

K∑
j 6=i

[
ε̂Sj (ĥi) +

1

2
d̂H4H(USj , UT )

]
+

√
µ2

βi
+ (

1− µ

K − 1
)2
∑
j 6=i

1

βj

√
d log(2m)− log(δ)

2m

]]
+ 4

√
2d log(2m′) + log( 4

δ
)

m′
+ λα,µ

(Lemma 4 of Blitzer)

=

[
K∑
i

αi

[
µ
[
ε̂Si(ĥi) +

1

2
d̂H4H(USi , UT )

]
+

1− µ

K − 1

K∑
j 6=i

[
ε̂Sj (ĥi) +

1

2
d̂H4H(USj , UT )

]]
+

( K∑
i

αi

√
µ2

βi
+ (

1− µ

K − 1
)2
∑
j 6=i

1

βj

)√
d log(2m)− log(δ)

2m

]
+ 4

√
2d log(2m′) + log( 4

δ
)

m′
+ λα,µ

�
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We also note that if λα,µ is small, we can set the hypothesis space H to be the
set containing all consistent hypotheses (i.e. the version space) and the weighted
H∆H-divergence would also be small.
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