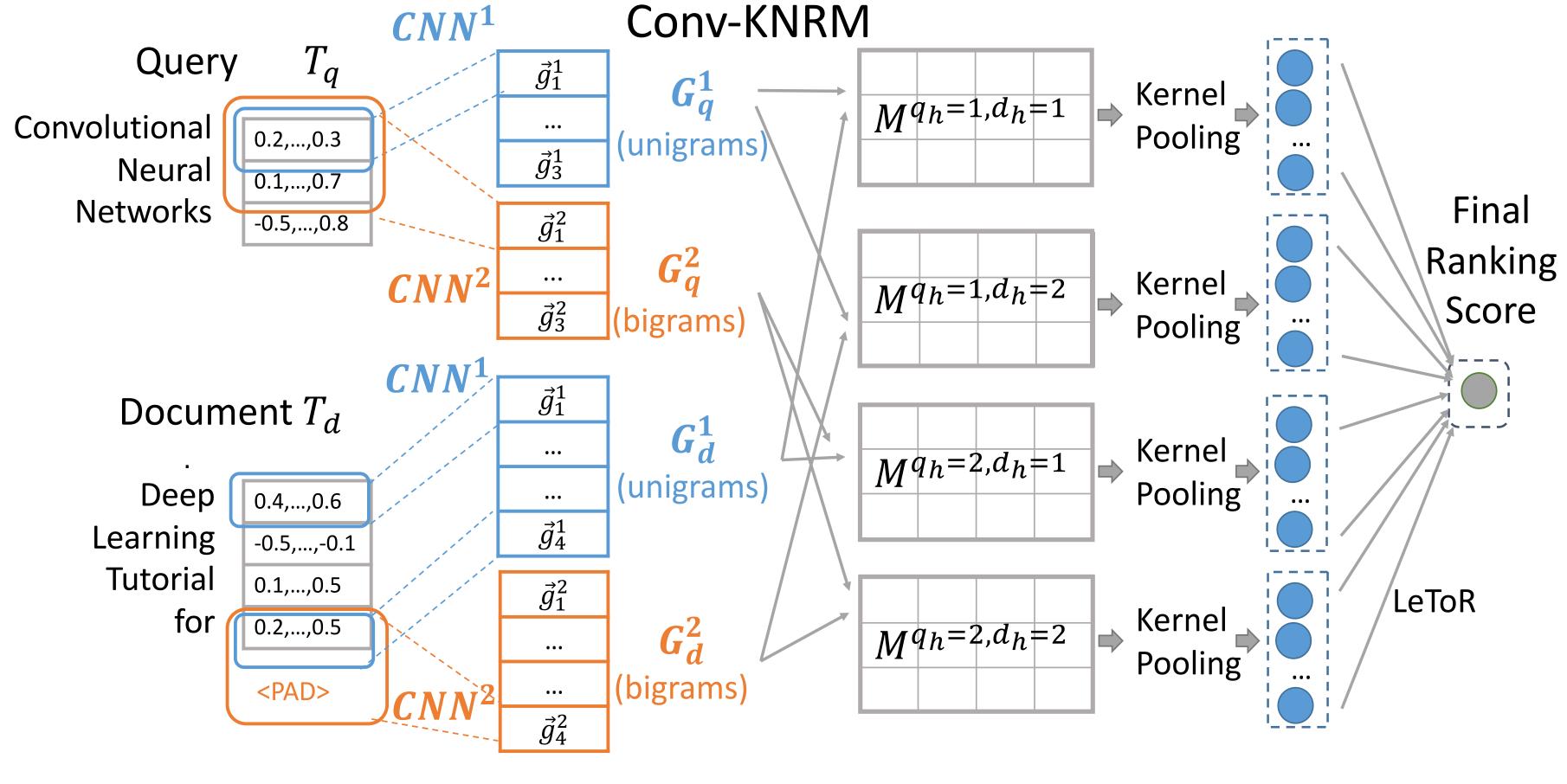
Convolutional Neural Networks for Soft-Matching N-grams in Ad-hoc Search

Zhuyun Dai, Chenyan Xiong, Jamie Callan Carnegie Mellon University

Zhiyuan Liu Tsinghua University

Motivation and Background:

- Queries and documents often match at n-gram level
- Query: "Convolutional Neural Networks"
- Document: "Deep Learning Tutorial for beginners..."
- Traditional IR approach: exact match n-grams
- Lexical Mismatch Problem
- **Interaction-based Neural IR models**
- Capture soft match using word embeddings
- K-NRM: kernel-based neural ranking model
- Learns embedding tailored for relevance ranking b end-to-end training from user feedback
- Soft-match at word level



Word Embedding Convolutional Layer

Cross-match Layer

Soft-TF Features

Conv-KNRM: a neural ranker for soft-matching n-grams

Convolutional Layer

Compose n-gram embeddings from adjacent words' embeddings. Different kernel sizes lead to n-grams of various lengths

Cross-Match Layer

Build similarity matrices between n-grams of different lengths.

E.g. query unigrams to document bigrams

Kernel-Pooling

`Count' soft-match pairs at multiple similarity levels using Gaussian Kernels E.g. exact match, strong match, weak match...

Pairwise Learning

Learn to differentiate relevant documents from irrelevant ones.

Loss = max(0, $1 - (f(q, d^+) - f(q, d^-)))$

Domain Adaptation

- Source Domain: large number of training data and labels
- Target Domain: limited amount of training data
- Learn soft-match on source domain; Tune LeToR weights on target domain

Source Domain(End-to-End) Learn Word Embedding

Target Domain(Adapt)

- Learn CNN
- Learn LeToR weights
- Apply Word Embedding
- Apply CNN
- Learn LeToR weights

Experiments

End-to-End Learning

- Sogou-Log: Chines Bing-Log: English
- Both have ~100K training queries, 1K testing queries
- Train on relevance labels estimated by a click model (DCTR)
- Test on 1) click model labels and 2) raw user clicks

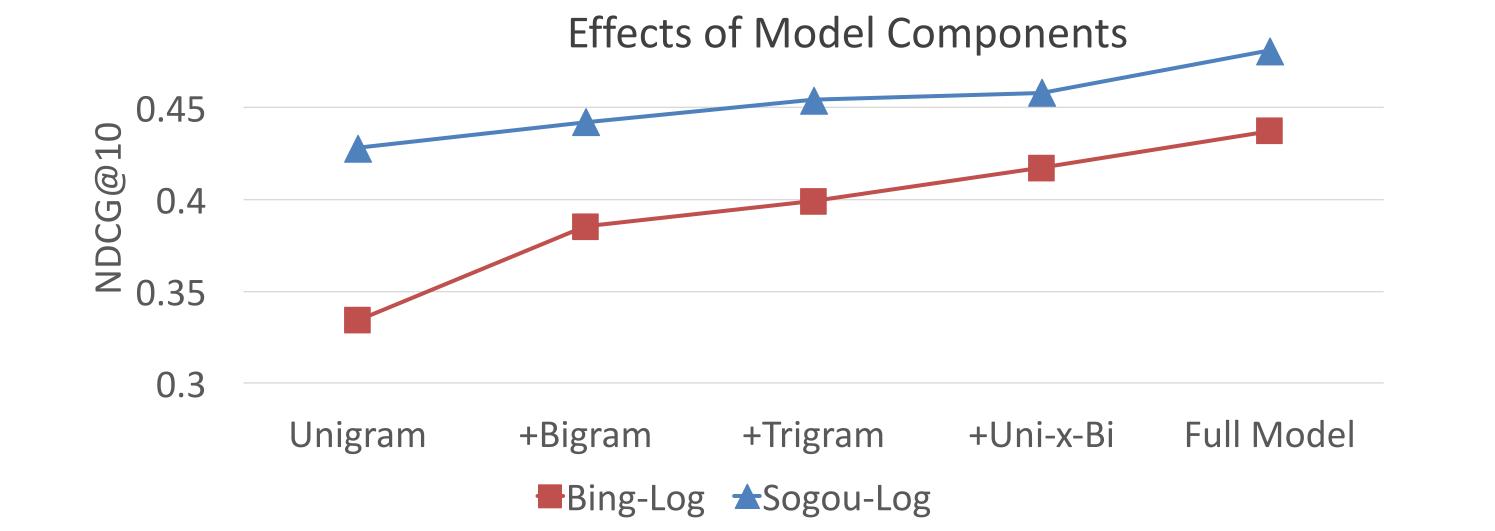
Domain Adaptation

- **Bing-Log** => **Clueweb09B** (TREC 2009-2012, 200 queries)
- Learn LeToR weights on Clueweb09B using 10-fold CV

Experimental Results

End-to-End Learning Sogou-Log Bing-Log NDCG@10 NDCG@10 Method NDCG@1 NDCG@1 **BM25** 0.142 -45% 0.287 -34% 0.043 -79% 0.123 -63% RankSVM 0.146 -44% 0.309 -29% 0.128 -39% 0.266 -20% -34% 0.355 0.169 -16% 0.142 -32% 0.268 Coor-Ascent -20% 0.137 -51% 0.315 -27% 0.137 -34% 0.247 **DRMM** -26% 0.144 0.333 **CDSSM** -44% -23% 0.156 -25% 0.273 -18% 0.218 0.379 -12% 0.182 -12% 0.301 -10% MP -15% K-NRM 0.264 0.428 0.208 0.334 0.336 +11% 0.300 +44% 0.437 **Conv-KNRM** +30% 0.481 +31%

Performance on Testing-SAME (DCTR click model for train & test)



- Conv-KNRM outperformed previous state-of-the-arts
- N-gram has higher gain on English search log. Chinese unigrams have phrase-like characteristics
- Cross-matching is the key

Domain Adaptation

	Clueweb09B	
Method	NDCG@1	NDCG@20
Galago-SDM	0.219	0.250
RankSVM	0.236	0.263
Coor-Ascent	0.255	0.268
DRMM+SDM	0.215	0.269
K-NRM-adapt	0.235	0.270
Conv-KNRM-adapt	0.294	0.287

Performance on Clueweb09B

- The n-gram soft-match features learned from Bing-Log are also effective on Clueweb09B
- **Matched N-gram** Query quilting 101 sewing instructions fickle creek farm eat & drink atypical squamous cells cervical cancer wedding budget perfect planner tools calculator
 - Case study: example of matched n-grams
- The matchings make sense in various contexts than just in one dataset
 - Soft-match overcomes lexical mismatch
 - Matches n-grams whose individual word may not match

Conclusions

- Conv-KNRM: uses CNNs to compose n-gram embeddings from word embeddings, and cross-matches n-grams of various lengths
- IR-customized n-gram soft match: Learns n-gram soft match patterns tailored for relevance matching with kernel pooling
- Cross-matching: cross-matching is important because related concepts do not necessarily have the same number of words
- Generalizable: model trained on one domain is generalizable to a related search domain. Beat strong feature-based LeToR baseline on TREC