

Towards more Reliable Transfer Learning

Zirui Wang

Jaime Carbonell

Language
Technologies
Institute

Carnegie Mellon University
School of Computer Science

Multi-Source Transfer Learning

1. Textual Task:

- a. Spam detection
- b. Sentiment analysis
- c. Cross-lingual document classification

2. Visual Task:

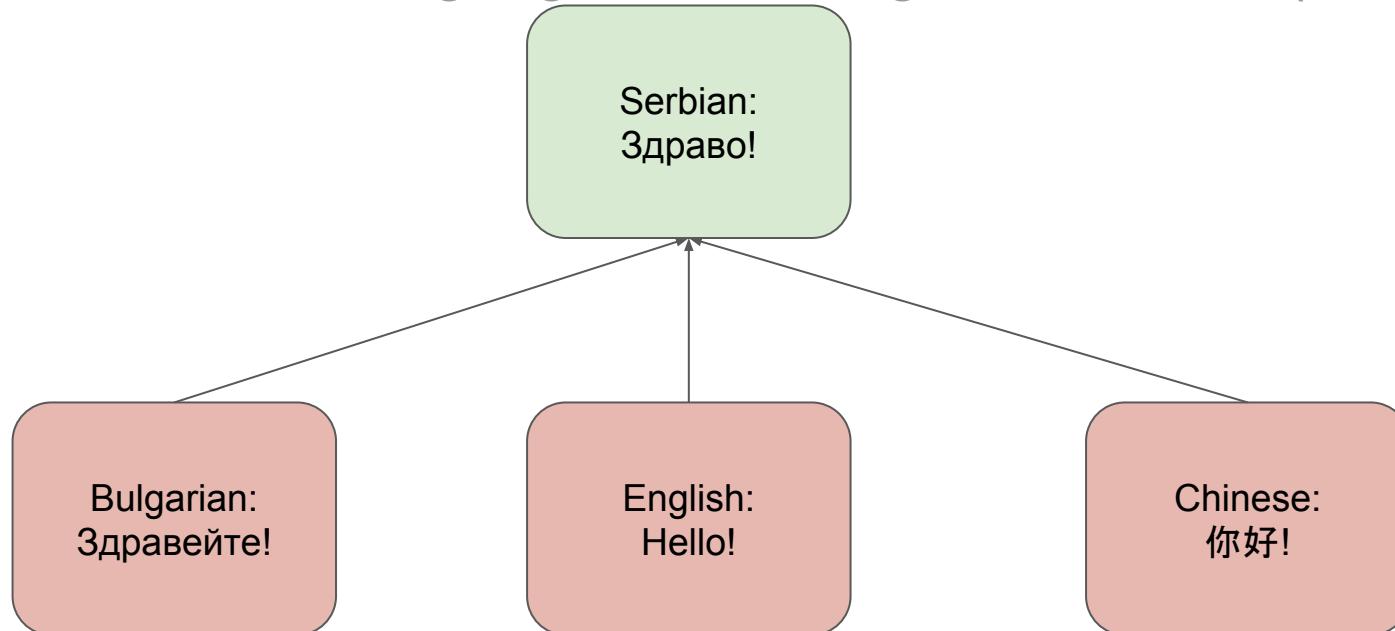
- a. Object recognition (e.g. Office31)
- b. Visual QA

3. Practical Task:

- a. Disease diagnostics
- b. Urban computing

Not all sources are created equal

Low Resource Languages for Emergent Incidents (LORELEI)



Challenge: diverse proximity, diverse reliability

Two related tasks:

1. How to conduct transfer learning?
 - Peer-weighted multi-source transfer learning (PW-MSTL)
2. Active learning on sources
 - Adaptive multi-source active transfer (AMSAT)

1. Peer-weighted multi-source transfer learning (PW-MSTL)

Peer

Definition: peers of a source are other sources included in the task

How to utilize peer:

1. Use peers to help evaluate source reliability
2. Help a source to classify an instance when its confidence is too low

Algorithm 1 PW-MSTL

```
1: Input:  $S = S^L \cup S^U$ : source data;  $T$ : target data;  $\mu$ : concentration factor;  $b_1$ :  
confidence tolerance;  $T$ : test data size;  
2: for  $k = 1, \dots, K$  do  
3:   Compute  $\alpha^k$  by solving (6).  
4:   Train a classifier  $\hat{h}_k$  on the  $\alpha^k$  weighted  $S_k^L$ .  
5: end for  
6: Compute  $\delta$  and  $\mathbf{R}$  as explained in Section 4.2.  
7: Compute  $\omega$  as (5).  
8: for  $t = 1, \dots, T$  do  
9:   Observe testing example  $x^{(t)}$ .  
10:  for  $k = 1, \dots, K$  do  
11:    if  $|\hat{h}_k(x^{(t)})| < b_1$  then  
12:      Compute  $\hat{p}_k^{(t)} = \sum_{m \in [K], m \neq k} \mathbf{R}_{km} |\hat{h}_m(x^{(t)})|$ .  
13:    else  
14:      Compute  $\hat{p}_k^{(t)} = |\hat{h}_k(x^{(t)})|$ .  
15:    end if  
16:  end for  
17:  Predict  $\hat{y}^{(t)} = \text{sign}(\sum_{k \in [K]} \omega_k \hat{p}_k^{(t)})$ .  
18: end for
```

Kernel Mean Match (KMM) for the k th source:

$$\min_{\alpha^k} \left\| \frac{1}{n_k^L + n_k^U} \sum_{i=1}^{n_k^L + n_k^U} \alpha_i^k \Phi(x_i^{S_k}) - \frac{1}{n_T} \sum_{i=1}^{n_T} \Phi(x_i^T) \right\|_H^2$$

Algorithm 1 PW-MSTL

```

1: Input:  $S = S^L \cup S^U$ : source data;  $T$ : target data;  $\mu$ : concentration factor;  $b_1$ :  

   confidence tolerance;  $T$ : test data size;
2: for  $k = 1, \dots, K$  do
3:   Compute  $\alpha^k$  by solving (6).
4:   Train a classifier  $\hat{h}_k$  on the  $\alpha^k$  weighted  $S_k^L$ .
5: end for
6: Compute  $\delta$  and  $\mathbf{R}$  as explained in Section 4.2.
7: Compute  $\omega$  as (5).
8: for  $t = 1, \dots, T$  do
9:   Observe testing example  $x^{(t)}$ .
10:  for  $k = 1, \dots, K$  do
11:    if  $|\hat{h}_k(x^{(t)})| < b_1$  then
12:      Compute  $\hat{p}_k^{(t)} = \sum_{m \in [K], m \neq k} \mathbf{R}_{km} |\hat{h}_m(x^{(t)})|$ .
13:    else
14:      Compute  $\hat{p}_k^{(t)} = |\hat{h}_k(x^{(t)})|$ .
15:    end if
16:  end for
17:  Predict  $\hat{y}^{(t)} = \text{sign}(\sum_{k \in [K]} \omega_k \hat{p}_k^{(t)})$ .
18: end for

```

Compute inter-source relationship and source-target distances (we used MMD but any measurement should be fine):

$$\mathbf{R}_{i,j} = \begin{cases} \frac{\exp(\beta_1 \hat{\epsilon}_{S_i}(\hat{h}_j))}{\sum_{j' \in [K], j' \neq i} \exp(\beta_1 \hat{\epsilon}_{S_i}(\hat{h}'_{j'}))}, & i \neq j \\ 0, & \text{otherwise} \end{cases}$$

$$\delta_i = \frac{\exp(-\beta_2 MMD^\rho(S_i, T))}{\sum_k \exp(-\beta_2 MMD^\rho(S_k, T))}$$

$$\text{MMD}[\mathcal{F}, p, q] := \sup_{f \in \mathcal{F}} (\mathbf{E}_p[f(x)] - \mathbf{E}_q[f(y)])$$

$$\text{MMD}[\mathcal{F}, X, Y] := \sup_{f \in \mathcal{F}} \left(\frac{1}{m} \sum_{i=1}^m f(x_i) - \frac{1}{n} \sum_{i=1}^n f(y_i) \right)$$

Algorithm 1 PW-MSTL

```
1: Input:  $S = S^L \cup S^U$ : source data;  $T$ : target data;  $\mu$ : concentration factor;  $b_1$ :  
confidence tolerance;  $T$ : test data size;  
2: for  $k = 1, \dots, K$  do  
3:   Compute  $\alpha^k$  by solving (6).  
4:   Train a classifier  $\hat{h}_k$  on the  $\alpha^k$  weighted  $S_k^L$ .  
5: end for  
6: Compute  $\delta$  and  $\mathbf{R}$  as explained in Section 4.2.  
7: Compute  $\omega$  is (5).  
8: for  $t = 1, \dots, T$  do  
9:   Observe testing example  $x^{(t)}$ .  
10:  for  $k = 1, \dots, K$  do  
11:    if  $|\hat{h}_k(x^{(t)})| < b_1$  then  
12:      Compute  $\hat{p}_k^{(t)} = \sum_{m \in [K], m \neq k} \mathbf{R}_{km} |\hat{h}_m(x^{(t)})|$ .  
13:    else  
14:      Compute  $\hat{p}_k^{(t)} = |\hat{h}_k(x^{(t)})|$ .  
15:    end if  
16:  end for  
17:  Predict  $\hat{y}^{(t)} = \text{sign}(\sum_{k \in [K]} \omega_k \hat{p}_k^{(t)})$ .  
18: end for
```

Source Importance Weight:

$$\omega = \delta \cdot [\mu \mathbf{I}_K + (1 - \mu) \mathbf{R}]$$

concentration factor

Algorithm 1 PW-MSTL

```
1: Input:  $S = S^L \cup S^U$ : source data;  $T$ : target data;  $\mu$ : concentration factor;  $b_1$ :  
confidence tolerance;  $T$ : test data size;  
2: for  $k = 1, \dots, K$  do  
3:   Compute  $\alpha^k$  by solving (6).  
4:   Train a classifier  $\hat{h}_k$  on the  $\alpha^k$  weighted  $S_k^L$ .  
5: end for  
6: Compute  $\delta$  and  $\mathbf{R}$  as explained in Section 4.2.  
7: Compute  $\omega$  as (5).  
8: for  $t = 1, \dots, T$  do  
9:   Observe testing example  $x^{(t)}$ .  
10:  for  $k = 1, \dots, K$  do  
11:    if  $|\hat{h}_k(x^{(t)})| < b_1$  then  
12:      Compute  $\hat{p}_k^{(t)} = \sum_{m \in [K], m \neq k} \mathbf{R}_{km} |\hat{h}_m(x^{(t)})|$ .  
13:    else  
14:      Compute  $\hat{p}_k^{(t)} = |\hat{h}_k(x^{(t)})|$ .  
15:    end if  
16:  end for  
17:  Predict  $\hat{y}^{(t)} = \text{sign}(\sum_{k \in [K]} \omega_k \hat{p}_k^{(t)})$ .  
18: end for
```

- Classify testing instances by weighted vote.
- Allow peers to assist classify an instance if the confidence is too low.

Results

Table 1. Classification accuracy (%) on the target domain, given that source domains contain diverse {1%,5%,15%,30%} labeled data.

Method	Synthetic					Spam					Sentiment				
	case1	case2	user7	user8	user3	electronics	toys	music	apparel	dvd	electronics	toys	music	apparel	dvd
KMM	82.7	88.8	92.0	91.8	89.7	77.6	77.4	71.0	78.3	72.4	77.6	77.4	71.0	78.3	72.4
KMM-A	87.3	91.4	92.0	92.0	91.8	74.6	76.3	70.3	75.8	72.4	74.6	76.3	70.3	75.8	72.4
A-SVM	70.8	89.4	84.5	87.8	86.8	70.8	73.7	67.7	73.6	62.6	70.8	73.7	67.7	73.6	62.6
DAM	75.8	91.0	83.8	85.4	86.8	71.3	73.7	68.0	75.1	62.5	71.3	73.7	68.0	75.1	62.5
PW-MSTL _b	85.5	90.8	91.5	92.6	90.3	78.0	78.7	70.7	79.5	73.2	78.0	78.7	70.7	79.5	73.2
PW-MSTL	88.4	92.6	93.8	95.6	92.8	79.3	81.9	74.6	82.7	76.7	79.3	81.9	74.6	82.7	76.7

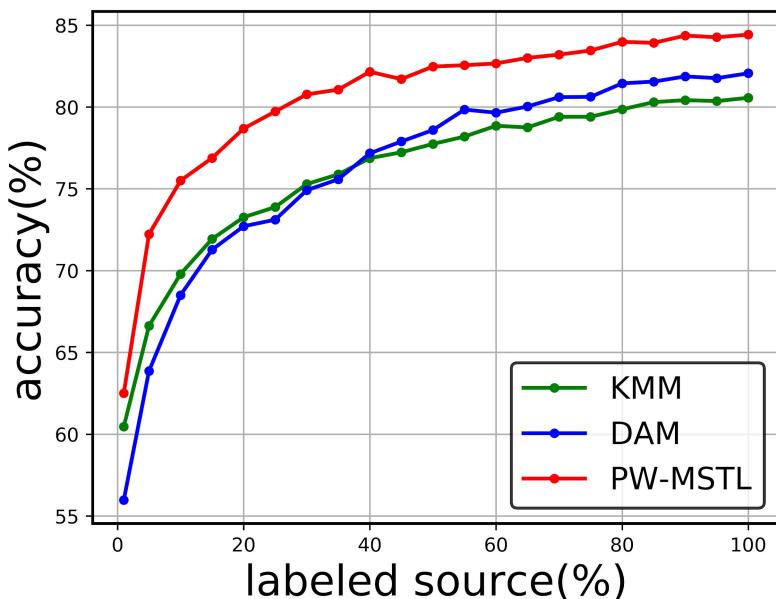
Results (continued)

Table 2. Classification accuracy (%) on the target domain, given that source domains contain the same fraction (%L) of labeled data.

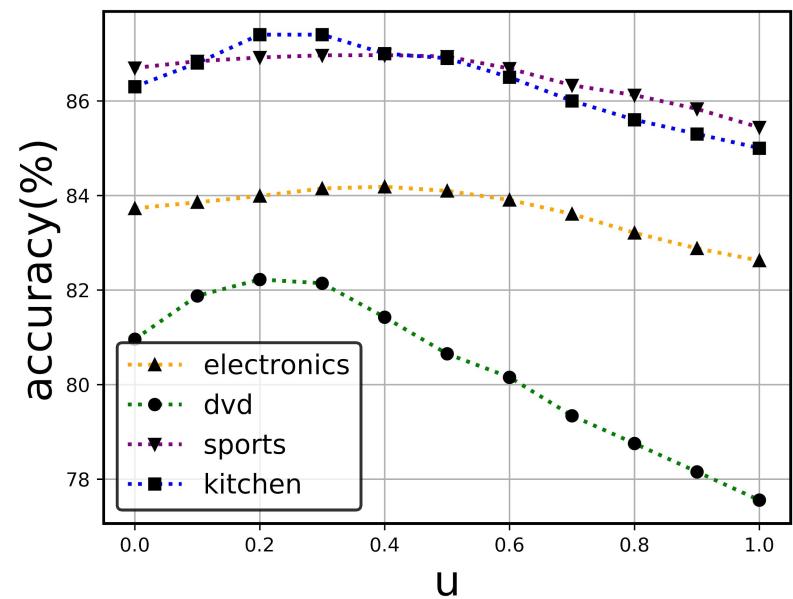
%L	Method	Synthetic	Spam				Sentiment			
			user7	user8	user3	electronics	toys	music	apparel	dvd
10%	KMM	87.0	89.1	91.2	90.3	75.0	74.6	68.3	75.6	70.2
	KMM-A	91.1	91.3	90.7	91.0	74.8	76.5	70.2	76.8	71.3
	A-SVM	89.4	88.4	91.9	89.2	77.1	78.1	69.9	78.2	68.9
	DAM	89.7	89.6	90.4	91.3	77.5	79.0	69.9	79.8	69.0
	PW-MSTL _b	90.2	89.7	92.4	92.1	77.7	78.7	69.7	78.9	73.5
	PW-MSTL	91.2	92.5	94.9	93.1	79.8	81.5	73.3	81.3	76.4
50%	KMM	95.6	92.6	94.0	91.8	81.6	81.7	75.0	82.2	76.9
	KMM-A	97.2	91.4	93.8	94.7	80.4	82.4	74.5	82.7	77.1
	A-SVM	96.4	91.5	95.2	93.4	81.7	83.4	74.7	84.3	76.0
	DAM	96.6	92.7	93.1	93.2	83.5	84.5	73.4	84.4	77.3
	PW-MSTL _b	96.6	92.9	95.2	93.5	83.6	84.7	74.4	85.0	80.4
	PW-MSTL	97.2	94.5	95.7	93.7	84.8	86.4	76.9	87.2	82.0

Results (continued)

Figure 1. (a) Incremental accuracy on **dvd**



(b) Sensitivity analysis of concentration factor μ



2. Adaptive multi-source active transfer (AMSAT)

Two Questions

- Which source **domain** to pick?
- Which **instance** within selected domain to choose?

Algorithm 2 AMSAT

```
1: Input:  $S = S^L \cup S^U$ : source data;  $T$ : target data;  $\mu$ : concentration factor;  $B$ : budget;  
2: for  $k = 1, \dots, K$  do  
3:   Compute  $\alpha^k$  by solving (6).  
4:   Train a classifier  $\hat{h}_k$  on the  $\alpha^k$  weighted  $S_k^L$ .  
5: end for  
6: for  $t = 1, \dots, B$  do  
7:   Compute  $\beta_i^{(t)} = \frac{n_i^L}{\sum_i n_i^L}$ .  
8:   Draw a Bernoulli random variable  $P^{(t)}$  with probability  $D_{KL}(\beta^{(t)} \parallel \text{uniform})$ .  
9:   if  $P^{(t)} = 1$  then  
10:    Set  $Q^{(t)} = \frac{1}{\beta^{(t)}}$ .  
11:   else  
12:    Compute  $\omega^{(t)}$  as (5) and set  $Q^{(t)} = \omega^{(t)}$ .  
13:   end if  
14:   Draw  $k^{(t)}$  from  $[K]$  with distribution  $Q^{(t)}$ .  
15:   Select  $x^{(t)}$  according to (8) and query the label for it.  
16:   Update  $S_{k^{(t)}}^L \leftarrow S_{k^{(t)}}^L \cup \{x^{(t)}\}$ .  
17:   Update  $S_{k^{(t)}}^U \leftarrow S_{k^{(t)}}^U \setminus \{x^{(t)}\}$ .  
18:   Update classifier  $\hat{h}_{k^{(t)}}$ .  
19: end for
```

- Draw a rv depending on how unbalanced sources were.
- If sources are too unbalanced, more likely to **explore** less labeled sources.
- If sources are balanced, more likely to **exploit** more useful source.

Algorithm 2 AMSAT

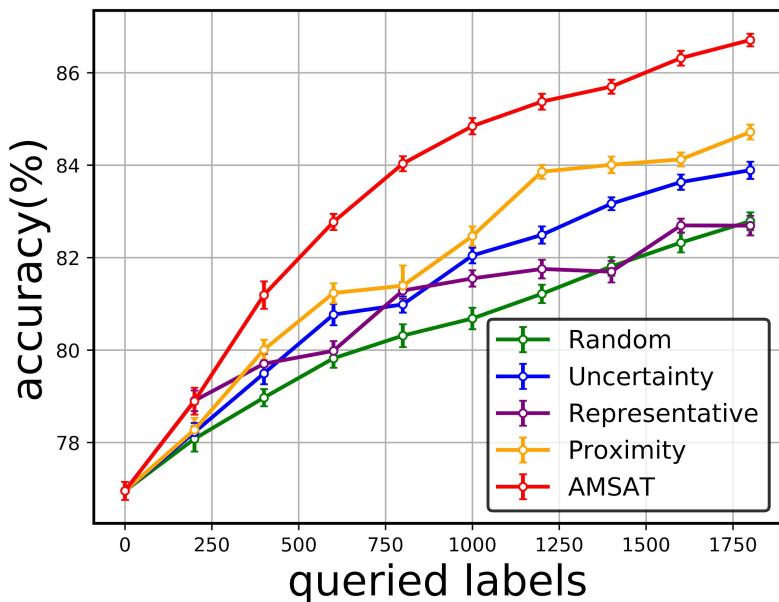
```
1: Input:  $S = S^L \cup S^U$ : source data;  $T$ : target data;  $\mu$ : concentration factor;  $B$ : budget;  
2: for  $k = 1, \dots, K$  do  
3:   Compute  $\alpha^k$  by solving (6).  
4:   Train a classifier  $\hat{h}_k$  on the  $\alpha^k$  weighted  $S_k^L$ .  
5: end for  
6: for  $t = 1, \dots, B$  do  
7:   Compute  $\beta_i^{(t)} = \frac{n_i^L}{\sum_i n_i^L}$ .  
8:   Draw a Bernoulli random variable  $P^{(t)}$  with probability  $D_{KL}(\beta^{(t)} || \text{uniform})$ .  
9:   if  $P^{(t)} = 1$  then  
10:    Set  $Q^{(t)} = \frac{1}{\beta^{(t)}}$ .  
11:   else  
12:    Compute  $\omega^{(t)}$  as (5) and set  $Q^{(t)} = \omega^{(t)}$ .  
13:   end if  
14:   Draw  $k^{(t)}$  from  $[K]$  with distribution  $Q^{(t)}$ .  
15:   Select  $x^{(t)}$  according to (8) and query the label for it.  
16:   Update  $S_{k^{(t)}}^L \leftarrow S_{k^{(t)}}^L \cup \{x^{(t)}\}$ .  
17:   Update  $S_{k^{(t)}}^U \leftarrow S_{k^{(t)}}^U \setminus \{x^{(t)}\}$ .  
18:   Update classifier  $\hat{h}_{k^{(t)}}$ .  
19: end for
```

Kernel matching weighted uncertainty sampling:

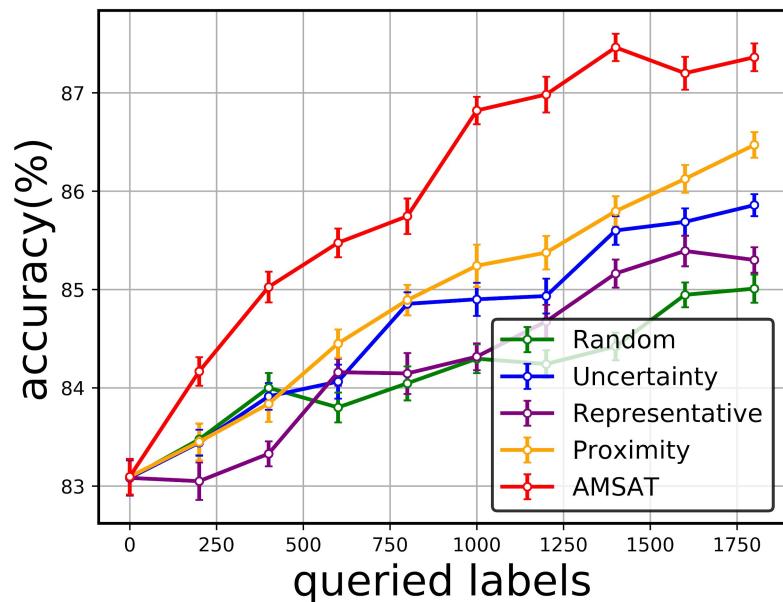
$$x = \arg \max_{x_i \in S_{k^{(t)}}^U} E[(\hat{y}_i - y_i)^2 | x_i] \alpha_i^{k^{(t)}}$$

Results

Figure 2. (a) Accuracy on **kitchen** (cold start)

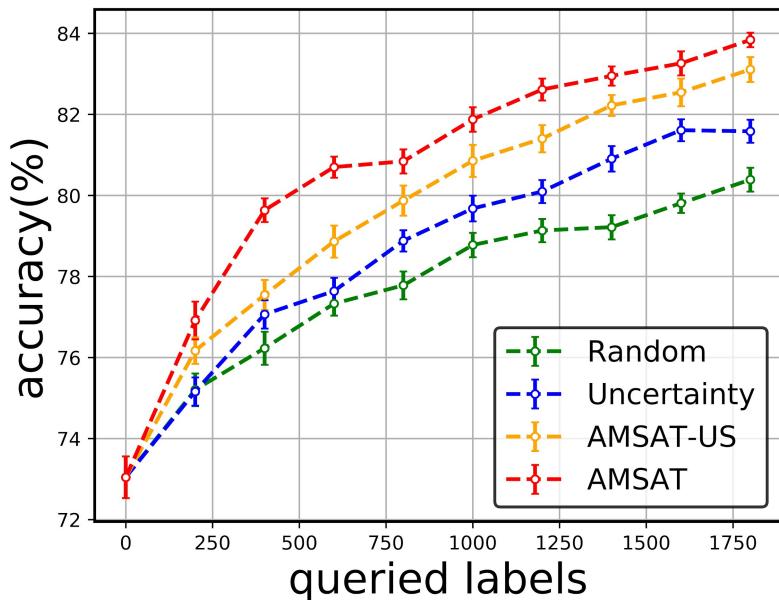


(b) Accuracy on **kitchen** (warm start)

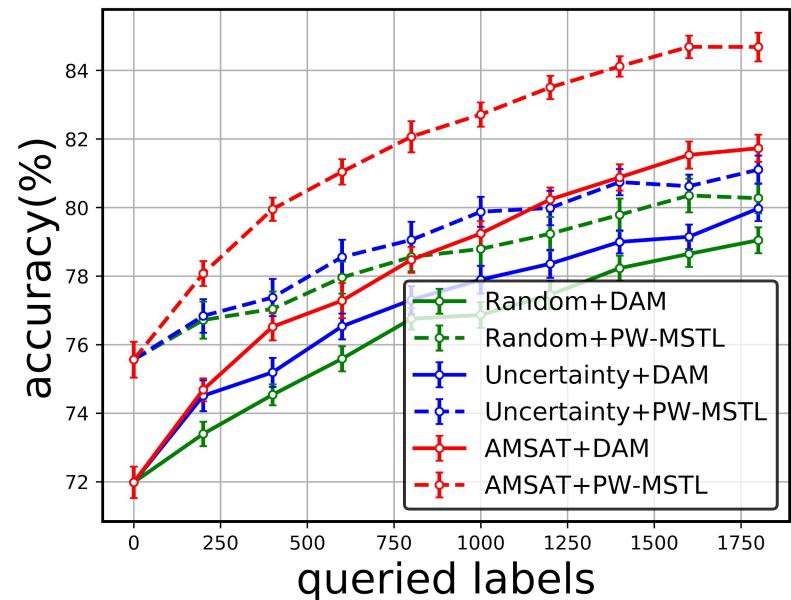


Results (continue)

Figure 3. (a) Ablation study



(b) Combined result



Conclusions

- **PW-MSTL** outperforms other MSTL approaches when sources are not equally reliable.
- **AMSAT** outperforms other active learning baselines and both source/instance picking strategies are effective.
- **Domain** is not restricted to text, both methods are general for other data types or base models.
- **Future:** study the relation between active learning in the source and negative transfer.

Q&A

- Why did you propose **TWO** methods in **ONE** paper? Are you trying to fill the space?
- Where the hell did you get these methods? Inspired by Confucius?
- Why do we want to perform active learning on sources in the first place? Why don't we just do it in the target?
- Ok...I don't believe in you. Can you give an example?
- Where is **DNN/CNN/RNN/XNN**? How could it be missing from your work?
- I think your work is **naive/useless/foolish**. Why do we even care?
- More question?

Towards more Reliable Transfer Learning

Zirui Wang

Jaime Carbonell

Language
Technologies
Institute

Carnegie Mellon University
School of Computer Science