
Query-Biased Partitioning for Selective Search

Zhuyun Dai, Chenyan Xiong, Jamie Callan
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{zhuyund, cx, callan}@cs.cmu.edu

ABSTRACT
Selective search is a cluster-based distributed retrieval ar-
chitecture that reduces computational costs by partitioning
a corpus into topical shards, and selectively searching them.
Prior research formed topical shards by clustering the corpus
based on the documents’ contents. This content-based par-
titioning strategy reveals common topics in a corpus. How-
ever, the topic distribution produced by clustering may not
match the distribution of topics in search traffic, which may
reduce the effectiveness of selective search.

This paper presents a query-biased partitioning strategy
that aligns document partitions with topics from query logs.
It focuses on two parts of the partitioning process: clustering
initialization and document similarity calculation. A query-
driven clustering initialization algorithm uses topics from
query logs to form cluster seeds. A query-biased similarity
metric favors terms that are important in query logs. Both
methods boost retrieval effectiveness, reduce variance, and
produce a more balanced distribution of shard sizes.
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1. INTRODUCTION
Selective search [9, 11] is a cluster-based distributed re-

trieval architecture that aims to reduce computational costs.
During indexing, it uses content-based similarity to partition
the document corpus into topical shards. At query time, a
resource selection algorithm [2, 12, 18, 19] selects (routes the
query to) the (typically few) shards likely to contain most of
the relevant docuents. The results from each selected shard
are merged to produce the search results. Prior research
shows that selective search reduces computational costs by
more than 80% without reducing search accuracy [9].

Selective search is based on the hypothesis that similar
documents are likely to be relevant to the same query; thus
for any query, only a few shards must be searched. Resource
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selection algorithms use term frequency information to de-
cide which shards probably contain documents relevant to
a given query [2, 12, 18, 19]. Prior research defined docu-
ments to be similar if their contents are similar, and used
LDA or k-means clustering to partition the corpus [9, 10, 11].
However, Dai et al. [6] showed that this strategy sometimes
places relevant documents in shards that are not topically re-
lated to the queries that make them relevant (unrepresenati-
tive shards). When relevant documents are placed in unrep-
resentative shards, the resource selection algorithm is more
likely to select the wrong shards, which reduces search accu-
racy. For example, most of the relevant documents for the
TREC query obama family tree are in a shard about peo-
ple names and genealogy but the highest ranked shards are
about U.S. politics. It suggests that topics of the content-
based partitions are not fully matched with user information
needs.

This paper investigates how to group together documents
that satisfy the same user intent. Query logs reflect topics
frequently queried by users, and are used to align the par-
titioning with user intents. This paper proposes a a query-
driven clustering initialization algorithm and a query-biased
similarity metric. The query-driven initialization algorithm
enables the clustering to start with topics distilled from the
query log, by using topics from the query log to initialize
the document clustering. The query-biased similarity met-
ric makes sure that clustering stays focused on topics from
the query log, by biasing towards important query log terms.

Experiments investigate the effectiveness of the proposed
approaches on selective search tasks with two large datasets:
Gov2 and the Category B portion of ClueWeb09 (CW09-B).
We observe significant improvements on selective search’s
retrieval effectiveness and stability over the previous state-
of-the-art with similar computational costs. The proposed
methods are especially effective at Recall-oriented tasks, which
are harder to improve because selective search only searches
a small part of the corpus. These methods also produce more
balanced shard sizes, which is important for load balancing
and managing query latency. Experiments show the meth-
ods’ robustness to the temporal mismatch between training
and testing queries, and the robustness to a key parameter.

The rest of the paper is structured as follows. First, Sec-
tion 2 positions the work with respect to prior work. The de-
tails about how to operationalize query-biased partitioning
are given in Sections 3 and 4. Section 5 describes the experi-
mental methodology. The experimental results are discussed
in Section 6. Finally, Section 7 concludes.



2. RELATED WORK
Cluster-based retrieval improves efficiency by clustering

the collection and selecting one or more clusters during query
processing. Traditional cluster-based retrieval partitions a
document corpus into many small clusters during indexing,
for example, O(

√
number of documents) clusters. The cor-

pus is stored in a single inverted index, with postings sorted
by cluster id. During retrieval, only the portions of inverted
lists for selected clusters are decompressed and processed.
Most of each posting list is skipped, which substantially re-
duced search costs [1]

Another direction to improve efficiency is distributed in-
formation retrieval. It reduces query latency by dividing a
large document corpus into small partitions (index shards)
that are placed on different machines and searched in par-
allel. The most common strategy partitions the corpus ran-
domly, which balances workloads.

Selective search combines ideas from traditional cluster-
based and distributed information retrieval. It clusters the
collection and store each cluster in a separate index. Given
a query, a resource selection algorithm such as ReDDE [18],
Rank-S [12] or Taily [2] selects which shards to search. Total
i/o costs are lower than with traditional cluster-based re-
trieval because selective search uses fewer and larger shards
so it is practical to store clusters in separate indexes. For
example, Kulkarni and Callan split 50 million documents
into 100 clusters of 500 thousand documents each [11]. To-
tal computational costs are lower than with traditional dis-
tributed retrieval because just a few index shards are searched
for any query [10, 2, 9, 11]. Simple strategies enable load to
be balanced evenly across a cluster of machines [8].

The key to effective selective search is how the document
corpus is partitioned into shards. The state-of-the-art is a
sample-based K-means clustering method [10]. First it per-
forms k-means clustering on a small sample of the collection.
Then it projects each remaining document into the nearest
cluster. The distance function is a symmetric version of neg-
ative Kullback-Liebler Divergence (KLD) that incorporates
the inverse collection frequency of the term into the metric.

Prior research showed that sample-based k-means pro-
duces partitions that are effective for most queries, but for
some queries relevant documents are in the ‘wrong’ shards [6].
For example, documents relevant to the query obama fam-

ily tree get placed in a names and genealogy shard instead
of the politics shard. In these cases, relevant documents are
placed with documents that are similar in content rather
than documents that answer the same query.

This paper investigates how to improve the sample-based
K-means partitioning by providing guidance from the query
log. Guidance about desired cluster properties can improve
clustering results. Constrained clustering instructs the algo-
rithm to keep specified instances in the same cluster (must
link) or in different clusters (must not link) [20]. Metric
learning learns a similarity function that minimizes the dis-
tances between data points that are known to be similar [21].
It is an open question whether these methods would improve
partitioning for selective search.

Query logs have been used to guide partitioning for cluster-
based architectures similar to selective search. Puppin et
al. [17] treat queries from the log as indexing terms, and rep-
resent documents by the queries that retrieved them from a
global index. If a document is not retrieved by any query
from the log, it is assigned to a default cluster. Poblete and

Baeza-Yates [16] also represent documents by the queries
that retrieved them. Clusters are produced by co-clustering
on a query-document matrix, and unretrieved documents
are assigned to a default cluster. In evaluations on different
datasets, these methods improved retrieval accuracy but as-
signed 52% of the documents to the default cluster [16, 17].
Poblete and Baeza-Yates argue that documents in the de-
fault cluster are low priority and can be assigned to a lower
tier of the index. This observation may be true if the query
log is comprehensive and query traffic does not change sud-
denly, however it was not evaluated experimentally.

Clustering initialization is another line of related research.
Algorithms such as k-means are somewhat sensitive to ini-
tialization conditions. Many clustering initialization meth-
ods have been proposed [4]. Often they start with an anal-
ysis of the content being clustered. Most prior research on
cluster-based and selective search ignored the effects of ini-
tial conditions on search accuracy.

3. QUERY-DRIVEN CLUSTERING
INITIALIZATION

The first step to improved partitioning is QInit, a query-
driven approach that initializes document clustering with
topics discovered from a query log.
QInit mines user topics from a query log by clustering

terms from the query log, with each word represented by its
word embedding. Word embeddings are learned by neural
network models that encode a word’s context information in
a continuous vector. They are very effective for measuring
semantic similarity between words [3, 14]. By clustering the
word embeddings of query log terms, semantically similar
terms are grouped together to represent user search topics.

We use cosine similarity to measure the distance between
terms’ embedding, and average-link agglomerative bottom-
up clustering to cluster terms. In the beginning, each word
vector starts in its own cluster. Pairs of clusters that min-
imize the average distance are merged successively. The
process stops when the number of clusters is reduced to
a pre-specified number K. Unlike k-means, agglomerative
clustering is deterministic, thus can reduce variance in the
partitioning process. Its time complexity is cubic to the
number of data points, but the number of frequent terms in
the query log is small and thus can be clustered efficiently.

The discovered user topics (term clusters) are used to ini-
tialize the document partitioning algorithm. For each term
cluster, we form a virtual document d0 that contains all
terms assigned to the term cluster. The weight of a term in
the virtual document d0 is defined using its importance in
the query log, as shown below.

wt,d0 = log(tft,Q + 1)× log

(
|D|
dft,D

+ 1

)
(1)

tft,Q is the term frequency of term t in the query log, |D|
is the number of documents in the corpus, and dft,D is the
number of documents containing term t.

The first component, log(tft,Q + 1), is the query-log TF
part. It reflects the term’s popularity in the query log, and
promotes the importance of terms frequently used by users
in search. The log function is used because term distribution
in the query log is very skewed. A few terms with very high
frequency in the query logs will dominate the clustering if
tft,Q is used directly.



Table 1: Examples of shards generated with QInit. The second column shows the terms in the initial cluster centroid with the highest
weight defined in Equation 1. The third column shows queries that have relevant document in the resulting shard.

Dataset ID Top Terms in Initial Seed Relevant Queries

CW09-B
1 wine, tea, coffee, smoking, alcohol, drink starbucks, quit smoking
2 animal, cock, bird, wild, egg, cat dinosaurs, arizona game and fish, moths,...

Gov2
1 tax, revenue, loans, business, bank, taxation reverse mortgages, timeshare resales, ...
2 diabetes, autism, obesity, arthritis, hypertension, celiac aspirin cancer prevention, embryonic stem cells, ...

Table 2: Notation.

t, d, c term, document, cluster
D the document corpus
~d feature vector of document
~c feature vector of cluster centroid
tft,d term frequency of t in document d
tft,Q term frequency of t in the query log
dft,D document frequency of term t in the corpus
wq(t) term t’s bias weight learned from query log

The second component, log
(
|D|

dft,D
+ 1
)

, is the inverted

document frequency in the collection (collection IDF). It is
used to demote terms that are too common in the corpus.
For example, “com” is a very common term in the web en-
vironment. Although users often use “com” to form queries,
few of them are actually searching for information about
“com”. The inverted document frequency component helps
to select terms that represent user topics.

These K virtual documents are then used as seeds to ini-
tialize the partition process, for example, the k-mean clus-
tering of documents [10].

Table 1 shows a few shards generated from K-means clus-
tering initialized by QInit. For each selected shard, we show
its seeds from the QInit algorithm, and queries that have
relevant documents in that shard. For example, the shard
initialized with ‘wine, tea, coffee, ...’ contains relevant docu-
ments of the query ‘starbucks’. The seeds demonstrate that
QInit can find semantically coherent topics from the query
log. The similarity between a shard’s seed and its relevant
queries suggests that the clustering process is guided by the
seeds and aligns document topics with query log topics.

4. QUERY-BIASED SIMILARITY METRIC
This section presents QKLD, a query-biased similarity met-

ric for document partitioning. QKLD addresses the mismatch
between corpus topics and user topics by biasing clustering
towards important query log terms. It is built upon the pre-
vious state-of-art similarity metric in selective search [11],
KLD, a symmetric negative Kullback-Leibler divergence based
similarity function.

In KLD, each document d is represented by a bag-of-word

vector ~d. The tth dimension of the vector corresponds to
tth term in the vocabulary. Each cluster c is represented by
its centroid ~c, the average of its documents’ vectors. The

similarity between a document ~d and a cluster ~c is:

simKLD(d, c) =
∑

t∈d
⋂

c

sKLD

(
~dt,~ct

)
(2)

where each term t that appears both in the document and

the cluster makes a similarity contribution sKLD(~dt,~ct) to
the total similarity.

This similarity function measures the similarity based on
the content of documents. Clustering with a content-based
similarity function reveals topics that are common in the
document corpus, but may not match the distribution of
topics in user’s queries [6]. We address this mismatch by
introducing a bias weight into the similarity metric:

simQKLD(~d,~c) =
∑

t∈d
⋂

c

(wq(t) + b)× sKLD

(
~dt,~ct

)
. (3)

Equation 3 assigns a weight wq(t) + b to each term to
reflect its importance in the query log. wq(t) is same as the
weight used in the QInit initialization algorithm in Equation
1:

wq(t) = log(tft,Q + 1)× log

(
|D|
dft,D

+ 1

)
. (4)

b is a positive smoothing parameter that controls the im-
portance of the bias weights. It enables terms that do not
appear in the query log to have non-zero weights. Thus,
document content plays a role in clustering, and documents
that do not contain query terms are handled naturally.
wq(t) biases QKLD clustering towards important query log

terms. Thus, QKLD favors terms that are not only important
in the document content, but also in the query log, with the
two parts balanced by b.

For the sKLD part, it follows KLD, and is defined as follows:

sKLD(~dt,~ct) = pc(t) log
pd(t)

λpB(t)
+ pd(t) log

pc(t)

λpB(t)
(5)

where λ is a smoothing parameter. pc(t) is the language
model of the cluster centroid c, which is the mean of its
documents’ vectors:

pc(t) =
1

|c|
∑
~d∈c

~dt (6)

where |c| is the number of documents in cluster c. pd(t) is the
document’s language model with Jelinek-Mercer smoothing:

pd(t) = (1− µ)~dt + µpB(t) (7)

where µ is the smoothing parameter. pB(t) is the back-
ground model of the collection:

pB(t) =
1

|D|
∑
~d∈D

~dt. (8)

It reflects global term statistics and behaves similarly to the
traditional inverse document frequency (IDF) statistic [22].

Finally, the document’s bag-of-word vector uses normal-
ized term frequency:

~dt =
tft,d∑
t′ tft′,d

. (9)



Table 3: Datasets and query sets. WT = TREC Web Track, TB
= TREC Terabyte Track.

Datasets CW09-B Gov2
Documents 50,220K 25,205K
Vocabulary 96M 39M
Total Queries 200 150
Query Sets WT 09-12 TB 04-06
Average Query Length 2.2 3.1

Table 4: Queries in the first 2 months of the AOL query logs.
AOL-All: all queries from the first 2 months; used for CW09-
B experiments. AOL-Gov2: the subset of AOL-All queries with
clicks on .gov and .us URLS; used for Gov2 experiments.

Dataset AOL-All AOL-Gov2
Queries 24,189,556 540,285
Queries after filtering 13,950,463 403,610
Terms (w/o numbers) 978,714 69,482
Terms after filtering 80,963 14,018

5. EXPERIMENTAL SETUP
Datasets: Experiments were conducted with two datasets

that have different sizes and characteristics: ClueWeb09-B
and Gov2. ClueWeb09-B (CW09-B) is the 50 million page
‘category B’ portion of the ClueWeb09 dataset1. Gov2 [5] is
25 million web pages from the US government web domains.
The queries for CW09-B were from the TREC 2009-2012
Web Tracks topics: 4 sets of 50 queries. The queries for
Gov2 were from TREC 2004-2006 Terrabyte Track topics: 3
sets of 50 queries. Summary statistics are given in Table 3.

Query Log: The proposed methods require a query log.
Our experiments used the AOL query log2. For CW09-B
the entire AOL query log (AOL-All) was used. For Gov2
we used the AOL-Gov2 subset: AOL queries with clicks on
‘.gov’ and ‘.us’ URLs. We also randomly sampled queries
from the last 1 month of each query log to create supple-
mental testing sets (3.5K queries for AOL-ALL, 1.5K queries
for AOL-Gov2). The supplementary testing sets were used
in an experiment that measures the overlap in documents
retrieved by exhaustive and selective search.

The query log was preprocessed to reduce noise. First,
we removed successive duplicate queries from the same user
because they belong to a single search activity, and URL
queries because selective search is the wrong solution for
navigational queries. Second, 418 Indri stopwords were re-
moved. Finally, we removed terms with low term frequency
in the query log or low document frequency in the corpus.
The term frequency distribution in the query log has a very
long tail: Over 91% of the terms appear less than 15 times
in AOL-All, and 80% of the terms in AOL-Gov2 appear less
than 5 times. A few hundred terms were removed due to
low corpus document frequency (df < 200). Tail terms were
filtered out because they are mainly misspellings and rare
terms that would introduce noise into the partitioning. The
preprocessing greatly reduced the vocabulary size, making

1http://lemurproject.org/clueweb09/
2Some reviewers question whether it is appropriate to use
the AOL query log; however it has been used by much prior
research and is widely available, which makes our results
reproducible. Experiments in Section 6.3.1 investigate the
sensitivity of the proposed methods to the query log.

it efficient to perform QKLD and QInit. Table 4 shows query
log statistics before and after preprocessing.

Word Embeddings: QInit performs term-level cluster-
ing with word embeddings. We used word vectors of 100 di-
mensions trained on a spam-filtered subset of CW09-B with
Mikolov’s Continuous Bag-of-Words Model (CBOW) [14,
15].

Baseline and Proposed Methods: As the baseline we
employed the partitioning technique proposed by Kulkarni
and Callan [11], the previous state-of-the-art in shard parti-
tioning. The baseline uses random seeding to initialize the
sample-based k-means clustering, and KLD similarity func-
tion (Equation 2) to assign documents. We refer to the base-
line as KLD-Rand. We compared three partitioning strategies
to the baseline: QKLD-Rand, KLD-QInit, and QKLD-QInit.
QKLD-Rand used the QKLD similarity metric (Equation 3) for
document allocation, and random seeds for clustering ini-
tialization. KLD-QInit used the baseline similarity metric,
but clustering was initialized with the new QInit algorithm
described in Section 3. QKLD-QInit used the query-biased
QKLD similarity function, and clustering was initialized with
the query-driven QInit algorithm.

As suggested by Kulkarni [9], we set KLD parameters λ =
0.1 and µ = 0.1 (Equations 5 and 7). The same values were
used in QKLD for consistency. The QKLD smoothing parameter
b (Equation 4) was chosen by a parameter sweep, and was
set as b = 1/16 for CW09-B and b = 1/8 for Gov2. The
sensitivity of QKLD to b is investigated in Section 6.3.2.

Following Kulkarni, all methods first cluster a 1% docu-
ment sample, then project the remaining documents into the
nearest cluster. A second level of clustering was performed
to split big shards. The number of clusters K was set to
produce shards of 500K documents on average for CW09-B,
as specified by Kulkarni. She used similar cluster sizes for
Gov2, however we found that smaller clusters were more ef-
fective. Our Gov2 experiments used clusters of about 170K
documents.

Search Engine Indexes: Each document partition was
indexed and searched by Indri3, a widely-used open-source
search engine. All parameter settings were Indri defaults,
which have been shown to be effective for these corpora.

Resource Selection: Rank-S, a state-of-the-art sample-
based resource selection algorithm, was used to select shards
for each query. We used a 1% central sample index (CSI),
as suggested by Kulkarni [9]. For consistency with previous
work [2, 11, 12], we chose a parameter B that on average
selected about 3% of CW09-B shards and 5% of Gov2 shards.

Queries: Unstructured bag-of-words queries were trans-
formed into more effective structured queries by sequential
dependence models (SDM) with parameters (0.8, 0.1, 0.1) [13].

Evaluation Methods: Each approach was evaluated by
its effect on search accuracy up to rank 1,000. Accuracy
was measured by standard metrics: Precision at rank 10
(P@10), Normalized Discounted Cumulative Gain at rank
100 (NDCG@100), and Mean Average Precision at rank
1,000 (MAP). One experiment also measured search qual-
ity by the overlap in results returned by exhaustive search
and selective search.

There are several random components in building a selec-
tive search system, such as random sampling and random
seeding in document partitioning. Rank-S also requires ran-

3http://lemurproject.org/indri/



dom sampling. In order to rule out random effects and eval-
uate system variance, we generated 10 independent system
instances for each partitioning strategy. Statistical signifi-
cance of model differences was judged by a query-level two-
sided paired permutation test with p < 0.05.

6. EXPERIMENTAL RESULTS
This section describes experiments that compare the pro-

posed QKLD-Rand and QKLD-QInit partitioning strategies to
the baseline KLD-Rand. First we analyze the distribution of
relevant documents across shards for each method to gain
intuition about each method’s effect on partitioning. Then
we investigate each method’s retrieval accuracy, robustness,
and efficiency. Collectively, they provide a detailed analysis
of how each method performs.

6.1 Clustering Analysis
The goal of query-biased partitioning is to better concen-

trate documents that are related to the same query. Concen-
trating the relevant documents for a query into few shards
makes resource selection easier, and enables good Recall
when only a few shards are searched. We begin by examin-
ing how well it achieves that goal.

We analyze the results of four partitioning strategies: The
baseline KLD similarity metric with random k-means initial-
ization (KLD-Rand); KLD similarity metric with Q-Init k-
means intialization (KLD-QInit); and QKLD similarity met-
ric with random k-means initialization (QKLD-Rand); QKLD

similarity metric with QInit k-means initialization (QKLD-
QInit).

Given query q, a relevance-based ranking sq is formed by
sorting shards by the number of relevant documents they
contain. The percentage of relevant documents contained in
the first t% of the shards is defined as:

coveraget(q) =

∑floor(N∗t%)
i=1 Rq

s
q
i

Rq
(10)

where Rq is the total number of relevant documents for
query q; Rq

s
q
i

is the number of relevant documents for query

q in the shard at position i in sq. The average coverage over
the query set is defined as shown below.

coveraget =

∑|Q|
q=1 coveraget(q)

|Q| . (11)

Table 5 reports the coverage for several common levels of
search effort, defined by the percentage of shards searched.
For both datasets and all partitioning methods, the coverage
is close to 100% at t = 10. That is, relevant documents
for most queries were concentrated in no more than 10% of
the shards. Indeed, on average more than half of a query’s
relevant documents are concentrated in no more than 1% of
shards. Such a skewed distribution allows selective search
to search only a few shards, which reduces search costs.
QKLD was a more effective similarity metric than KLD across

both datasets and both initialization methods. Weighting
terms by frequency in documents and a query log is superior
to weighting by frequency in documents alone. QKLD also
does not produce the large ‘default’ cluster observed with
other partitioning methods that use query logs [16, 17]; out
of vocabulary problems cannot occur when the similarity
metric considers document content.

Table 5: Relevant documents coverage of KLD-Rand, QKLD-Rand,
KLD-QInit, QKLD-QInit. * indicates statistically significant dif-
ference with KLD-Rand. Bold numbers indicate highest coverage
among the compared methods. CW09-B coverage is averaged
over 200 queries from WT09-12, Gov2 coverage is averaged over
150 queries from TB04-06.

Dataset Method
Percentage of Shards (t)
1% 3% 5% 10%

CW09-B
KLD-Rand 0.60 0.86 0.96 0.99
KLD-QInit 0.60 0.86 0.95 0.99
QKLD-Rand 0.65* 0.89 0.97 0.99
QKLD-QInit 0.67* 0.90* 0.97* 1.00

Gov2
KLD-Rand 0.50 0.86 0.95 0.99
KLD-QInit 0.50 0.86 0.95 0.99
QKLD-Rand 0.54* 0.89* 0.95 0.99
QKLD-QInit 0.56* 0.90* 0.96 0.99

Table 6: Published results for exhaustive search (Exh) and selec-
tive search (Sel). CW09-B Queries: 100 queries from 2009-2010.
Gov2 Queries: 150 queries from 2004-2006.

P@10 MAP
Dataset Source Exh. Sel. Exh. Sel.

CW09-B
[12] 0.27 0.30 0.18 0.16
[2] 0.29 0.31 0.20 0.15

Ours 0.29 0.31 0.19 0.16

Gov2
[12] 0.58 0.58 0.32 0.29
[2] 0.58 0.55 0.34 0.24

Ours 0.58 0.57 0.32 0.27

QInit cluster initialization was more effective than Rand

for the QKLD similarity metric, but not for KLD. QKLD’s query-
biased similarity function is consistent with QInit seeds.
The words in QInit seeds were likely to be given high weights
by the QKLD similarity function. Working together, they kept
the clustering focused on topics from the query log. On the
other hand, KLD’s similarity function only considers docu-
ment content, which may differ substantially from query log
content. The effects of the QInit seeds diminished quickly
during k-means iterations, causing KLD-QInit clustering to
converge to KLD-Rand behavior.

6.2 Search Effectiveness
Next we investigate the effects of QKLD-Rand and QKLD-

QInit on retrieval effectiveness. As discussed in Section 6.1,
KLD-QInit was no better than the baseline, so we omit it
from the following experiments.

We first show that our KLD-Rand baseline is trustworthy
by comparing our exhaustive search and baseline selective
search effectiveness with previously published results. Table
6 reports the the search effectiveness scores from Kulkarni
and Callan [11] and Aly et al. [2]. They partitioned collec-
tions with KLD-Rand, which is our baseline. Our baseline
results are also reported. To be consistent with prior work
[11, 2], CW09-B was evaluated with 100 queries from the
TREC 2009 and 2010 Web Track. (Later experiments in
this paper use 200 queries for CW09-B to improve reliabil-
ity.) As shown in Table 6, our baseline is similar to published
work and can be considered reliable.

Tables 7 and 8 report on the accuracy of selective search
using partitions of Gov2 and CW09-B produced by KLD-

Rand, QKLD-Rand, and QKLD-QInit, averaged across 10 sys-



Table 7: Retrieval accuracy of exhaustive search and three selective search methods on the CW09-B. Baseline: KLD-Rand. Mean and
standard deviation are calculated over 10 independent system instances. ‘All’ is the performance over all 200 queries from 2009-2012.
Percentage difference w.r.t. KLD-Rand are in round brackets. k indicates statistically significant difference with KLD-Rand. q indicates
statistically significant difference with QKLD-Rand. Bold numbers indicate smallest standard deviation among the compared methods.

a) P@10

Query Mean Standard Deviation (×10−3)
Set Exhaustive KLD-Rand QKLD-Rand QKLD-QInit KLD-Rand QKLD-Rand QKLD-QInit

2009 0.358 0.378 0.395(+4%) 0.397k(+5%) 18.47 24.07 14.64

2010 0.212 0.243 0.261k(+7%) 0.268k(+10%) 16.96 13.76 9.93

2011 0.234 0.259 0.258(−0%) 0.270k(+4%) 13.15 20.94 12.77

2012 0.208 0.220 0.223(+1%) 0.232k,q(+5%) 20.28 18.05 9.90

All 0.253 0.275 0.284k(+3%) 0.290k,q(+5%) 7.50 9.74 6.58

b) NDCG@100

Query Mean Standard Deviation (×10−3)
Set Exhaustive KLD-Rand QKLD-Rand QKLD-QInit KLD-Rand QKLD-Rand QKLD-QInit

2009 0.331 0.280 0.302k(+8%) 0.304k(+9%) 19.34 17.56 10.80

2010 0.252 0.246 0.266k(+8%) 0.276k(+12%) 13.09 7.05 4.42

2011 0.325 0.269 0.286k(+6%) 0.297k,q(+10%) 17.15 14.94 9.81

2012 0.235 0.219 0.240k(+9%) 0.243k(+10%) 13.58 12.18 6.51

All 0.286 0.254 0.273k(+7%) 0.279k(+10%) 9.92 5.39 5.07

c) MAP@1000

Query Mean Standard Deviation (×10−3)
Set Exhaustive KLD-Rand QKLD-Rand QKLD-QInit KLD-Rand QKLD-Rand QKLD-QInit

2009 0.197 0.162 0.183k(+13%) 0.187k(+15%) 14.78 12.21 10.88

2010 0.176 0.151 0.172k(+14%) 0.184k,q(+21%) 12.02 5.37 6.85

2011 0.196 0.156 0.165(+6%) 0.171k,q(+9%) 14.05 11.99 8.02

2012 0.174 0.149 0.167k(+12%) 0.169k(+13%) 9.54 7.39 4.16

All 0.186 0.155 0.172k(+11%) 0.178k,q(+15%) 8.77 3.75 5.22

Table 8: Retrieval performance of exhaustive search and three selective search methods on the Gov2. Baseline: KLD-Rand. Mean and
standard deviation are calculated over 10 independent system instances. ‘All’ is the performance over all 150 queries from 2004-2006.
Percentage difference w.r.t. KLD-Rand are in round brackets. k indicates statistically significant difference with KLD-Rand. q indicates
statistically significant difference with QKLD-Rand. Bold numbers indicate smallest standard deviation among the compared methods.

a) P@10

Query Mean Standard Deviation (×10−3)
Set Exhaustive KLD-Rand QKLD-Rand QKLD-QInit KLD-Rand QKLD-Rand QKLD-QInit

2004 0.561 0.570 0.570(+0%) 0.589k,q(+3%) 12.91 3.83 5.73

2005 0.616 0.592 0.603k(+2%) 0.612k(+3%) 11.59 11.77 8.78

2006 0.566 0.554 0.572k(+3%) 0.577k(+4%) 10.38 10.84 7.44

All 0.581 0.572 0.582k(+2%) 0.593k,q(+4%) 7.10 6.61 4.59

b) NDCG@100

Query Mean Standard Deviation (×10−3)
Set Exhaustive KLD-Rand QKLD-Rand QKLD-QInit KLD-Rand QKLD-Rand QKLD-QInit

2004 0.428 0.414 0.416(+0%) 0.428k,q(+3%) 7.77 1.73 3.59

2005 0.472 0.434 0.442k(+2%) 0.454k,q(+5%) 8.39 10.71 5.24

2006 0.470 0.430 0.444k(+3%) 0.447k(+4%) 12.03 7.51 5.71

All 0.457 0.426 0.434k(+2%) 0.443k,q(+4%) 5.72 3.82 2.65

c) MAP@1000

Query Mean Standard Deviation (×10−3)
Set Exhaustive KLD-Rand QKLD-Rand QKLD-QInit KLD-Rand QKLD-Rand QKLD-QInit

2004 0.284 0.256 0.256(+0%) 0.263k,q(+3%) 6.79 3.99 2.73

2005 0.331 0.284 0.295k(+4%) 0.303k,q(+7%) 3.80 5.31 5.07

2006 0.330 0.274 0.286k(+4%) 0.291k(+6%) 9.24 6.78 3.38

All 0.315 0.272 0.279k(+3%) 0.286k,q(+5%) 3.90 2.52 2.56



Table 9: Relative gains of QKLD-Rand and QKLD-QInit over KLD-
Rand at five points in the document ranking.

CW09-B Gov2
NDCG QKLD QKLD QKLD QKLD

@Rank -Rand -QInit -Rand -QInit

10 3.77% 5.70% 1.91% 4.22%
30 5.49% 6.69% 2.19% 4.97%

100 7.70% 10.03% 2.68% 4.42%
500 9.44% 12.37% 3.46% 5.58%

1000 9.87% 13.26% 4.29% 6.52%

tem instances for each dataset. ‘All’ represents evaluation
over all of the queries as a single set.

Partitions created by the QKLD similarity metric enabled
more accurate search than partitions created by KLD for both
datasets in almost every experimental condition; the differ-
ences were statistically significant for most of the conditions.
Partitions created by QKLD also produced more consistent
NDCG@100 and MAP@1000 (indicated by lower standard
deviation) across different system instances, but the effect
was less consistent for P@10. The QKLD query-biased simi-
larity metric produces partitions that make it easier for re-
source selection algorithms to select the right shards.

Initializing QKLD partitioning with QInit further improved
the effectiveness of selective search. The MAP@1000 gains
over the KLD-Rand baseline ranged from 10.8% to 22.9% for
CW09-B, and 5.2% to 7.0% for Gov2; the differences were all
statistically significant. Similar improvements were observed
for P@10 and NDCG@100. QInit initialization also pro-
duced consistent improvements on all metrics (indicated by
lower standard deviation) across different system instances.

Win/Loss Behavior: Each method’s risk was evaluated
by analyzing the number of queries that it improved (wins)
or hurt (losses) compared to KLD-Rand, using the mean of
MAP@1000 over 10 system instances. On CW09-B, 63% of
the 200 queries were improved by QKLD-Rand, and 68% were
improved by QKLD-QInit. On Gov2, the percentages were
60% for QKLD-Rand and 64% for QKLD-QInit. For both meth-
ods, more queries improve than deteriorate. QKLD-QInit im-
proved more and hurt fewer queries than QKLD-Rand.

Effects on Recall and Precision. Typically selective
search searches only a small part of a corpus, for example
3-5% of the shards. Thus, usually it is harder for a new
method to improve Recall than Precision. Here we discuss
the effects of QKLD-Rand and QKLD-QInit on different recall
levels. Table 9 shows the relative gains of QKLD-Rand and
QKLD-QInit over KLD-Rand on NDCG@rank at four recall
levels. NDCG scores at all depth were improved by both
methods; deeper depths achieved more gains.

In our experience, selective search rarely harms Precision.
As shown in Table 7, the P@10 of the selective search base-
line (KLD-Rand) was better than exhaustive search on CW09-
B. Selective search can improve Precision by filtering out
some of the false-positive documents – documents that are
highly ranked by exhaustive search but not topically relevant
to the query. The partitioning process separates some of the
false-positives from the true-positives, which improves Preci-
sion. QKLD and QInit had higher Precision than the baseline,
which shows their ability to separate false-positives that are
topically irrelevant but similar in content.

Usually Recall is harder to improve because searching

fewer shards misses documents that were assigned to other
shards. Often, maintaining Recall requires searching more
shards [11]. QKLD-Rand and QKLD-QInit increased NDCG1000
by a factor of 10 on CW09-B, and a factor of more than 5
on Gov2. Recall was improved because these partitioning
strategies cover more relevant documents with the first few
shards, as shown in Table 5.

6.3 Robustness
This section investigated the sensitivity of QKLD-Init and

QKLD-QInit to experimental conditions. It investigated the
effects of the temporal mismatch between the training and
testing queries, and the effects of a key parameter in QKLD.

6.3.1 Query Log Influences
The experiments above trained systems using the first

two months of the AOL query logs, and tested using TREC
queries. However, there is temporal mismatch between the
AOL queries used for training and the TREC queries used
for testing. The AOL query log was released in 2006. The
TREC Gov2 queries were created 2004-2006, and the TREC
CW09-B queries were created 2009-2012. The next experi-
ment investigated how temporal mismatch between training
and test conditions affects the performance of each method.

Two temporal conditions were compared. In the unaligned
condition, as in the experiments above, the AOL query log
was used for training, and TREC queries were used for test-
ing. In the aligned condition, different portions of the AOL
query log were used for training and testing; training was
done with queries from the first two months, and testing
was done with queries from the third month.

Relevance judgments are not available for AOL queries,
thus result set overlap was used to evaluate search qual-
ity. Overlap assumes that the goal is to replicate exhaustive
search, but with less effort [7].

It is defined as the agreement on documents retrieved by
two search methods at rank k:

overlapk =
|Dexh

k ∩Dsel
k |

k
(12)

where Dexh
k and Dsel

k are the top k documents retrieved by
exhaustive and selective search. High overlap is desired.

The overlap at ranks 10, 100, 500 and 1000 were exam-
ined using 10 system instances for each method. Results are
presented in Figure 1.

The important trends are consistent for the two condi-
tions: QKLD-Rand had higher overlap between selective search
and exhaustive search than the baseline, and QKLD-QInit

further increased overlap and reduced variance.
We observed two differences in the performance on the two

types of queries. First, TREC test queries produced greater
overlap than AOL test queries for all methods, including the
baseline. We believe that this is due to the higher quality of
TREC test queries, which do not contain urls, misspellings,
and other noise. Second, the relative improvement of QKLD

methods over KLD-Rand was slightly larger for the aligned
condition (13% aligned vs 10% unaligned for CW09-B; sim-
ilar results for Gov2). This difference is not surprising due
to the greater similarity of training and testing data under
the aligned condition. However, the difference is small and
probably not statistically significant.

We conclude that QKLD-Rand and QKLD-QInit are equally
effective under the aligned and unaligned conditions, and



Figure 1: The overlap between exhaustive search and selective search results. The X axis represents the depth in the ranking. Lines
show the average overlap of 10 selective search system instances with the exhaustive system. Error bars show the standard deviation
over 10 instances. (Best viewed in color).

Figure 2: Sensitivity of search accuracy to parameter b in the
query-biased similarity function (Equation 2). The vertical
lines show the values of b used in all of the other experiments.

thus not sensitive to the temporal mismatch between the
AOL query log and TREC queries. Using TREC queries
and AOL queries to evaluate the quality of partitions created
using AOL queries leads to the same conclusions.

6.3.2 Sensitivity to Parameter b
The key parameter in the QKLD similarity function (Equa-

tion 2) is b. We tested a range of values for b in order
to understand its sensitivity to this parameter. Figure 2
presents MAP@1000 for QKLD-Rand shards generated with

various values of b; X axis values are divided by 64 (e.g.,
1/64, 2/64, . . .). MAP was fairly stable for low-to-medium
ranges of b, with a large improvement compared to KLD-

Rand. The bias from the query log becomes weaker when
larger b is used. As a result, MAP starts to decrease when b
is too large, converging to KLD-Rand behavior. These results
demonstrate that the QKLD similarity function is not highly
sensitive to b.

We chose the value of b used in the experiments by select-
ing the value in the middle of the interval where MAP@1000
was relatively stable. The chosen values of b are marked
by vertical lines in Figure 2: b = 4/64 for CW09-B and
b = 8/64 for Gov2. As shown in the graph, MAP@1000 was
stable over a fairly wide range around the chosen b values.
These values of b were used in all of our other experiments
without additional tuning, to avoid overfitting.

6.4 Efficiency
Prior research shows that selective search is more efficient

than distributed search using random partitions [2, 8, 9, 10,
11]. The next experiment investigates whether query-biased
partitioning changes selective search efficiency.

We use an experimental methodology established by prior
research, which distributed the Gov2 and CW09-B collec-
tions across two 8-core machines [8, 9, 11]. For exhaustive
search, each machine core serves one index partition, thus
the documents are distributed randomly across 2 × 8 = 16
partitions. For selective search, each machine core can serve
multiple index partitions because just a few partitions are
searched for any query; in our experiments, each core serves
an average of 7 CW09-B shards or 12 Gov2 shards. Shards
can be assigned to machines randomly or by a load balancing
strategy [8]; the choice does not affect this experiment.

We use efficiency metrics proposed by Aly et al. [2]: CRES



Table 10: Search costs of four distributed search methods.
Search cost values are million documents evaluated per query.

CW09-B Gov2
CRES CLAT CRES CLAT

Exhaustive 5.24 0.33 2.89 0.18
KLD-Rand 0.53 0.24 0.39 0.11
QKLD-Rand 0.52 0.24 0.39 0.11
QKLD-QInit 0.52 0.23 0.38 0.11

and CLAT . CRES calculates resource usage as the upper
bound on the number of documents evaluated for query q:

CRES(q) = |Dq
CSI |+

T∑
i=1

|Dq
Si
|. (13)

CLAT calculates query latency as the number of evaluated
documents on the longest execution path for query q, as-
suming that shards are processed in parallel:

CLAT (q) = |Dq
CSI |+

Tq
max
i=1
|Dq

Si
|. (14)

|Dq
CSI | is the cost of the resource selection algorithm, cal-

culated as the number of documents in its Central Sampled
Index (CSI) that have at least one query term. |Dq

Si
| is

the number of documents in the ith shard selected for query
q that have at least one query term. Tq is the number of
shards selected for query q. We report average values of
CRES and CLAT over all queries on each dataset. Note that
these metrics consider the number of evaluated documents.
Another choice would be the number of query term postings
processed. Both choices lead to the same conclusions.

Table 10 compares the search costs of QKLD-Rand and
QKLD-QInit with the selective search baseline KLD-Rand. Ex-
haustive search results are shown for informational purposes,
but they are irrelevant to this experiment.
QKLD-Rand and QKLD-QInit partitioning produced query

latency (CLAT ) and total search (CRES) costs that are sim-
ilar to the costs for KLD-Rand partitioning. Although search
costs are slightly lower with QKLD-QInit partitioning, the
differences are not statistically significant. We conclude that
query-biased partitioning does not increase search costs.

Distribution of Shard Sizes: An even distribution of
shard sizes makes it easier to balance computational loads
across machines. KLD-Rand can produce an unbalanced dis-
tribution of shard sizes. For instance, most of the CW09-B
Wikipedia pages are placed in one shard, whose size is about
8 times larger than the average shard size. Even if another
round of clustering is used, the clustering algorithm may
find it difficult to split large clusters [11].

We investigated the effects of the query-biased partition-
ing on the distribution of shard sizes. Figure 3 compares the
shard size distributions produced by KLD-Rand and QKLD-

QInit during the first (Figure 3a) and second (Figure 3b)
levels of k-means clustering.

After the first level of clustering on CW09-B, about 10%
of the KLD-Rand shards were 2 times larger than the average-
sized shard and needed to be split. These shards contained
25% of all the documents. Only about 3% of the QKLD-

QInit shards needed to be split, containing only 7% of the
collection. Similar results were observed on Gov2.

After two levels of clustering, QKLD-QInit shards were
closer to the target size, with fewer too-small or too-big

(a) After the first level of clustering

(b) After the second level of clustering

Figure 3: Shard size distribution for shards created by KLD-

Rand and QKLD-QInit. The X axis indicates the shards
sorted by sizes. The Y axis represents shard size in number
of documents. Averaged across 10 system instances.

shards. On CW09-B the standard deviation of KLD-Rand

shard sizes is 1.8 million, and that of QKLD-QInit is 1.3 mil-
lion. QKLD-QInit also had a 30% smaller standard deviation
on Gov2 shards. Second round QKLD-QInit clustering costs
were substantially lower than second round KLD-Rand clus-
tering because fewer big clusters needed to be subdivided.

We conclude that query-biased clustering produces a more
even distribution of shard sizes. QKLD-QInit is slightly bet-
ter than KLD-Rand at avoiding clusters that are smaller than
desired, but the main effect is that QKLD-QInit avoids pro-
ducing most of the large clusters that KLD-Rand produces;
and, the large clusters that QLKD-QInit does produce are
easier to subdivide in a second round of clustering

7. CONCLUSIONS
This paper presents a query-biased method of partition-

ing a large document corpus for selective search. It intro-
duces QInit, a query-driven clustering initialization method,
to start the partitioning with topics that are important in
search traffic. QInit uses word embeddings to discover top-
ics in the query log and uses these topics as the seeds for
document clustering. It also introduces a query-driven simi-
larity metric, QKLD, that biases the clustering similarity met-
ric toward terms that are important in a query log.

Query-biased similarity produced partitions that delivered
significantly improved search accuracy compared to the pre-
vious state-of-the-art, even when clusters were seeded ran-
domly. When it was combined with the query-biased clus-
ter seeding, search accuracy was further improved. Accu-
racy was improved at low Recall (e.g., P@10), which is not
surprising; selective search typically does well at low Re-
call. However, accuracy also improved at higher Recall (e.g.,
NDCG@100 and MAP@1000), which has been difficult for
selective search architectures in the past.

Most selective search systems use KLD-Rand and other ele-



ments that introduce variance; different trials typically yield
somewhat different results. QKLD-QInit reduced by half the
variance of results obtained with different system instances,
making the selective search architecture more predictable.

The main advantage of selective search over distributed
search with random partitions is its efficiency. Query-biased
partitioning retains that efficiency, and is also less likely to
produce large index partitions that complicate load balanc-
ing and increase query latency.

Finally, query-biased clustering is not unduly sensitive to
experimental conditions or tuning. Improvements were ob-
served using training queries that were only loosely related
to the test queries. Closer alignment between training and
test queries provided a small gain in our experiments.

Query-biased partitioning improves the accuracy, stabil-
ity, and reliability of a selective search architecture. We be-
lieve that the QKLD query-biased similarity metric can also be
applied to resource selection, however that remains a topic
for future research.
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