
Unity: Accelerating DNN Training Through Joint Optimization of
Algebraic Transformations and Parallelization

Colin Unger†♠ Zhihao Jia‡♭♠ Wei Wu∗⋄ Sina Lin§ Mandeep Baines♭

Carlos Efrain Quintero Narvaez♭ Vinay Ramakrishnaiah∗ Nirmal Prajapati∗

Pat McCormick∗ Jamaludin Mohd-Yusof∗ Xi Luo♯ Dheevatsa Mudigere♭

Jongsoo Park♭ Misha Smelyanskiy♭ Alex Aiken†

Stanford University† Carnegie Mellon University‡ Los Alamos National Lab∗

NVIDIA⋄ Microsoft§ Meta♭ SLAC National Accelerator Laboratory♯

Abstract
This paper presents Unity, the first system that jointly op-
timizes algebraic transformations and parallelization in dis-
tributed DNN training. Unity represents both parallelization
and algebraic transformations as substitutions on a unified
parallel computation graph (PCG), which simultaneously ex-
presses the computation, parallelization, and communication
of a distributed DNN training procedure.

Optimizations, in the form of graph substitutions, are au-
tomatically generated given a list of operator specifications,
and are formally verified correct using an automated theorem
prover. Unity then uses a novel hierarchical search algorithm
to jointly optimize algebraic transformations and paralleliza-
tion while maintaining scalability. The combination of these
techniques provides a generic and extensible approach to op-
timizing distributed DNN training, capable of integrating new
DNN operators, parallelization strategies, and model architec-
tures with minimal manual effort.

We evaluate Unity on seven real-world DNNs running on
up to 192 GPUs on 32 nodes and show that Unity outperforms
existing DNN training frameworks by up to 3.6× while keep-
ing optimization times under 20 minutes. Unity is available
to use as part of the open-source DNN training framework
FlexFlow at https://github.com/flexflow/flexflow.

1 Introduction
Deep neural networks (DNNs) are becoming progressively
larger and computationally more expensive to train, and as
they have grown, so has interest in optimizing their execu-
tion to reduce training times and improve scalability. Two
key classes of optimizations shown to yield significant perfor-
mance improvements across diverse model architectures are
algebraic transformations and parallelization.

Algebraic transformations exploit operator identities to
perform the underlying computation in a more efficient way,
but ignore parallelization and distribution of training. Com-
mon examples of algebraic transformations include operator

♠ Contributed equally.

fusion, which merges two operators into a single semantically-
equivalent operator whose computation is more efficient, and
operator reordering, where the associativity or commutativity
of sets of operators allows them to be reordered into more
efficient configurations or to expose further optimization op-
portunities. More explanation of algebraic transformations,
along with examples, is provided in Section 2.2.

Parallelization, in contrast, distributes operators over mul-
tiple devices, but does not change the way in which the un-
derlying computation is performed. DNN training exploits a
class of parallelism named partition-n-reduce [59], in which
every distributed subcomputation of an operator must perform
the same computation, and may only differ in the input data
it consumes. The tensor computations in DNN training are
particularly well-suited to this form of parallelism, and many
parallelism dimensions along which to divide distributed op-
erators have been identified, such as data [6], model [13],
spatial [27], reduction [50], and pipeline [39]. For a detailed
overview of these various approaches, see Section 2.1.

When applied effectively, these two techniques can improve
training times by more than an order of magnitude. However,
effective application is nontrivial. Rewriting the computation
graph for maximum speedup can require many transforma-
tions, some of which may harm performance except in the
context of a longer sequence of transformations [26]. The
optimal parallel execution strategy for a model often requires
simultaneously exploiting multiple parallelization dimensions
and using different parallelization schemes for each opera-
tor [24]. Early work relied on the programmer to manually
determine the correct optimizations to apply [6]. While man-
ual optimization allows fine-grained control over the model’s
performance, it requires many hours of tuning by experts to
achieve good performance. As the pace of new developments
in model design has increased, manual optimization has strug-
gled to scale beyond the most commonly used models.

Recent work has focused on automating optimizations.
MetaFlow [26], TASO [25], and PET [58] propose algo-
rithms for automatically generating and applying algebraic
transformations by posing optimization as a search problem.

https://github.com/flexflow/flexflow

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

MatMul

ReLU

MatMul

ReLU

Input
Channels

(𝒄𝒊)

Batch
(𝒃)

Hidden
Dimension
(𝒉)

Input
Channels (𝒄𝒊)

Output
Channels (𝒄𝒐)Hidden

Dimension (𝒉)

Batch
(𝒃)

Hidden
Dim (𝒉)

Hidden
Rep.

Batch
(𝒃)

Output
Channels (𝒄𝒐)

Output

Weight 1Input

Weight 2

Figure 1: Computation graph for a 2-layer MLP.

FlexFlow [27], automap [48], Tofu [59], and Whale [23] bring
a similar approach to parallelism. These works present im-
pressive benchmarks, yielding the impression that automating
algebraic and parallelization optimization is a solved problem.

However, to reduce training time as much as possible, we
want to apply both of these optimizations, but the most ef-
fective way to combine algebraic and parallelization opti-
mizations is not obvious. The simplest solution is to apply
them independently, in one of two orders: algebraic optimiza-
tion followed by parallelization, or the reverse. The reverse
order turns out to be problematic: since algebraic transfor-
mations can introduce new operations or replace existing
ones, running algebraic optimization after parallelizations
have been assigned can lead to the final solution having op-
erations without assigned parallelizations (if the operation
was created) or invalid parallelizations (if the operation was
replaced). Workarounds can be used to fix invalid solutions by
using default parallelization strategies or copying the strate-
gies of nearby operators, but it is easy to find cases in which
these workarounds lead to suboptimal solutions. As such,
applying algebraic optimization before parallelization is the
only option, but as we see in the next example, it can miss
significant optimization opportunities.

Consider the computation graph shown in Figure 1, which
represents a 2-layer multilayer perceptron (MLP). If we are
optimizing independently (also referred to as “sequentially”),
we start by applying algebraic transformations without con-
sidering parallelism. A typical algebraic optimizer will fuse
the MatMul and ReLU operators to remove redundant memory
loads and stores. The model is then parallelized (we con-
sider only 2 GPUs for simplicity) resulting in Figure 2a: data
parallelism is used for both operators and thus the weight
gradients must be synchronized with an AllReduce. Since
weight 1 has size cih and weight 2 has size hco, the total com-
munication is 2(cih+ hco). Using a set of parameters for a
basic image classification model for MNIST (b= 64, h= 512,
co = 10, ci = 28×28 = 784) yields a total communication of
813,056d bytes, where d is the element size.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

MatMul +
ReLU

MatMul +
ReLU

𝒊

MatMul +
ReLU

MatMul +
ReLU

𝒊GPU 1 GPU 2

𝒐 𝒐

AllReduce
Required

(a) Sequential optimization.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ReLU

MatMul

ReLU

MatMul +
ReLU

𝒊

𝒊

AllReduce
Required

MatMul

MatMul +
ReLU

𝒊

𝒐𝒐

𝒐 𝒐

GPU 1 GPU 2

𝒊

(b) Joint optimization.

Figure 2: Comparing joint and sequential optimizations.

Instead of independently applying algebraic transforma-
tions and parallelization, we can combine them and solve a
single joint optimization problem that discovers the solution
in Figure 2b. By not fusing the first MatMul and ReLU, more
efficient reduction parallelism can be used. This requires syn-
chronizing the activation and gradient of the first MatMul’s
output, but not the weights: a total inter-GPU communication
of 4bh, or 131,072d bytes for our MNIST example. Joint op-
timization reduces communication by 6×, which far exceeds
the cost of not fusing the first ReLU.

As this example shows, joint optimization is necessary to
maximize performance. However, it also poses significant
challenges. The first is representation: existing frameworks
perform optimizations on a model’s computation graph. As
discussed above, algebraic transformations can leave oper-
ators in the computation graph with unassigned or invalid
parallelizations. To prevent such invalid solutions from aris-
ing during search, we need a representation that allows alge-
braic transformations to consider the current parallelization
before being applied. Further discussion of the representation
challenges is in Section 3.4.

The second challenge is scalability: existing search-based
approaches already struggle to scale up to large models and
GPU counts. Improvements have been made for algebraic
transformations alone [62], but the complexity of these solu-
tions makes adding parallelization a daunting task. Simultane-

ously considering both optimization classes only exacerbates
this problem by exponentially increasing the search space
size. For joint optimization to be practical, search algorithms
must improve on the scalability of past techniques.

1.1 Unity’s Approach
The key idea behind Unity is to represent both algebraic trans-
formations and parallelization as graph substitutions on a uni-
fied parallel computation graph, and then to use a hierarchical
search algorithm to efficiently identify which combination of
substitutions yields the best performance. Figure 3b shows an
overview of Unity, which differs from existing frameworks
in the following ways:

Unified graph representation. We introduce the parallel
computation graph (PCG)1 as a unified representation of
distributed DNN training that simultaneously expresses com-
putation, parallelism, and data movement. All parallelization
strategies used in existing frameworks can be represented as
specific PCGs, and parallelization and algebraic transforma-
tions as sequences of graph substitutions. pONNX [57] previ-
ously proposed merging computation and parallelism into a
single graph, but certain design decisions prevent Unity-style
joint optimization. For a detailed comparison, see Section 3.4.

Transformation generation and verification. Unity does
not require users to explicitly define possible parallelization
strategies for DNN training. Unlike prior work that automat-
ically generates parallelization strategies [59] or algebraic
transformations [25], by using the PCG Unity is able to gen-
erate both kinds of transformations with a single approach, as
well as hybrid algebraic-parallelization optimizations absent
in prior automated approaches. Automatically generating and
verifying transformations greatly reduces the engineering ef-
fort required to support different parallelism dimensions and
enables extensibility to new operators.

Joint optimization. Unity uses a hierarchical search algo-
rithm to discover highly optimized PCG substitutions and
device placements while maintaining scalability to models
with hundreds of operators distributed over hundreds of GPUs.
Unity’s cost model includes both computation and communi-
cation time, and the search algorithm handles custom network
topologies and heterogeneous compute devices. Despite the
exponentially larger search space being considered, Unity out-
performs existing search-based approaches (see Section 6).

The rest of this paper provides additional background (Sec-
tion 2), discusses Unity’s design and implementation (Sec-
tions 3, 4, and 5), and evaluates its performance on seven
real-world DNNs (Section 6). For widely-used DNNs highly
optimized by existing frameworks, such as BERT [14], Unity
matches the performance of existing expert-designed strate-
gies while being completely automated. For complex DNN

1To prevent ambiguity, we use the term computation graph strictly to
refer to the conventional computation graph used in prior work, and parallel
computation graph or PCG to refer to Unity’s new unified representation.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comp. Graph

Graph
Optimizer

Parallelization
Optimizer

Algebraic
Transformations

Parallelization
Strategies

Distributed
Runtime

(a) Existing approach.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comp. Graph

Joint
Optimizer

Parallel Comp.
Graph (PCG)

Operator
Specification

Substitution
Generator

Parallelization +
Algebraic

Transformations

Distributed
Runtime

(b) Unity’s approach.

Figure 3: Comparing existing DNN frameworks and Unity.

architectures with a mixture of compute- and communication-
intensive operators, such as DLRM [41] and CANDLE-
Uno [1], Unity is up to 3.6× faster than existing frameworks.

2 Background
We first provide a brief overview of the two classes of op-
timizations that Unity exploits, parallelization (Section 2.1)
and algebraic transformations (Section 2.2), as well as a dis-
cussion of how they are represented in existing systems (Sec-
tion 2.3). For a discussion of how Unity interacts with other
classes of optimizations, see Section 8.

2.1 Parallelization
The massively parallel nature of tensor algebra creates many
opportunities for parallelizing DNN training. We identify six
primary forms of parallelism leveraged in DNN systems:

1. Data parallelism is the most common approach used in
existing frameworks [6, 9, 42]. Data parallelism keeps a
replica of the entire DNN model on every device and as-
signs each a subset of the training data.

2. Model parallelism divides a DNN model into disjoint sub-
models and trains each sub-model on a dedicated device.

3. Spatial parallelism2 divides the spatial dimensions of a
tensor (e.g., the height and width of images) into mul-
tiple partitions, each of which is assigned to a specific
device [27]. Spatial parallelism often requires synchroniz-
ing the shared elements (e.g., the shared pixels along the
boundary of different sub-images) between devices.

4. Reduction parallelism exploits the linearity of tensor alge-
bra operators. For a matrix multiplication C = A×B, re-
duction parallelism splits A along its columns and B along
its rows as follows: A = [A1, . . . , An], B = [BT

1 , . . . , BT
n]

T

The matrix multiplication is distributed across n devices,
with the i-th device computing Ci = Ai ×Bi. An extra re-
duction afterward recovers the original result: C = ∑i Ci.

2Spatial parallelism was called attribute parallelism in [27].

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Input Weight

MatMul

ReLU

Output

Input Weight

MatMul
+ReLU

Output

(a) Basic operator fusion.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

InputWeight

Add

DWC 3×3

Weight

Output

DWC 3×3

WeightInput

DWC 3×3

Add

Weight

Output

(b) A more complex algebraic transformation.

Figure 4: Example algebraic transformations. DWC stands for
DepthwiseConv (i.e., depth-wise separable convolution).

5. Pipeline parallelism exploits the opportunity to parallelize
across different training iterations [39].

6. Operator-specific parallelism. The introduction of new
DNN operators provides operator-specific parallelization
opportunities. For example, the following equation shows
the batched matrix multiplication used in Transformer [54]:
output(s,h,o) = ∑i input(s,h, i)×weight(h,o, i). This dif-
fers from typical matrix multiplication in that it applies a
different weight for each input sample. As a result, these
batched matrix multiplications across attention heads can
be run in parallel (i.e., the h dimension) without any tensor
replication or synchronization.

Most parallelizations are not pure performance optimiza-
tions, but are instead trade-offs among different cost metrics.
For example, applying data parallelism reduces per-device
computation time at the cost of increased memory usage and
data movement for storing and synchronizing model parame-
ters. Thus, DNN operators typically require a combination of
these forms of parallelism to achieve optimal performance.

2.2 Algebraic Transformations
Algebraic transformations are very diverse and are not as
easily categorized as the forms of parallelism, so we instead
provide examples. For a more comprehensive exploration of
algebraic transformations, see [25].

The most basic algebraic transformation is operator fusion,
shown in Figure 4a. Unfused, the device needs to load and
store activations to and from memory twice, once before and
after each operator. If the two operators are fused, however,
the combined kernel can compute the ReLU operation as it
stores the outputs of the MatMul back to memory.

For a more complex example, see Figure 4b. By exploiting
DepthwiseConv’s linearity, a computation that previously
required two DepthwiseConv operations now only requires
one plus an additional Add, effectively halving the amount of
computation needed.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University
Out

Concat

 𝑾𝟑 𝑾𝟒

 𝑰𝟏
 𝑾𝟏

DWC 3×3

 𝑰𝟐
 𝑾𝟐

DWC 5×5

0-pad 5×5

Out

 𝑾𝟑 𝑾𝟒

 𝑰𝟏
 𝑾𝟏

DWC 5×5

 𝑰𝟐
 𝑾𝟐

DWC 5×5

Out

 𝑾𝟑 𝑾𝟒

 𝑰𝟐 𝑰𝟏
0-pad 5×5

 𝑾𝟐

 𝑾𝟏

ConcatConcat

Concat

1

2

3

Add

Out

 𝑾𝟒

Conv 1×1

 𝑰𝟏
 𝑾𝟏

DWC 3×3

Conv 1×1

 𝑰𝟐
 𝑾𝟐

DWC 5×5 𝑾𝟑

Concat

Conv 1×1

Conv 1×1Conv 1×1

DWC 5×5

Concat

Concat

Figure 5: Compositions of small algebraic transformations
can lead to significant changes.

Small algebraic transformations can be composed to cre-
ate large changes. Consider the sequence of transformations
shown in Figure 5: while each individual transformation is
relatively small, the final output is radically different from
the original computation graph. Also, notice that not all per-
formance gains are realizable in a single transformation: for
example, moving from graph 2 to graph 4 reduces the amount
of computation by reducing the number of DepthwiseConv
operations performed, but it is first necessary to pass through
graph 3 which performs worse than either graph 2 or 4.

2.3 Intermediate Representations
Most existing optimizing frameworks represent a DNN archi-
tecture as a computation graph3: a node is a mathematical
tensor operator (e.g., matrix multiplication, etc.), and an edge
is a tensor (i.e., n-dimensional array) passed between opera-
tors. An example computation graph is shown in Figure 6a.
Algebraic transformations are performed by iteratively ap-
plying graph substitutions, and the model is parallelized by
assigning each node a set of parallelism annotations.

This representation has two limitations. First, while using
distinct representations for algebraic transformations (i.e.,
graph substitutions) and parallelization (i.e., node annotations)
is convenient, it hinders joint optimization. The key issue
is that algebraic transformations can add or replace nodes
in the graph, while parallelization views the computation
graph as static and thus cannot handle these newly-created,
unannotated nodes. This prevents interleaving the two search
algorithms, since at any time a substitution can transform a
valid parallelization into an invalid one.

Second, a computation graph does not explicitly capture

3Alternative representations are discussed in Section 3.4 and Section 7.

MatMul

A B

Output

MatMul

CData
Parallelism

Model
Parallelism

(a) Computation graph.

MatMul

A

Output

Partition

Reduce

MatMul

C

Replicate

B

Partition

(b) Parallel computation graph.

Figure 6: Comparing computation graph and PCG. Both
graphs describe the same parallelization of two consecutive
matrix multiplications (A×B)×C (a simplified form of at-
tention). The green and orange boxes denote regular DNN
operators and Unity’s new parallelization operators (see Sec-
tion 3.3) respectively.

the communication costs associated with parallelism. This ab-
sence makes it difficult for algebraic transformations to reason
about the impact on the performance of the final model.

3 Parallel Computation Graph

To solve the shortcomings of the existing model represen-
tations described in Section 2.3, we introduce the parallel
computation graph (PCG) as a unified representation of dis-
tributed DNN training that is capable of simultaneously ex-
pressing computation, parallelism, and communication. The
PCG allows Unity to consider both algebraic transformations
and parallelization as graph substitutions on a common graph.
While the PCG is not the first to merge computation and
parallelization into a single graph, the PCG is tailored for
optimization and as such differs from prior unified graph rep-
resentations in key aspects, which we discuss in Section 3.4.

PCGs extend the existing computation graph representa-
tion by allowing nodes to represent changes in parallelization
in addition to mathematical tensor operations, and edges to
represent distributed movement of tensor data in addition to
data dependence. A set of parallelization operators are added
that allow PCGs to express all existing parallelization strate-
gies and provide an explicit representation of data movement
and its associated costs during training. Additionally, each
operator in a PCG is associated with a machine mapping,
denoting how the execution of the operator is mapped to indi-
vidual processors in a parallel machine. Figure 6b shows an
example of a PCG.

Sections 3.1, 3.2, and 3.3 provide a brief description of the
tensor representation, machine mappings, and parallelization
operators, respectively. Finally, Section 3.4 discusses the de-
sign decisions that make the PCG uniquely suited for joint
optimization, and how it differs from alternative unified graph
representations.

CPU

GPU
1

GPU
2

GPU
3

CPU

GPU
4

GPU
5

GPU
6

Netw
ork

(a) Hardware Architecture.

1 2 N

Data Parallelism

…

(b) 1-D Mapping.

1
2
3
4
5
6 N

M
od

el
 P

ar
al

le
lis

m

Data Parallelism

…

…

7

(c) 2-D Mapping.

1
2
3

4
5
6 N

M
od

el
 P

ar
al

le
lis

m

Data Parallelism

…

Reductio
n

Parallelism

(d) 3-D Mapping.

Figure 7: Example machine mapping for a compute node in
our evaluation. (a) shows the node’s hardware architecture,
where and orange and grey arrows denote NVLink and X-Bus.
Numbers in mapping examples denote GPU ids.

3.1 Tensor Representation
Unity models tensors as a set of data dimensions, each of
which has two fields: a size and a degree. The degree field
specifies the number of partitions the tensor has been divided
into along that dimension. Every tensor also includes a special
replica dimension, which represents the number of replicas
of that tensor’s data.

3.2 Machine Mappings
Each operator in a PCG is associated with a machine mapping,
an n-dimensional array of devices/processors that specifies on
which device to run each piece of the operator’s computation.
More formally, given an operator and a set of n applicable
parallel dimensions with degrees d1, . . . ,dn, Unity divides
the operator into d1 ×d2 × . . .×dn parallel tasks, which we
reference with tuple indices of the form (i1, . . . , in) where
0 ≤ ik < dk. A machine mapping is a map from task indices
(i1, . . . , in) to individual GPUs that will be used to run that
parallel task. For convenience, we also define the machine
mapping of an entire PCG to be the set of machine mappings
of each of its constituent operators.

Figure 7 shows some example machine mappings for the
Summit compute nodes [55] used in our evaluation. The hard-
ware architecture is depicted in Figure 7a. Figure 7b shows a
basic 1-D machine mapping for data parallelism, while Fig-
ure 7c shows a 2-D machine mapping of a hybrid paralleliza-
tion strategy combining data and model parallelism, where
model parallelism is applied across GPUs within the same
compute node and data parallelism across distinct compute
nodes. Figure 7d shows a 3-D machine mapping where we
apply model parallelism across GPUs attached to the same

Partition Combine

(a) Partition/Combine.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Replicate Reduce

(b) Replicate/Reduce.

Pipeline Batch

(c) Pipeline/Batch.

Partition Combine

Replicate Reduce

(d) Hybrid Parallelization.

Figure 8: Parallelization operators in Unity.

CPU, reduction parallelism across GPUs attached to different
CPUs but on the same compute node, and data parallelism
across different compute nodes.

Unity includes a comprehensive set of machine mappings
that capture effective usages of a parallel machine. In addition,
developers can register custom machine mappings tailored to
specific hardware architectures. For example, when node pairs
in a cluster have different network bandwidths and latencies,
an extra dimension can be added to the existing machine
mappings to represent node-level locality.

Machine mappings provide two key desirable properties:
expressiveness and scalability. All effective distributions of
parallel tasks in a PCG can be captured in just a few machine
mappings, and complex features of a machine’s hardware ar-
chitecture can be easily leveraged through adding additional
machine mappings. Machine mappings also allow Unity to
capture all effective device assignments while remaining lin-
ear in the number of devices and aid Unity’s search algorithm
by removing inefficient assignments from consideration.

3.3 Parallelization Operators
Unity uses six parallelization operators to capture the com-
putation and communication costs associated with different
parallelization strategies. These six are further divided into
three pairs, where one operator is the “back propagation” of
the other (e.g., when back propagation is done on Partition
it becomes semantically equivalent to Combine, and the same
in reverse). The three pairs are:

1. Partition and Combine: Partition and Combine change
a tensor’s degree of parallelism. More specifically,
Partition increases the parallelism degree of a tensor
dimension by splitting the dimension into multiple equal-
sized partitions, as shown in Figure 8a. Combine performs
the reverse: reducing a tensor’s degree of parallelism by
concatenating multiple partitions into one.

2. Replicate and Reduce: Replicate and Reduce control the
parallelism degree of the replica dimension by copying and
summing tensors, as shown in Figure 8b. Parameter syn-
chronization is naturally captured as the back propagation
of Replicate operations applied to weight tensors.

3. Pipeline and Batch: Pipeline splits a tensor dimension
into equal size partitions and processes one partition at
a time, while Batch aggregates tensors across iterations
(see Figure 8c). Note that Pipeline does not modify the
parallelism degree of a tensor dimension, but instead re-
duce its size.

As a basic demonstration of the PCG’s expressiveness, Fig-
ure 9 illustrates how Unity’s six parallelization operators can
represent some example parallelization strategies from Sec-
tion 2.1. These parallelization operators can also be composed
to create hybrid parallelism. Figure 8d shows an example that
applies Replicate and Partition on the same tensor di-
mension, replicating the tensor and partitioning each replica.
To improve efficiency, Unity replaces particular sequences of
parallelization operators with fused versions at run time (e.g.,
a Reduce followed by a Replicate can be implemented as
an AllReduce).

3.4 Discussion and Comparison
Unity’s decision to use the PCG instead of an annotated com-
putation graph is driven by how easily the representations
lend themselves to joint search and not a fundamental limi-
tation of annotated computation graphs. Theoretically, there
exist annotation languages isomorphic to the PCG, but at-
tempts to design such a language quickly lead to a number of
difficulties.

First, because each operator can use different forms of
parallelism, including operator-specific forms of parallelism,
the number of annotations quickly grows prohibitively large.
Which annotations are supported by which operators, along
with their semantics and composition, must then be baked
into the representation itself. By comparison, Unity’s PCG
moves this knowledge into the PCG substitutions, which are
generated automatically. This separation of concerns makes
the core of Unity simpler and easier to maintain.

Second, not explicitly representing communication forces
communication patterns along dataflow edges to be recon-
structed from their source and destination node annotations,
which is difficult due to the expressive forms of parallelism
Unity considers. Specifically, supporting n parallelism dimen-
sions requires considering up to 2n different subsets of these
dimensions and thus 2n ×2n = 4n potential communication
patterns between operators. Unity explicitly represents com-
munication patterns throughout search, obviating the need for
a complex analysis to reconstruct them. Representing these
patterns via a small set of parallelization operators also allows
Unity to easily recognize and optimize common communica-
tion patterns, such as executing a pair of Reduce-Replicate

operators as an AllReduce. In an annotated computation
graph, these optimizations become entangled with the code
for reconstructing the communication patterns themselves,
adding significant complexity and implementation effort.

Finally, jointly optimizing an annotated computation graph
is challenging, as algebraic transformations can introduce new
operators which, since they have not yet been parallelized,
lack annotations. As such, the internal representation becomes
underspecified and the cost becomes undefined. It is possible
to add an additional mechanism to “fill in” these missing anno-
tations such as inserting a random annotation, a fixed value, a
value from a neighboring node (though this becomes challeng-
ing when neighboring nodes have differing parallelizations),
or evaluating the valid parallelizations and choosing the best
one. However, Unity’s PCG avoids this additional complex-
ity by representing each parallelization strategy for the new
operator as one or multiple PCG substitutions, offering an
efficient and uniform approach to joint optimization.

pONNX. Unity is not the first to integrate computation and
parallelism into a single graph: pONNX [57] proposed do-
ing so using Split, Concat, and custom operators Send and
Recv. However, Unity focuses on optimization while pONNX
is designed as a serialization format, leading to critical differ-
ences.

First, an operator in pONNX with a parallelism degree of n
is duplicated n times, requiring an optimizer to reconstruct the
operator from multiple nodes. Unity simply adds a parallelism
operator so the operator remains a single node in a PCG.

Second, pONNX assigns every communication its own
Send/Recv node, which dramatically increases the size of
the graph. Since communication patterns in DNN training
are highly regular, Unity eschews materializing every com-
munication in favor of optimizing communication patterns
(e.g., Reduce, Replicate, etc.), which allows Unity to repre-
sent communication costs without reasoning about individual
communications.

Finally, pONNX makes device placement part of the opera-
tor, while Unity represents it separately as a machine mapping.
This allows Unity’s search to optimize device assignments
separately and to ignore the symmetries created by a large
number of compute devices with identical capabilities.

Additional unified representations have been proposed [47,
48], which are discussed in Section 7.

4 Graph Substitutions
Since Unity represents both algebraic transformations and par-
allelization as graph substitutions, the effectiveness of joint
optimization relies on having an appropriate set of graph sub-
stitutions. The number of potential substitutions increases
exponentially with size, so Unity represents large and com-
plex algebraic transformations and parallelization strategies
as compositions of small PCG substitutions. For example,
Figure 10 shows the sequence of substitutions for the hand-
tuned parallelization strategy used in Megatron-LM [50].

Batch MM

Input Weight

Output

Partition
(dim = s) Replicate

Combine
(dim = s)

(a) Data/Sample.

Batch MM

Input Weight

Output

Partition
(dim = i)

Partition
(dim = i)

Reduce

(b) Reduction.

Batch MM

Input Weight

Output

Pipeline
(dim = s)

Batch
(dim = s)

(c) Pipeline.

Figure 9: Representing different parallelization strategies for
batched matrix multiplication with a PCG. s, i, o, and h indi-
cate the sample, input channel, output channel, and attention
head dimensions, respectively.

Substitution generation. To reduce the engineering effort
to support new parallelization strategies, Unity automatically
generates and formally verifies all valid PCG substitutions up
to a fixed size to serve as a “basis set” from which the search
algorithm can construct sophisticated optimizations. This also
allows Unity to not only automatically discover algebraic
transformations and parallelization strategies, but also to find
novel hybrids of the two missed by prior approaches. To do
so, Unity adopts TASO’s super-optimization approach [25].

As in TASO, Unity discovers substitutions in two steps:
first it uses a fast heuristic to identify candidate substitutions,
and then it uses a more expensive formal verification to ensure
correctness. To find candidate substitutions, Unity enumerates
all possible PCGs up to a fixed size. Note that this fixed size
does not limit the size of the transformations Unity can apply,
as many larger substitutions are compositions of smaller ones.

For each generated PCG, Unity computes a fingerprint: a
hash of the PCG’s output tensors generated by evaluating
the PCG on some fixed input tensors. To allow Unity to ac-
count for parallelization, we extend the fingerprint function
in TASO [25] to include the parallelism degree of each tensor
dimension. A pair of PCGs is considered a candidate substitu-
tion if both PCGs have an identical fingerprint. The addition
of parallelism causes Unity to discover 651 new candidate
substitutions beyond the 743 previously identified by TASO.

Substitution verification. Similar to TASO, Unity formally
verifies the new substitutions using an automated theorem
prover (Z3 [12] in our implementation). Operator specifi-
cations are provided in first-order logic, where an operator
is represented as a function of its inputs and configuration
parameters. For example, Reduce(d,x) defines a Reduce op-
erator with input x and parallelism degree d. The fact that
Reduce commutes with matrix multiplication is captured by
the following operator property (where Replicate(d,y) rep-
resents a Replicate with input y and parallelism degree d):

∀d,x,y. Matmul(Reduce(d,x),y) =

Reduce(d,Matmul(x,Replicate(d,y)))

Partition
(dim = h)

Partition
(dim = h)

Combine
(dim = h)

Batch MM

Softmax

Batch MM

Key Query

Value

Partition
(dim = h)

Partition
(dim = h)

Combine
(dim = h)

MatMul
Weight

Batch MM

Softmax

Batch MM

Key Query

Value

MatMul

Weight

Batch MM

Softmax

Batch MM

Key Query

Value

Partition
(dim = h)

Partition
(dim = h)

MatMul
Weight

Combine
(dim = h)

Batch MM

Softmax

Batch MM

Key Query

Partition
(dim = h)

Partition
(dim = h)

MatMul

Attention-Head
Parallelism

Operator
Associativity

Query

Partition
(dim = h)

Combine
(dim = h)

Weight

Attention-Head
Parallelism

Batch MM

Softmax

Key Query

Partition
(dim = h)

Partition
(dim = h)

Query

Partition
(dim = 2)

Batch MM

MatMul

Combine
(dim = h)

Weight

Partition
(dim = i)

Reduction
Parallelism

Reduce

(b)(a) (c) (d) (e)

Figure 10: Representing the hand-tuned parallelization strategies used in Megatron-LM [50] as a sequence of basic graph
substitutions in Unity. BatchMM and MatMul are batched and regular matrix multiplications, respectively. Each arrow denotes
a graph substitution, where the dotted subgraphs in the same color are the source and target graph of the substitution. For
Partition and Combine, the parentheses indicate the data dimension for which they are performed.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ReLU

Input

Output

ReLU

Input

Output
Partition

(dim = row)

Combine
(dim = row)

(a)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Input 1

Add

Input 2

Replicate

Output

Input 1

Concat

Input 2

Reduce

Replicate

Output

(b)

Figure 11: Substitution (a) shows that spatial parallelism
is valid for ReLU. Substitution (b) demonstrates a hybrid
algebraic-parallel transformation: transforming an Add into a
Concat followed by a Reduce allows Unity to use the more
efficient AllReduce communication pattern.

We follow TASO’s methodology for developing operators’
parallelization properties: we attempt to formally verify all
candidate substitutions using Z3, and when a substitution can-
not be verified but is correct, we add the missing operator
properties. This procedure was repeated until all 651 new
substitutions discovered by Unity were verified. Overall, we
introduced 33 operator properties in addition to the 43 proper-
ties from TASO [25, Table 2] to verify all PCG substitutions.

Combined, the substitution generation and verification pro-
cess takes a total of 30 minutes. Since the available substitu-
tions only change on the addition of new operators or forms of
parallelism, this process can be run entirely offline so as not to
impact the execution time of Unity’s joint search algorithm.

Example Substitutions. Most new substitutions generated
by Unity simply state the parallelism valid for an operator. For
instance, the substitution in Figure 11a indicates that ReLU

supports spatial parallelism in the row dimension. However,
combining algebraic transformations and parallelization also
yields novel hybrids, such as the example shown in Figure 11b,
where Unity identifies that an Add operator is equivalent to a
Concat followed by a Reduce. In the left PCG, when Input
1 and Input 2 are located on separate devices and Output
is required to be replicated across those same devices, Input
1 and Input 2 would have to be sent to and from a single
device to be added. By applying this transformation, Unity
is able to merge the input tensors into a single distributed
tensor through a Concat (which moves no data) and replace
the communication with a Reduce followed by a Replicate
(which is implemented as an AllReduce).

5 Joint Optimization
This section describes Unity’s search algorithm for jointly
optimizing algebraic transformations and parallelization. The
core problem is as follows: given a PCG (Section 3), a set of
operator-level machine mappings (Section 3.2), and a set of
PCG substitutions (Section 4), find (1) a sequence of PCG
substitutions and (2) a machine mapping for the resulting
PCG that minimize the per-iteration training time. A key
challenge is the exponentially larger search space created by
unifying algebraic transformations and parallelization. The
search must also scale to both complex DNNs (i.e., a large
input PCG) and large numbers of compute devices (i.e., a
large set of operator-level machine mappings).

Unity uses a three-level hierarchical search algorithm, de-
picted in Figure 12. In simplified form, Unity breaks an input
PCG into subgraphs, determines an optimized sequence of
substitutions for each subgraph (which requires determining
the optimized machine mapping for each candidate), and then

Machine
Mapping

⁞
+

Optimized
PCG

Input
PCG

Graph Splitting (5.3)

Substitution
Selection (5.1)

Substitution
Selection (5.1)

…

Machine
Mapping
Selection

(5.2)

… …
⁞⁞

⁞
+

⁞
+

Machine
Mapping
Selection

(5.2)

Machine
Mapping
Selection

(5.2)

Machine
Mapping
Selection

(5.2)

Figure 12: High-level depiction of Unity’s hierarchical search.

combines these sub-solutions to produce the final output. This
allows Unity to scale to DNNs with over 300 operators and
machines with 192 GPUs while keeping search times below
20 minutes, which is negligible compared to the hours or days
needed to train modern DNNs.

In the following section, we provide a more detailed
description of Unity’s search algorithm. Sections 5.1, 5.2,
and 5.3 describe the three levels of Unity’s search algorithm,
starting from the middle layer (substitution selection), then
the lowest (machine mapping selection), and finally introduc-
ing the highest level (graph splitting) as an optimization to
help Unity scale to large DNNs. Afterward, we briefly address
Unity’s cost estimation and how the search algorithm can be
tweaked to integrate pipeline parallelism.

5.1 Substitution Selection
Unity uses the cost-based backtracking search algorithm from
TASO [25] to identify a sequence of substitutions that mini-
mizes the execution time of an input PCG. Unity maintains a
queue of candidate PCGs sorted by their execution times, and
until the queue is emptied or a fixed budget is exceeded, Unity
iteratively removes the best candidate from the queue and
uses it to generate new candidates by applying every available
substitution at every location in the PCG whenever applicable.
Candidate PCGs with execution times that are a threshold
factor times worse than the best candidate PCG seen so far
are pruned, while the rest are inserted into the queue. The
threshold factor allows the user to balance the search time and
amount of exploration. In our experiments, we use a threshold
factor of 1.05.4

This algorithm allows Unity to explore arbitrary sequences
of substitutions, but requires an accurate cost estimator to
evaluate the execution time of each candidate PCG. Since a
PCG contains only the parallelization of each operator but not
the devices to which it is assigned (i.e., the machine mapping),
this cost estimator must first determine an optimized machine
mapping. An efficient algorithm must be used to identify this

4This specific value was chosen to match [25].

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Conv 1×1

Output

1

2

ReLU

Gr. Conv 3×3

6

7ReLU

Gr. Conv 1×1
5

4

3

Combine

Add

Input

Partition

ReLU

Conv 1×1

8

9

ReLU
0

Figure 13: Applying sequence and parallel graph splits on a
data-parallel ResNeXt module. Horizontal and vertical dotted
lines refer to sequence and parallel splits, respectively, and
numbers indicate the order they are applied.

mapping, as the cost estimator is called for every candidate
PCG. Section 5.2 introduces our algorithm to find optimized
machine mappings.

5.2 Finding Optimized Machine Mappings
The lowest level of Unity’s search algorithm identifies the
optimized machine mapping for a candidate PCG. The key
observation behind this level is that most modern DNN archi-
tectures consist of linear chains of independent strands of par-
allel computation. For example, ResNeXt [19] is built around
two parallel strands of convolutions (see Figure 13), which are
repeated to form the final model. Unity leverages this structure
by recursively decomposing these linear chains and parallel
strands into independent subgraphs through sequence and par-
allel graph splits respectively. Figure 13 demonstrates how
sequence and parallel graph splits can be iteratively applied to
decompose a ResNeXt module into recursive sub-problems
which can be solved via dynamic programming.

A sequence graph split partitions an input PCG G by find-
ing a postdominator node n, such that all paths from the inputs
to the outputs of G go through n. This post-dominator node
splits G into two disjoint subgraphs G1 and G2. Since all of
G2 depends on n, and n depends on all of G1, every operator
in G1 must complete before any in G2 can start. This reduces
the task of finding an optimized machine mapping for G to
optimizing machine mappings for G1, G2, and n. For example,
for split 1 in Figure 13, assuming no other splits (such as 0)
had already been applied, n would be the Add node, G1 would
be all the nodes from Input up to but not including Add, and
G2 would be all the nodes after the Add until Output.

A parallel graph split partitions a PCG G into independent
subgraphs whose computations can be performed in parallel.
In this case, Unity considers two potential ways of running the
sides G1 and G2: in sequence (with access to the full machine
resources) or in parallel (with each side given a disjoint share
of the available resources) and chooses the faster one. Unity

does not allow combinations of serial and parallel execution,
in which branches are run partially in parallel and partially
in serial. While this eliminates certain strategies, consider-
ing them would significantly reduce Unity’s scalability as it
requires analyzing exponentially many interleavings of op-
erators, and as evidenced by the results in Section 6, these
strategies are not necessary to achieve good performance.
To determine how to partition the available resources when
running in parallel, Unity iterates over all possible resource
quantities that can be assigned to each side. By considering
resource quantities, Unity ignores redundant divisions that
differ only in which GPUs are assigned and not in the number
and location of these GPUs, replacing an exponential search
over all subsets of devices with a quadratic search over re-
source quantities.

As an additional optimization, Unity maintains a cache
of the selected machine mappings for all subgraphs. Since
substitution selection generates a new candidate for each sub-
stitution, and each substitution modifies only a small part of
a PCG, many candidate PCGs have most of their subgraphs
in common with other candidates. This allows Unity to skip
computing the cost and machine mapping of all but the part
of the PCG modified by the substitution under consideration.

5.3 Scaling to Large Graphs
Even with the dynamic programming algorithm and cross-
invocation caching, the search algorithm described so far fails
to scale to large models. To understand why, we examine how
the number of candidate PCGs in substitution selection scales
with the size of the input PCG.

As described in Section 5.1, at each iteration Unity gener-
ates a candidate PCG for every possible application of each
substitution. In the worst case this would require examining
O (2gs) candidates, where g is the number of nodes in the
PCG and s is the number of substitutions Unity considers. In
practice s has limited impact on search time as only a small
fraction of the substitutions Unity considers can be applied to
any one model, but for large models the exponential behavior
of g becomes problematic.

To solve this, we borrow from Section 5.1 and decompose
the PCG into independent sequential subgraphs. However,
this approach prevents applying substitutions across these
splits, which is problematic since Unity uses substitutions to
represent parallelization. Thus, naive graph splitting would
reduce the parallelism degree across all splits to 1, eliminating
many common and important parallelization strategies, such
as using data parallelism across the entire model.

Unity addresses this issue by explicitly searching for the op-
timal parallelization across every split location. More specif-
ically, for every possible partitioning of the tensor commu-
nicated across the split, Unity optimizes the resulting two
subgraphs under the condition that the first subgraph’s output
and the second subgraph’s input must both match the partition-
ing under consideration. When either subgraph does not meet

this condition, parallelization operators are inserted to ensure
any communication cost arising from a change in partitioning
is accounted for.

This method works for Partition and Combine but en-
counters a problem with Replicate and Reduce. For exam-
ple, consider the case of the tensor crossing the split location
having its replica degree fixed to 2 by the search algorithm.
To coerce the first subgraph to output a tensor in this format,
the search algorithm could insert a Replicate as its final
operation, and the algorithm similarly could insert a Reduce
as the first operation of the second subgraph. However, this
will incorrectly scale the tensor by a factor of 2! The core
issue is that unlike Partition and Combine, Replicate and
Reduce are not inverses of each other. Fortunately, since re-
duction parallelism that spans many nodes of a computation
graph is rarely useful in practice, we limit the partitionings
across splits to only those with a replica degree of 1.

To reduce the number of algebraic transformations these
splits prevent, Unity follows MetaFlow [26] and chooses split
locations that disrupt the fewest substitutions while maintain-
ing a minimum subgraph size k.5 Thus graph splitting reduces
the worst-case number of candidate PCGs from exponential
in g to linear in g, specifically from O (2gs) to O

(gp
k ×2ks

)
where p is the number of valid tensor partitionings.

Cost estimation. To estimate operator run times and com-
munication costs we use similar methods as prior work [24,
27]. More accurate cost models are possible [47], but we have
not noticed any issues caused by inaccuracies in our model.

Pipeline parallelism. When considering pipeline paral-
lelism, Unity adopts the 1F1B schedule (i.e., interleaving
forward and backward micro-batches on each device) and the
weight update semantics from PipeDream-2BW [40], which
achieves both high training throughput and low memory foot-
print. To reduce the search space, Unity only considers strate-
gies where pipeline parallelism is applied to all operators in
a PCG, since a non pipeline-parallel operator in the PCG
would disable the benefits of pipeline parallelism. In addi-
tion, similar to prior work [20, 39, 65], Unity only considers
sequential pipeline parallelism where each stage only com-
municates with a single next stage in the pipeline (except for
the last stage, which directly performs back propagation after
forward processing). Unity also follows prior work [16,20,53]
in assuming that the number of micro-batches in a mini-batch
is much larger then the number of pipeline stages so the ad-
ditional latency introduced by pipeline initialization can be
ignored. These constraints allow Unity to explore a compre-
hensive search space that includes existing pipeline paral-
lelism strategies while maintaining reasonable search time.
The search algorithm is also slightly modified: instead of
using per-iteration run time as a proxy for throughput, we

5Our experiments use k = 10 as it strikes a balance between keeping
subgraph sizes small enough for good scalability while blocking relatively
few substitutions.

Task Architecture Dataset
Image ResNeXt-50 [60] ImageNet [46]
Classification Inception-v3 [51] ImageNet [46]
Language Models BERT-Large [14] WikiText-2 [35]
Recommendation DLRM [41] Criteo Kaggle [4]
Systems XDL [28] Criteo Kaggle [4]
Precision Medicine CANDLE-Uno [3] Dose response data [1]
Regression MLP [17] Synthetic data

Table 1: Overview of the seven DNNs evaluated.

maximize the throughput directly.

6 Evaluation
6.1 Implementation and Experimental Setup
Unity is implemented on top of FlexFlow [27], a distributed
multi-GPU runtime for DNN training. We modified FlexFlow
to represent models with PCGs, added support for Unity’s
additional forms of parallelism, and replaced FlexFlow’s ran-
domized search with the algorithm described in Section 5.
The substitution generator (Section 4) is implemented on top
of TASO [25], and extends its fingerprint function to con-
sider parallelization. We also add 33 parallelization-specific
properties that are used by the substitution verifier as axioms
capturing the semantics of the parallelization operators.

All experiments were performed on the Summit supercom-
puter [2, 56]. Each compute node is equipped with two IBM
POWER9 CPUs, 512 GB main memory, and six NVIDIA
Volta V100 GPUs. Three of the GPUs within a node are
connected to the same CPU and interconnected via NVLink.
Nodes are connected with Mellanox EDR 100Gb InfiniBand.

DNNs. Table 1 summarizes the seven DNN models used in
our evaluation. ResNeXt-50 [60] and Inception-v3 are com-
monly used DNNs for image classification. BERT [14] is
a language model with state-of-the-art accuracy on a spec-
trum of language tasks. DLRM [41] and XDL [28] are deep
learning recommendation models for personalization and ads
recommendation. CANDLE-Uno [3] is a DNN architecture
for precision medicine. Multi-layer perceptron [17] (MLP)
is a widely used architecture for a variety of regression tasks
and a core component in many DNNs.

We follow prior work in setting hyperparameters for train-
ing (e.g., batch sizes, learning rates) [3, 14, 38, 41, 60]. We
report per-GPU minibatch size B: for runs with n GPUs, the
global minibatch size is n×B. The global minibatch sizes are
consistent with those reported in the literature. We use a per-
GPU minibatch size of 64 for ResNeXt-50 and Inception-v3,
4 for BERT-Large, 1024 for DLRM and XDL, and 256 for
CANDLE-Uno and MLP. The MLP model includes 16 dense
layers, each of which has a hidden dimension of 8192. We
use Adam [29] with a learning rate of 0.0001 for BERT-Large,
and SGD [18] with a learning rate of 0.01 for the other DNNs.

Unless stated, pipeline parallelism is disabled when com-
paring against frameworks that do not support this feature.

We evaluate the impact of pipeline parallelism in Figure 15a.

Search Time. For all DNNs except Inception-v3, Unity’s
search times are under 10 minutes even for the largest GPU
count (i.e., 192). Even for Inception-v3, the most complex
architecture in our evaluation with 323 operators, search termi-
nates within 20 minutes. These times are negligible compared
to the hours or days needed to train these DNNs.

6.2 End-to-end Evaluation
We compare the end-to-end training performance of Unity
and existing frameworks such as Megatron [50] and Deep-
Speed [43]. We also compare against using TASO [25] and
FlexFlow [27] to perform sequential optimization (i.e., TASO
first and FlexFlow second). Since Megatron [50] and Deep-
Speed [43] require the user to manually optimize each model,
these baselines are only present for a subset of the models,
while the automated approaches of FlexFlow and Unity can
be used across all seven. Figure 14 shows the results.

BERT-Large has been highly optimized by existing frame-
works such as Megatron and DeepSpeed which use expert-
designed strategies combining multiple forms of parallelism.
As such, Unity is not expected to outperform these strategies.
Instead, the primary purpose of this evaluation is to determine
if Unity can re-discover these hand-tuned strategies within
a few minutes of automated search. Note that since Mega-
tron and DeepSpeed require users to manually specify all
parallelism degrees for data, tensor-model, and pipeline par-
allelism, we explore different combinations of the supported
parallelism degrees and report the best performance.

Unity achieves on-par performance with Megatron and out-
performs both DeepSpeed and FlexFlow. We find that the
best strategy discovered by Unity is almost the same as the
expert-designed strategy in Megatron: the only difference is
that for some matrix multiplications Megatron uses reduc-
tion parallelism while Unity uses data parallelism, which has
a negligible impact on overall training performance. This
shows that even on highly-optimized models Unity is able
to automatically generate parallelization optimizations that
match those manually designed by domain experts. Megatron
is customized for Transformer-based language models and
does not support the other DNNs in our evaluation. The fact
that the parallelization strategy discovered by Unity matches
the expert-designed strategy in Megatron is, in our view, a
positive outcome of Unity.

DLRM and CANDLE-Uno both exceed the memory capac-
ity of a single GPU, preventing data parallel training. For both
models we use the expert-designed strategy proposed in [38]
as a baseline, which parallelizes communication-intensive
operators (e.g., embedding tables) in model parallelism and
compute-intensive operators (e.g., matrix multiplications) in
data parallelism. Unity outperforms both expert-designed
strategies and TASO+FlexFlow by up to 3.6× on DLRM
and 1.6× on CANDLE-Uno. For all other models, we com-
pare Unity against data parallelism and TASO+FlexFlow.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

2K

4K

6K

8K

O
ve

ra
ll

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Data Parallelism
TASO+FlexFlow
Unity

(a) ResNeXt-50.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

300

600

900

1200

O
ve

ra
ll

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

DeepSpeed
TASO+FlexFlow
Megatron
Unity

(b) BERT-Large.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)
0

300K

600K

900K

1200K

O
ve

ra
ll

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Expert-Designed
TASO+FlexFlow
Unity

(c) DLRM.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

100K

200K

300K

400K

O
ve

ra
ll

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Expert-Designed
TASO+FlexFlow
Unity

(d) CANDLE-Uno.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

4K

8K

12K

16K

O
ve

ra
ll

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Data Parallelism
TASO+FlexFlow
Unity

(e) Inception-v3.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

50K

100K

150K

200K

O
ve

ra
ll

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Data Parallelism
TASO+FlexFlow
Unity

(f) MLP.

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

0

300K

600K

900K

O
ve

ra
ll

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

Data Parallelism
TASO+FlexFlow
Unity

(g) XDL.

Figure 14: Training throughput comparison among existing frameworks and Unity. The experiments were performed on the
Summit supercomputer [2] with 6 GPUs per node. All numbers were measured by averaging 1,000 training iterations.

24(4) 48(8) 96(16)
Number of GPUs (Number of nodes)

0

200

400

600

800

O
ve

ra
ll

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

1.3x

1.3x

1.4x

Data & Model Parallelism
+ Reduction Parallelism
+ Attention-Head Parallelism
+ Pipeline Parallelism

(a)

MLP CANDLE-Uno XDL DLRM0

200K

400K

600K

O
ve

ra
ll

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
on

d)

1.1x
1.1x

1.3x

1.4x

Sequential Optimization
Joint Optimization

(b)

Figure 15: (a) End to end performance of BERT-Large inte-
grating different parallelization dimensions. Speedups relative
to data+model parallelism. (b) Speedups solely attributable to
joint vs sequential optimization on 96 V100 GPUs (16 nodes).
Search space and algorithm are fixed to remove effects from
Unity’s larger search space and improved search scalability.

Unity outperforms the best existing approaches by 1.0× on
ResNeXt-50, 1.3× on Inception-v3, 2.0× on MLP, and 1.9×
on XDL. The lack of improvement on ResNeXt-50 is ex-
pected as the model’s optimal strategy (data parallelism) is
already the default used by most frameworks.

We observe that the performance improvement is achieved
by (1) supporting operator-specific parallelism and (2) jointly
optimizing algebraic transformations and parallelization. We
further analyze these details in the following experiments.

6.3 Parallelism Dimensions
To evaluate how different parallelism dimensions improve
training performance, we perform an ablation study of Unity

on BERT-Large by iteratively adding new dimensions to Unity
and measuring the training throughput. Figure 15a shows the
results. Compared to data and model parallelism, adding re-
duction parallelism does not improve training performance,
but combining reduction and attention-head parallelism in-
creases performance by up to 1.2× because optimizing the at-
tention operators in BERT-Large requires both reduction and
attention-head parallelism, as shown in Figure 10. Enabling
pipeline parallelism achieves an overall speedup of 1.4×. This
result shows that hybrid strategies and operator-specific di-
mensions are critical for DNN training performance.

6.4 Joint Optimization
To evaluate Unity’s joint optimization, we compare against
sequential optimization of algebraic transformations and par-
allelization. Results are shown in Figure 15b. Unlike the
TASO+FlexFlow baseline in Figure 14, in Figure 15b we in-
clude Unity’s additional parallelism dimensions and improved
scalability to isolate the effects of joint optimization. As a
result, the performance improvement (up to 1.4× speedup)
comes solely from the ability to optimize jointly rather than
sequentially. We study three examples in detail.

The first (Figure 16a) is a slight generalization of the ex-
ample introduced in Figure 2. By not fusing the first MatMul
and ReLU, which would be done in sequential optimization
as the algebraic optimizer would ignore parallelism, Unity is
able to significantly reduce the amount of communication by
using reduction parallelism and a more efficient AllReduce
(represented by the Reduce followed by Replicate).

The second is shown in Figure 16b. Concatenation is the
main performance bottleneck in DLRM and XDL, since it can-

MatMul +
ReLU

MatMul +
ReLU

Partition
(dim = i)

Input

MatMul

Reduce

Replicate

ReLU

MatMul +
ReLU

Weight

Partition
(dim = i)

Weight

Partition
(dim = o)

Input Weight

Weight

(a) Multi-layer perceptron.

MatMul +
ReLU

Concatenation

Embedding Embedding…
MatMul

Embedding

…

Add +
ReLU

Partition
(dim = o)

MatMul

Embedding

Partition
(dim = o)

(b) Concatenation.

Embedding
Bag

Input W1

MatMul

W2

Input W1

MatMul

W2

Embedding

Reduce
(dim = c)

Partition
(dim = c)

Replicate

(c) EmbeddingBag.

Figure 16: Example joint optimizations of computation graph and parallelization discovered by Unity. For Partition, i and o
indicate the input and output channel dimensions of a matrix multiplication.

Table 2: Search algorithm ablation study. “Scaled” numbers
are relative to the 2 GPU time with all optimizations enabled.

All w/o Split w/o Cache+Split

Time Scaled Time Scaled Time Scaled

6 GPUs (1 nodes) 57s 1× 4m 01s 4.3× 37m 01s 38.5×
12 GPUs (2 nodes) 1m 47s 1.9× 11m 15s 16.8× > 1h n/a
24 GPUs (4 nodes) 3m 00s 3.1× > 1h n/a > 1h n/a
48 GPUs (8 nodes) 5m 55s 6.1× > 1h n/a > 1h n/a

not be parallelized in the same dimension as the Embedding
operators and requires an all-to-all synchronization. The op-
timization eliminates the Concatenation by replacing the
subsequent MatMul with independent MatMuls executed using
the same model parallel strategy as the Embedding operators,
which reduces communication costs as the Embedding opera-
tors’ outputs are only used locally.

The third optimization is shown in Figure 16c. An
EmbeddingBag [15] operator computes the sum of a bag of
embeddings for each training sample. Unity discovers a joint
optimization that transforms an EmbeddingBag to a normal
Embedding to enable additional parallelization opportunities.

6.5 Search Algorithm

To evaluate the impact of the three search optimizations
(graph splitting, cross-invocation cache, and dynamic pro-
gramming) presented in Section 5, we perform an ablation
study of the search time for ResNeXt-50. With all three tech-
niques enabled (the “All” column), we see roughly linear
scaling as we move from 6 to 48 GPUs. This, along with Fig-
ure 14, demonstrates that Unity’s search algorithm scales to
nontrivial node counts.

Disabling graph splitting increases search times by 4.3-
8.8× and causes them to scale nonlinearly, while disabling
the cross-invocation cache adds an additional 8.9×. Disabling
the dynamic programming algorithm causes even the small-
est cases to time out. These results indicate that the three
proposed techniques are necessary for adequate performance.

7 Related Work

Manually-designed parallelization strategies. Manually-
designed parallelization strategies are used in most existing
DNN frameworks to optimize distributed DNN training [5, 6,
42, 43, 49]. For example, Neo [38] optimizes DLRM by using
data parallelism for compute-intensive operators and model
parallelism for communication-intensive operators. Megatron-
LM [50] proposes a model-specific customized strategy that
combines data, reduction, and attention-head parallelism for
training large language models. These strategies only work
for specific DNN models and do not generalize. We use these
expert-designed strategies as baselines in our evaluation and
show that Unity can automatically discover strategies with
improved performance.

Automated DNN parallelization. Recent work has pro-
posed automated approaches to optimizing distributed DNN
training. For example, ColocRL [36, 37] and Placeto [7] use
reinforcement learning to find efficient device placement for
model parallelism. Baechi [22] achieves fast device place-
ment for model parallelism using two memory-constrained
algorithms. FlexFlow [27] uses randomized search to opti-
mize data, model, and spatial parallelism. GSPMD [61], a
generalization of GShard [34], finds parallelization strategies
based on user-provided hints. PipeDream [39] uses dynamic
programming to find optimized strategies combining pipeline
and data parallelism. Tofu [59] uses recursive search to min-
imize communication time and automatically discovers par-
allelization dimensions via interval analysis. Tarnawski et
al. [52, 53] propose a two-level dynamic programming algo-
rithm to partition a DNN computation graph across devices
by combining data, pipeline, and tensor model parallelism.
Alpa [65] automates inter-operator (i.e., pipeline) parallelism
using dynamic programming and intra-operator (i.e., data and
tensor model) parallelism using integer linear programming.
Whale [23] uses computation-balanced partitioning to acco-
modate heterogenous compute devices and allows specifying
parallelization strategies through small parallelization primi-
tives. TensorOpt [8] introduces the cost frontier to simultane-
ously reason about multiple objectives (e.g., execution time
and cloud resource cost) in automatic parallelization. Finally,

AutoSync [63] learns to optimize synchronization strategies
for data-parallel training from a few thousand samples. How-
ever, existing approaches (except Tofu) only support limited
parallelism dimensions and none jointly optimizes algebraic
transformations and parallelization. Unity supports all exist-
ing parallelism dimensions, is extensible to new operators and
forms of parallelism, and jointly optimizes algebraic transfor-
mations and parallelization.

Automated algebraic transformations. TASO [25] au-
tomatically discovers algebraic transformations for DNNs
but does not support parallelization. Unity adopts the super-
optimization idea from TASO to generate and verify PCG
substitutions. However, unlike the algebraic transformation
task considered by TASO, Unity deals with a significantly
larger search space and considers additional tasks, such as de-
vice assignments. We observe that TASO’s search algorithm
alone is incapable of exploring the larger search space. To
address this challenge, Unity introduces three novel elements
of the search technique: the dynamic programming algorithm
for finding optimized machine mappings, the subgraph cache
for exploiting the locality of graph substitutions, and the addi-
tional parallelism-compatible divide-and-conquer approach
to enabling scalability to complex models.

Automated DNN code generation. Recent work has pro-
posed approaches for generating hardware-specific code for
DNN operators. TVM [10, 11] uses a learning-based algo-
rithm to generate optimized code for a diverse set of hardware
backends. Ansor [64] extends TVM by utilizing a hierarchi-
cal search algorithm to explore a much larger search space
of program candidates. Unity optimizes DNN computation
at a higher level than these approaches. Therefore, Unity’s
optimizations are orthogonal and can be combined with ex-
isting code generation techniques. We leave integrating code
generation into Unity as future work.

Intermediate representations for DNN parallelization.
TensorFlow [?], MLIR [31, 32], Relay [45], and ONNX [33]
represent DNN computation with graph-based intermediate
representations (IRs). Distributed training of a model is rep-
resented by annotating each operator with a parallelization
strategy describing how the operator is parallelized across de-
vices. These approaches represent algebraic transformations
and parallelization separately and optimize them sequentially,
missing joint optimizations. pONNX [57], automap [48], and
DistIR [47] propose IRs that express both computation and
communication, but are too low-level to be used for Unity-
style joint optimization (see Section 3.4 for details). Unity
uses a higher-level representation better suited to optimization,
the PCG, and represents both parallelization and algebraic
transformations as graph substitutions on PCGs.

8 Limitations and Future Work
To scale to large DNNs and machines, Unity’s search algo-
rithm exploits the sequential and parallel structure of modern

DNNs (see Section 5.2). However, there exist DNN architec-
tures (e.g., NASNet [66]) that violate this structure. Extending
Unity to include these DNNs would improve generality, but
potentially at the cost of decreased scalability.

While Unity successfully optimizes two of the most promi-
nent classes of optimizations (i.e., algebraic transformations
and parallelization), there are a variety of additional optimiza-
tions currently not considered, such as tensor offloading and
rematerialization [21, 30, 44]. The PCG can be extended to
represent these optimizations, but the search algorithm as pre-
sented in Section 5 does not reason about memory usage and
therefore may generate parallelization strategies that violate
memory constraints. While these invalid strategies can be
made valid by applying the necessary tensor offloading and
rematerialization afterward, not including these optimizations
in Unity’s joint search potentially leads to suboptimal perfor-
mance. Thus, integrating memory optimizations into Unity’s
search algorithm is a promising area for future research.

Another limitation of Unity is its support for pipeline par-
allelism. While PCGs are capable of representing paral-
lelization strategies that interleave pipeline-parallel and non-
pipeline-parallel operators in a PCG, our search algorithm
excludes these cases to reduce the search space. In addition,
Unity’s search algorithm does not consider non-sequential
pipeline parallelism strategies, where a stage can have multi-
ple predecessor/successor stages.

9 Conclusion
This paper presents Unity, the first system that jointly opti-
mizes algebraic transformations and parallelization in dis-
tributed DNN training. Unity represents both parallelization
and algebraic transformations as substitutions on a unified
graph representation, uses a novel hierarchical search algo-
rithm to identify an optimized sequence of substitutions, and
scales to large numbers of GPUs and complex DNNs.

Our evaluation with seven real-world DNN benchmarks
on up to 192 GPUs show that Unity outperforms state-of-the-
art parallelization approaches by up to 3.6× while keeping
optimization times under 20 minutes. As nearly half of this
speedup is attributable solely to the use of joint optimization
over sequential optimization, Unity demonstrates that joint
optimization is practical and that future systems will need to
include it or else miss significant performance gains.

Acknowledgement
We thank the anonymous reviewers for their comments, and
are grateful to our shepherd Byung-Gon Chun for his feed-
back. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship
Program under Grant No. DGE-1656518, and an NSF award
CNS-2147909. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

References
[1] CANDLE Benchmarks. https://github.com/ECP-C

ANDLE/Benchmarks, 2018. 3, 11

[2] Summit supercomputer. https://www.olcf.ornl.go
v/summit/, 2018. 11, 12

[3] Uno: Predicting tumor dose response across multiple
data sources. https://github.com/ECP-CANDLE/Be
nchmarks/tree/master/Pilot1/Uno, 2018. 11

[4] Criteo 1tb click logs dataset. https://ailab.criteo
.com/download-criteo-1tb-click-logs-datas
et/, 2021. 11

[5] Optimize and accelerate machine learning inferencing
and training. https://www.onnxruntime.ai/, 2021.
13

[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI, 2016. 1, 3, 13

[7] Ravichandra Addanki, Shaileshh Bojja Venkatakrish-
nan, Shreyan Gupta, Hongzi Mao, and Mohammad Al-
izadeh. Placeto: Learning generalizable device place-
ment algorithms for distributed machine learning. CoRR,
abs/1906.08879, 2019. 13

[8] Zhenkun Cai, Xiao Yan, Kaihao Ma, Yidi Wu, Yuzhen
Huang, James Cheng, Teng Su, and Fan Yu. TensorOpt:
Exploring the Tradeoffs in Distributed DNN Training
with Auto-Parallelism. IEEE Transactions on Parallel
and Distributed Systems, 2021. 13

[9] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A flexible and efficient
machine learning library for heterogeneous distributed
systems. CoRR, abs/1512.01274, 2015. 3

[10] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen
Shen, Eddie Q. Yan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy.
TVM: end-to-end optimization stack for deep learning.
CoRR, abs/1802.04799, 2018. 14

[11] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.

In Advances in Neural Information Processing Systems
31, NeurIPS’18. 2018. 14

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: An ef-
ficient smt solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, 2008. 7

[13] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc'aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and
Andrew Y. Ng. Large scale distributed deep networks.
In NIPS, 2012. 1

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018. 3, 11

[15] EmbeddingBag in PyTorch. https://pytorch.org/
docs/stable/generated/torch.nn.EmbeddingBa
g.html, 2021. 13

[16] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei
Lin. Dapple: A pipelined data parallel approach for
training large models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’21, page 431–445, New
York, NY, USA, 2021. Association for Computing Ma-
chinery. 10

[17] Matt W Gardner and SR Dorling. Artificial neural net-
works (the multilayer perceptron)—a review of applica-
tions in the atmospheric sciences. Atmospheric environ-
ment, 32(14-15):2627–2636, 1998. 11

[18] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch SGD: training imagenet in 1 hour. CoRR,
abs/1706.02677, 2017. 11

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR, 2016. 9

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. Gpipe: Efficient training of giant neural networks
using pipeline parallelism, 2018. 10

https://github.com/ECP-CANDLE/Benchmarks
https://github.com/ECP-CANDLE/Benchmarks
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno
https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://www.onnxruntime.ai/
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html

[21] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gho-
lami, Pieter Abbeel, Joseph Gonzalez, Kurt Keutzer, and
Ion Stoica. Checkmate: Breaking the memory wall with
optimal tensor rematerialization. In I. Dhillon, D. Papail-
iopoulos, and V. Sze, editors, Proceedings of Machine
Learning and Systems, volume 2, pages 497–511, 2020.
14

[22] Beomyeol Jeon, Linda Cai, Pallavi Srivastava, Jintao
Jiang, Xiaolan Ke, Yitao Meng, Cong Xie, and Indranil
Gupta. Baechi: Fast device placement of machine learn-
ing graphs. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20, page 416–430, New
York, NY, USA, 2020. Association for Computing Ma-
chinery. 13

[23] Xianyan Jia, Le Jiang, Ang Wang, Jie Zhang, Xinyuan
Li, Wencong Xiao, Langshi chen, Yong Li, Zhen Zheng,
Xiaoyong Liu, and Wei Lin. Whale: Scaling Deep Learn-
ing Model Training to the Trillions. arXiv:2011.09208
[cs], August 2021. 2, 13

[24] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. Ex-
ploring hidden dimensions in accelerating convolutional
neural networks. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research. PMLR,
2018. 1, 10

[25] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: Optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 47–62, New York, NY, USA, 2019. Association
for Computing Machinery. 1, 3, 4, 7, 8, 9, 11, 14

[26] Zhihao Jia, James Thomas, Todd Warzawski, Mingyu
Gao, Matei Zaharia, and Alex Aiken. Optimizing dnn
computation with relaxed graph substitutions. In Pro-
ceedings of the 2nd Conference on Systems and Machine
Learning, SysML’19, 2019. 1, 10

[27] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
In Proceedings of the 2nd Conference on Systems and
Machine Learning, SysML’19, 2019. 1, 2, 3, 10, 11, 13

[28] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui
Zhou, Yang Zheng, Sui Huang, Xinyang Guo, Dongyue
Wang, Yue Song, Liqin Zhao, Zhi Wang, Peng Sun,
Yu Zhang, Di Zhang, Jinhui Li, Jian Xu, Xiaoqiang Zhu,
and Kun Gai. Xdl: An industrial deep learning frame-
work for high-dimensional sparse data. In Proceedings
of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data, DLP-KDD

’19, New York, NY, USA, 2019. Association for Com-
puting Machinery. 11

[29] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 11

[30] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jen-
nifer Brennan, Mike He, Jared Roesch, Tianqi Chen,
and Zachary Tatlock. Dynamic tensor rematerialization.
CoRR, abs/2006.09616, 2020. 14

[31] C. Lattner, M. Amini, U. Bondhugula, A. Cohen,
A. Davis, J. Pienaar, R. Riddle, T. Shpeisman, N. Vasi-
lache, and O. Zinenko. Mlir: Scaling compiler infras-
tructure for domain specific computation. In 2021
IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), pages 2–14, 2021. 14

[32] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday
Bondhugula, River Riddle, Albert Cohen, Tatiana Sh-
peisman, Andy Davis, Nicolas Vasilache, and Oleksandr
Zinenko. MLIR: A compiler infrastructure for the end
of moore’s law. CoRR, abs/2002.11054, 2020. 14

[33] Tung D. Le, Gheorghe-Teodor Bercea, Tong Chen,
Alexandre E. Eichenberger, Haruki Imai, Tian Jin,
Kiyokuni Kawachiya, Yasushi Negishi, and Kevin
O’Brien. Compiling ONNX neural network models
using MLIR. CoRR, abs/2008.08272, 2020. 14

[34] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. CoRR, abs/2006.16668, 2020. 13

[35] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models, 2016.
11

[36] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit
Steiner, Quoc V. Le, and Jeff Dean. A hierarchical model
for device placement. In International Conference on
Learning Representations, 2018. 13

[37] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit
Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar,
Mohammad Norouzi, Samy Bengio, and Jeff Dean. De-
vice placement optimization with reinforcement learn-
ing. 2017. 13

[38] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti Bas-
ant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xiaodong

Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Ser-
hat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yin-
bin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang,
Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna
Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Ki-
ran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen,
Manoj Krishnan, Avinash Nayak, Krishnakumar Nair,
Bharath Muthiah, Mahmoud khorashadi, Pallab Bhat-
tacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews,
Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay Rao.
Software-hardware co-design for fast and scalable train-
ing of deep learning recommendation models, 2021. 11,
13

[39] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 1–15, New York,
NY, USA, 2019. Association for Computing Machinery.
1, 4, 10, 13

[40] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie
Chen, and Matei Zaharia. Memory-efficient pipeline-
parallel dnn training, 2020. 10

[41] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G Azzolini, et al. Deep learning recommen-
dation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019. 3, 11

[42] Tensors and Dynamic neural networks in Python with
strong GPU acceleration. https://pytorch.org,
2017. 3, 13

[43] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimization towards train-
ing A trillion parameter models. CoRR, abs/1910.02054,
2019. 11, 13

[44] Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. Zero-offload: De-
mocratizing billion-scale model training, 2021. 14

[45] Jared Roesch, Steven Lyubomirsky, Marisa Kirisame,
Josh Pollock, Logan Weber, Ziheng Jiang, Tianqi Chen,
Thierry Moreau, and Zachary Tatlock. Relay: A high-
level IR for deep learning. CoRR, abs/1904.08368, 2019.
14

[46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej

Karpathy, Aditya Khosla, Michael Bernstein, et al. Ima-
genet large scale visual recognition challenge. Interna-
tional Journal of Computer Vision, 2015. 11

[47] Keshav Santhanam, Siddharth Krishna, Ryota Tomioka,
Tim Harris, and Matei Zaharia. DistIR: An Intermediate
Representation and Simulator for Efficient Neural Net-
work Distribution. arXiv:2111.05426 [cs], November
2021. 7, 10, 14

[48] Michael Schaarschmidt, Dominik Grewe, Dimitrios
Vytiniotis, Adam Paszke, Georg Stefan Schmid,
Tamara Norman, James Molloy, Jonathan Godwin, Nor-
man Alexander Rink, Vinod Nair, and Dan Belov. Au-
tomap: Towards Ergonomic Automated Parallelism for
ML Models. arXiv:2112.02958 [cs], December 2021.
2, 7, 14

[49] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Pe-
ter Hawkins, HyoukJoong Lee, Mingsheng Hong,
Cliff Young, Ryan Sepassi, and Blake Hechtman.
Mesh-TensorFlow: Deep Learning for Supercomputers.
arXiv:1811.02084 [cs, stat], November 2018. 13

[50] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, abs/1909.08053,
2019. 1, 7, 8, 11, 13

[51] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2016. 11

[52] Jakub Tarnawski, Amar Phanishayee, Nikhil R. Devanur,
Divya Mahajan, and Fanny Nina Paravecino. Efficient
algorithms for device placement of dnn graph operators,
2020. 13

[53] Jakub M Tarnawski, Deepak Narayanan, and Amar Phan-
ishayee. Piper: Multidimensional planner for dnn paral-
lelization. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34,
pages 24829–24840. Curran Associates, Inc., 2021. 10,
13

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017. 4

[55] Sudharshan S Vazhkudai, Bronis R de Supinski,
Arthur S Bland, Al Geist, James Sexton, Jim Kahle,

https://pytorch.org

Christopher J Zimmer, Scott Atchley, Sarp Oral, Don E
Maxwell, et al. The design, deployment, and evaluation
of the coral pre-exascale systems. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC. IEEE,
2018. 5

[56] Sudharshan S. Vazhkudai, Bronis R. de Supinski,
Arthur S. Bland, Al Geist, James Sexton, Jim Kahle,
Christopher J. Zimmer, Scott Atchley, Sarp Oral, Don E.
Maxwell, Veronica G. Vergara Larrea, Adam Bertsch,
Robin Goldstone, Wayne Joubert, Chris Chambreau,
David Appelhans, Robert Blackmore, Ben Casses,
George Chochia, Gene Davison, Matthew A. Ezell, Tom
Gooding, Elsa Gonsiorowski, Leopold Grinberg, Bill
Hanson, Bill Hartner, Ian Karlin, Matthew L. Leininger,
Dustin Leverman, Chris Marroquin, Adam Moody, Mar-
tin Ohmacht, Ramesh Pankajakshan, Fernando Pizzano,
James H. Rogers, Bryan Rosenburg, Drew Schmidt,
Mallikarjun Shankar, Feiyi Wang, Py Watson, Bob
Walkup, Lance D. Weems, and Junqi Yin. The design,
deployment, and evaluation of the coral pre-exascale sys-
tems. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage,
and Analysis, SC ’18. IEEE Press, 2018. 11

[57] Fei Wang, Guoyang Chen, Weifeng Zhang, and Tiark
Rompf. Parallel Training via Computation Graph Trans-
formation. In 2019 IEEE International Conference on
Big Data (Big Data), pages 3430–3439, December 2019.
3, 7, 14

[58] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-
sor programs with partially equivalent transformations
and automated corrections. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 37–54. USENIX Association, July
2021. 1

[59] Minjie Wang, Chien-chin Huang, and Jinyang Li. Sup-
porting Very Large Models using Automatic Dataflow
Graph Partitioning. In Proceedings of the Fourteenth Eu-
roSys Conference 2019, EuroSys ’19, pages 1–17, New
York, NY, USA, March 2019. Association for Comput-
ing Machinery. 1, 2, 3, 13

[60] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen
Tu, and Kaiming He. Aggregated residual transforma-
tions for deep neural networks. CoRR, abs/1611.05431,
2016. 11

[61] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim Krikun,
Dmitry Lepikhin, Andy Ly, Marcello Maggioni, Ruom-
ing Pang, Noam Shazeer, Shibo Wang, Tao Wang,

Yonghui Wu, and Zhifeng Chen. GSPMD: General and
Scalable Parallelization for ML Computation Graphs.
arXiv:2105.04663 [cs], May 2021. 13

[62] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang,
Max Willsey, Sudip Roy, and Jacques Pienaar. Equality
Saturation for Tensor Graph Superoptimization. Pro-
ceedings of Machine Learning and Systems, 3:255–268,
March 2021. 2

[63] Hao Zhang, Yuan Li, Zhijie Deng, Xiaodan Liang,
Lawrence Carin, and Eric Xing. Autosync: Learning to
synchronize for data-parallel distributed deep learning.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 906–917. Curran
Associates, Inc., 2020. 14

[64] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor : Generating high-performance tensor
programs for deep learning. CoRR, abs/2006.06762,
2020. 14

[65] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Joseph E. Gonzalez,
and Ion Stoica. Alpa: Automating inter- and intra-
operator parallelism for distributed deep learning. CoRR,
abs/2201.12023, 2022. 10, 13

[66] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
2018. 14

	Introduction
	Unity's Approach

	Background
	Parallelization
	Algebraic Transformations
	Intermediate Representations

	Parallel Computation Graph
	Tensor Representation
	Machine Mappings
	Parallelization Operators
	Discussion and Comparison

	Graph Substitutions
	Joint Optimization
	Substitution Selection
	Finding Optimized Machine Mappings
	Scaling to Large Graphs

	Evaluation
	Implementation and Experimental Setup
	End-to-end Evaluation
	Parallelism Dimensions
	Joint Optimization
	Search Algorithm

	Related Work
	Limitations and Future Work
	Conclusion

