An Evaluation of the Kernel Based Neural Ranking Model
in NTCIR-13 WWW

Zhuyun Dai, Chenyan Xiong, Jamie Callan
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{zhuyund, cx, callan}@cs.cmu.edu

ABSTRACT

This paper describes CMUIR’s participation in the NTCIR-
13 We Want Web (WWW) task. In the context of the
Chinese subtask, we experimented with a neural network
approach using the kernel based neural ranking model (K-
NRM). The model learns a word embedding that encodes IR-
customized soft match patterns from a Chinese search log.
The learned model is then directly applied to re-rank the
baseline run result lists of the Chinese subtask. We ex-
tend K-NRM to incorporate multiple document fields for richer
text presentation. We also experimented with different re-
ranking cutoffs to reduce the effect of the gap between train-
ing and testing domains. Evaluation results confirmed the
effectiveness of K-NRM.

Keywords
Web Search, Neural IR, Embedding

Team Name
CMUIR

Subtasks

Chinese

1. INTRODUCTION

In NTCIR~13, CMUIR group participated in the Chinese
subtask of the We Want Web (WWW) task [3]. In this
challenge, we took a neural ranking approach based on our
previous work on the kernel-based neural ranking model (K-
NRM) [5].

K-NRM is a neural ranking architecture that aims to model
multi-level soft-match between queries and documents. It
uses distributed representations to represent query and doc-
ument words. Their similarities are constructed into a trans-
lation model. Then a kernel-pooling layer is used to softly
count the frequencies of word pairs at different similarity
levels, for instance, exact matches, strong soft matches, and
weak soft matches. These multi-level signals are used as
features in a ranking layer, which produces the final ranking
score. In this work, we also extend K-NRM architecture to
incorporate multiple representations of the document.

In this task, we trained K-NRM on a Chinese commercial
search log with user clicks signals supervision labels. The
trained models were then used directly to re-rank the base-
line run results list retrieved from the SogouT-16 document
collection [1]. Evaluation results show the effectiveness of

Query Translation Matrix Kernels Soft-TF Ranking
_(nwords) My m Features
t?
1!
q, ! N
ZH 300 % Final
i {300 | Ranking
”””” .~ Score
Documen @ — "
(m words) Z—*i‘ — @
e - / -
td @ W,b
tg
3
td
,,,,,,,,, ‘

Embedding Translation Kernel
Layer Layer Pooling

Learning-To-Rank

Figure 1: The Architecture of K-NRM. Given input query
words and document words, the embedding layer maps them
into distributed representations, the translation layer calcu-
lates the word-word similarities and forms the translation
matrix, the kernel pooling layer generate soft-TF counts as
ranking features, and the learning to rank layer combines
the soft-TF to the final ranking score.

K-NRM despite many differences in the training and testing
tasks.

2. MODEL ARCHITECTURE

We adopted the K-NRM model from our previous work.
This section gives a brief description the architecture of K-
NRM.

Given a query ¢ and a document d, K-NRM generates a
ranking score f(q,d) using query words ¢ = {¢4,...t7...,¢1}
and document words d = {t¢, ...t‘ji..., t4}. As shown in Fig-
ure 1, K-NRM consists three components: translation model,
kernel-pooling, and learning to rank.

2.1 Translation Model

K-NRM first uses an embedding layer to map each word
t to an L-dimension embedding ¥;. Then it constructs a
translation matrix M. Each element in M is the cosine
similarity between a query word embedding and a document
word embedding.

2.2 Kernel-Pooling

K-NRM then uses a set of RBF kernels to convert word-word
interactions in the translation matrix M to query-document
ranking features ¢(M).

B(M) = Y log K(M))

KE(M;) = {K:1(M,), ..., Kr(M;)}

K (M;) applies K kernels to the i-th query word’s row of
the translation matrix, summarizing (pooling) it into a K-
dimensional feature vector. The log-sum of each query word’s
feature vector forms the query-document ranking feature
vector ¢. The RBF kernel K, calculates how word pair sim-
ilarities are distributed around it: the more word pairs with
similarities closer to its mean u, the higher its value. Ker-
nels with different p focuses on different soft-match patterns;
for example, a kernel with p = 1 calculates the number of
words that exact match the query word, and a kernel with
© = 0.5 softly counts the number of document words whose
similarities to the query word are close to 0.5.

2.3 Learning to Rank

The ranking features ¢(M) are combined by a ranking
layer to produce the final ranking score:

flg,d) = tanh(wT¢(M) +b).

tanh is the activation function that squeezes the range of
ranking score into [—1, 1] to facilitate the learning process. It
is rank-equivalent to a typical linear learning to rank model.

2.4 Multiple representations

Web page consists of multiple fields, for example, title,
URL and the body. Each field represents the document in
a distinct way, and provides evidences of relevance from its
own perspective. The original K-NRM model [5] only con-
siders the interaction between the query and the document
title. In this challenge, we extend K-NRM architecture to make
use of multiple representations. Each field is viewed as a se-
quence of words, the translation matrix between the field f
and the query, My, is calculated, and K features are pooled
through kernel-pooling, generating a K-dimension feature
vector ¢(My). Given F fields, K x F features will be gen-
erated. This leads to the ranking features as follows.

O (M) =¢(M)®...0¢(My) @ ... & ¢ (Mr),

where @ is the concatenation operation. These features are
combined by the learning-to-rank layer to generate the final
relevance score.

In this work, we let multiple fields share the word em-
beddings to reduce data sparsity and accelerate training.
Future work will explore separate embeddings for different
document fields.

3. EXPERIMENTAL SETUP

3.1 Dataset

K-NRM was trained with the same settings defined by Xiong
et al [5]. Our training corpus is a sample of search logs
from a major Chinese commercial search engine in China.
We did not use the official training set because it only has

200 queries and was not enough to train the K-NRM model.
Our training set includes 31M search sessions and 95,229
unique queries. The overlap between our training set and
the NTCIR WWW task test set is small: only 12 (query,
document) pairs appeared in both sets. These data points
were removed from the training set.

Same as in [5], training labels were generated from user
clicks. The DCTR click model [2] was used to infer the
relevance labels of each (query, document) pair appeared in
the search log.

The query log provides title and URL for each displayed
documents. We trained and tested K-NRM using with configu-
rations: 1) only using title and 2) using both title and URL
as two representations of the documents. We will further
discuss it in section 4.

3.2 Parameter Settings

All runs shared the same model parameters settings as in
[5]: one exact match kernel of u =1 and ¢ = 0.00001, and
10 kernels with g ranged from 0.9,0.7,...,—0.9 and ¢ = 0.1
were used for each field. Model was trained Adam Optimizer
with a batch size of 16, learning rate of 0.01 and e = 1le — 5.

4. SUBMITTED RUNS AND EVALUATION

We submitted 5 runs with different model configurations.
These runs differ in the document representations, the num-
ber of candidate documents to re-rank, and the word em-
beddings.

e CMUIR-C-NU-Base-1: The training query log provides
the title and URL of each displayed document. This
run used both of the fields. Following the settings in [5]
where on average each testing query has 30 candidate
documents, this run re-ranked the top 30 documents
in the baseline result list. The model was trained end-
to-end on the training search log.

e CMUIR-C-NU-Base-2: This run used the same model as
CMUIR-C-NU-Base-1. Different from the first run, this
run was tested to re-rank the top 100 documents.

e CMUIR-C-NU-Base-3: This run only used the title field.
For each query, it re-ranks the top 30 documents in
the baseline result list. It is trained end-to-end on the
training search log.

e CMUIR-C-NU-Base-4: This run used the same trained
model as CMUIR-C-NU-Base-3. For each query, it re-
ranks the top 100 documents in the baseline result list.

e CMUIR-C-NU-Base-5: This run used the title field. For
each query, it re-ranks the top 100 documents in the
baseline result list. Different from the first 4 runs,
this model used a fixed pre-trained word embedding,
and only learned the learning-to-rank parameters. The
pre-trained embeddings were obtained using the skip-
gram method from word2vec [4] on the document titles
displayed in training search log.

Descriptions and evaluation results of the submitted runs
are listed in Table 1.

Multiple Representations. In this task, we explore
adding URLs as a second representation. As can be seen
from Table 1, models with both title and URL fields (CMUIR-
C-NU-Base-1,2) performed consistently better than their
title-only competitors (CMUIR-C-NU-Base-1,3).

Table 1: Submitted runs and evaluation results.

Representations Reranking Depth ~ Embedding | nDCG@10 Q@10 nERRQ@I10
CMUIR-C-NU-Base-1 Title, URL 30 End-to-End 0.6145 0.6294 0.7583
CMUIR-C-NU-Base-2 Title, URL 100 End-to-End 0.5873 0.5955 0.7046
CMUIR-C-NU-Base-3 Title 30 End-to-End 0.6059 0.6163 0.7406
CMUIR-C-NU-Base-4 Title 100 End-to-End 0.5667 0.5780 0.7086
CMUIR-C-NU-Base-5 Title 100 Pre-trained 0.5915 0.5996 0.7372

Re-ranking depth. This analysis investigates the effects
of re-ranking depth by comparing the trained K-NRM model
on re-ranking the top 30 or 100 documents of the baseline
run. The evaluation results in Table 1 show that in the
end-to-end models (CMUIR-C-NU-Base-1,2,3,4), re-ranking
top 30 always have higher performance than re-ranking top
100. This is because the domain differences between the
training task and the testing task. K-NRM was trained on
a commercial search log. In the training search log, there
are only a few documents associated with each query (10-
30 per query); all of these candidate documents are of high
quality. On the other hand, the testing scenario is to re-rank
a BM25 baseline run. Documents at the lower positions of
the baseline result lists are likely to be of lower quality, and
may contain patterns that diverge from the training data.
Using the top candidate documents reduced the differences
between the training and testing data, thus yielded higher
ranking precisions.

Pre-trained Embeddings. Due to the training/testing
gap discussed above, we also tested a K-NRM model with fix-
embedding (CMUIR-C-NU-Base-5). The embedding layer was
pre-trained and fixed during the training. This model was
expected to be less sensitive to corpus changes. As shown in
Table 1, CMU-C-NU-Base-5 performed better than the end-
to-end models on re-ranking the top 100 documents (CMU-C-
NU-Base-2,4). It confirms that the fixed-embedding model
is less sensitive to gap between the training and testing sce-
narios. Due to limited number of submissions, we do not
have the evaluations of the fixed-embedding model on re-
ranking top 30 candidate documents. However, evaluations
on other datasets show that the fixed-embedding model per-
formed worse then the end-to-end models at re-ranking high
quality candidate documents [5].

Our best run, CMUIR-C-NU-Base-1, achieved nDCG@10 of
0.6145 and is among the best runs of the Chinese subtask.
Its advantage consists of using multiple representations of
the documents, reducing domain differences by re-ranking
the high-quality candidate documents, and end-to-end learn-
ing a IR-customized word embedding.

The training task and the testing task differs in many as-
pects: different corpora, different quality of the initial rank-
ings, and different labels (clicks v.s. manual relevance la-
bels). In this work, the K-NRM models were directly applied
to re-rank the testing result lists after training despite the
many differences between the training and the testing. The
good performance on the testing set demonstrates K-NRM’s
robustness and the ability to generalize. We believe the
performance could be further enhanced by addressing the
domain differences. For example, one could fine-tune the
trained model with the training set provided by the WWW
Chinese subtask.

5. CONCLUSION

In this paper, we present our methods on NTCIR-13 WWW
task, for Chinese subtask. We experimented with the kernel-
based neural ranking model K-NRM based on our previous
work [5]. Evaluation results show the effectiveness of K-
NRM. Our analysis suggests that the model can benefit from
multiple documents representations. The analysis also re-
veals the effects of domain differences between training and
testing. One promising future direction is to bridge the do-
main differences with transfer learning approaches.

6. REFERENCES

[1] L. Cheng, Z. Yukun, L. Yiqun, X. Jingfang, Z. Min, and
M. Shaoping. SogouT-16: A new web corpus to embrace
ir research. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR). ACM, 2017.

[2] A. Chuklin, I. Markov, and M. d. Rijke. Click models
for web search. Synthesis Lectures on Information
Concepts, Retrieval, and Services, 7(3):1-115, 2015.

[3] C. Luo, T. Sakai, Y. Liu, Z. Dou, C. Xiong, and J. Xu.
Overview of the ntcir-13 we want web task. In
Proceedings of the NTCIR-18 Conference, 2017.

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Proceedings of
the 2tth Advances in Neural Information Processing
Systems 2013 (NIPS), 2013.

[5] C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power.
End-to-end neural ad-hoc ranking with kernel pooling.
In Proceedings of the 40th annual international ACM
SIGIR conference on Research and Development in
Information Retrieval (SIGIR 2017). ACM, 2017.

