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Abstract

The high computational and memory requirements of generative large language
models (LLMs) make it challenging to serve them quickly and cheaply. This paper
introduces SpecInfer, an LLM serving system that accelerates generative LLM
inference with speculative inference and token tree verification. A key insight
behind SpecInfer is to combine various collectively boost-tuned small language
models to jointly predict the LLM’s outputs; the predictions are organized as a token
tree, whose nodes each represent a candidate token sequence. The correctness
of all candidate token sequences represented by a token tree is verified by the
LLM in parallel using a novel tree-based parallel decoding mechanism. SpecInfer
uses an LLM as a token tree verifier instead of an incremental decoder, which
significantly reduces the end-to-end latency and computational requirement for
serving generative LLMs while provably preserving model quality.

1 Introduction

Generative large language models (LLMs), such as ChatGPT [3] and GPT-4 [24], have demon-
strated remarkable capabilities of creating natural language texts across various application domains,
including summarization, instruction following, and question answering [43, 22]. However, it is
challenging to quickly and cheaply serving these LLMs due to their large volume of parameters,
complex architectures, and high computational requirements. For example, the GPT-3 architecture
has 175 billion parameters, which require more than 16 NVIDIA 40GB A100 GPUs to store in
single-precision floating points, and take several seconds to serve a single inference request [3].

A generative LLM generally takes input as a sequence of tokens, called prompt, and generates
subsequent tokens one at a time, as shown in Figure 1a. The generation of each token in the sequence
is conditioned on the input prompt and previously generated tokens and does not consider future
tokens. This approach is also called autoregressive decoding because each generated token is also
used as input for generating future tokens. This dependency between tokens is crucial for many NLP
tasks that require preserving the order and context of the generated tokens, such as text completion.

Existing LLM systems generally use an incremental decoding approach to serving a request where
the system computes the activations for all prompt tokens in a single step and then iteratively decodes
one new token using the input prompt and all previously generated tokens. This approach respects
data dependencies between tokens, but achieves suboptimal runtime performance and limited GPU
utilization, since the degree of parallelism within each request is greatly limited in the incremental
phase. In addition, the attention mechanism of Transformer [36] requires accessing the keys and
values of all previous tokens to compute the attention output of a new token. To avoid recomputing
the keys and values for all preceding tokens, today’s LLM serving systems use a caching mechanism
to store their keys and values for reuse in future iterations. For long-sequence generative tasks (e.g.,
GPT-4 supports up to 32K tokens in a request), caching keys and values introduces significant memory
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(c) Speculative inference and token tree verification.

Figure 1: Comparing the incremental decoding approach used by existing LLM serving systems and
the speculative inference and token tree verification approach used by SpecInfer.

overhead, which prevents existing systems from serving a large number of requests in parallel due to
the memory requirement of caching their keys and values.

This paper introduces SpecInfer, an LLM serving system that improves the end-to-end latency and
computational efficiency of generative LLM inference with speculative inference and token tree
verification. A key insight behind the design of SpecInfer is to use an LLM as a token tree verifier
instead of an incremental decoder. For a given sequence of tokens, SpecInfer uses a learning-based
speculator that combines user-provided functions (e.g., document retriever) and multiple collectively
boost-tuned small speculative models (SSMs) to jointly generate a token tree, whose nodes each
represent a candidate token sequence The correctness of all token sequences represented by a token
tree is then verified against the LLM’s original output in parallel using a novel tree-based parallel
decoding algorithm. This approach allows SpecInfer to opportunistically verify multiple tokens in a
single decoding step as long as the speculated token tree overlaps with the LLM’s output.

Compared to incremental decoding, SpecInfer’s speculative inference and token tree verification
introduce small computation and memory overheads for generating and verifying speculated token
trees. However, by maximizing the number of tokens that can be successfully verified in a single
LLM decoding step, SpecInfer greatly reduces the end-to-end inference latency and improves the
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computational efficiency for serving generative LLMs. We evaluate SpecInfer on two LLM families
(i.e., LLaMA [34] and OPT [44]) and five prompt datasets. Our evaluation shows that SpecInfer
can reduce the number of LLM decoding steps by up to 4.4× (3.7× on average) and reduce the
end-to-end inference latency by up to 2.8×.

2 Overview

Algorithm 1 The incremental decoding algorithm used in existing LLM serving systems.

1: Input: A sequence of input tokens I
2: Output: A sequence of generated tokens
3: S = I
4: while true do
5: t = DECODE(LLM,S)
6: S.append(t)
7: if t = ⟨EOS⟩ then
8: Return S

Algorithm 2 The speculative inference and token tree verification algorithm used by SpecInfer.
SPECULATE takes the current token sequence S as an input and generates a speculated token tree
N . SpecInfer’s use of an LLM is different from existing systems: the LLM takes a token tree N as
an input and generates a token O(u) for each node u ∈ N . Note that the TREEPARALLELDECODE
function can generate all tokens in O in a single LLM decoding step (see Section 4). Finally, VERIFY
examines the speculated token tree N against the LLM’s output O and produces a sequence of
verified tokens V , which can be directly appended to the current token sequence S.

1: Input: A sequence of input tokens I
2: Output: A sequence of generated tokens
3: S = I
4: while true do
5: N = SPECULATE(S)
6: O = TREEPARALLELDECODE(LLM,N )
7: V = VERIFY(O,N )
8: for t ∈ V do
9: S.append(t)

10: if t = ⟨EOS⟩ then
11: return S
12:
13: function VERIFY(O,N )
14: V = ∅
15: u← the root of token tree N
16: while ∃v ∈ N .pv = u and tv = O(u) do
17: u = v
18: V .append(tv)
19: V .append(O(u))
20: return V

Figure 1c shows an overview of our approach. SpecInfer includes a learning-based speculator that
takes as input a sequence of tokens, and produces a speculated token tree. The goal of the speculator
is to predict the LLM’s output by maximizing the overlap between the speculated token tree and the
token sequence generated by the LLM using incremental decoding. As shown at the top of Figure 1c,
the speculator combines (1) user-provided functions that predict future tokens based on heuristics
and/or retrieval-augmented documents, and (2) multiple distilled and/or pruned versions of the LLM,
which we call small speculative models (SSMs).

There are a number of ways to prepare SSMs for speculative inference. First, modern LLMs generally
have many much smaller architectures pre-trained together with the LLM using the same datasets.
For example, in addition to the OPT-175B model with 175 billion parameters, the OPT model family
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also includes OPT-125M and OPT-350M, two variants with 125 million and 350 million parameters,
which were pre-trained using the same datasets as OPT-175B [44]. These pre-trained small models
can be directly used as SSMs in SpecInfer. Second, to maximize the coverage of speculated token
trees, in addition to using these pre-trained SSMs, SpecInfer also introduces a novel fine-tuning
technique called collective boost-tuning to cooperatively fine-tune a set of SSMs by aligning their
aggregated prediction with the LLM’s output using adaptive boosting [13].

The speculator automatically combines the candidate token sequences predicted by individual SSMs
to construct a token tree, as shown in Figure 1c. Since SpecInfer executes multiple SSMs in parallel,
using more SSMs does not directly increase the speculative inference latency. However, using a large
number of SSMs will result in a large token tree, which requires more memory and computation
resources for verification. To address this challenge, SpecInfer uses a learning-based speculative
scheduler to learn to decide which SSMs to use for a given input token sequence and the speculative
configurations for these SSMs (e.g., the beam search width and depth when running an SSM using
beam search).

SpecInfer’s usage of the LLM is also different from that of existing LLM serving systems. Instead
of using the LLM as an incremental decoding engine that predicts the next single token, SpecInfer
uses the LLM as a token tree verifier that verifies whether the speculated token tree overlaps with
the true token sequence. For each token, SpecInfer computes its activations by considering all of its
ancestors in the token tree as its preceding tokens. For example, the attention output of the token
t3,0 is calculated based on sequence (t0, t1,0, t2,1, t3,0), where t0, t1,0, and t2,1 are t3,0’s ancestors in
the token tree. SpecInfer includes a novel tree-based parallel decoding algorithm to simultaneously
verify all tokens in a speculated token tree in a single LLM decoding step.

SpecInfer’s speculative inference and token tree verification provides two key advantages over the
incremental decoding approach of existing LLM inference systems.

Reduced memory accesses to LLM parameters. The performance of generative LLM inference
is largely limited by GPU memory accesses. In existing incremental decoding approach, generating a
single token requires accessing all parameters of an LLM. The problem is exacerbated for offloading-
based LLM inference systems, which use limited computational resources such as a single commodity
GPU to serve LLMs by utilizing CPU DRAM and persistent storage to save model parameters and
loading these parameters to GPU’s high bandwidth memory (HBM) for computation. Compared
to the incremental decoding approach, SpecInfer significantly reduces accesses to LLM parameters
whenever the overlap between a speculated token tree and the LLM’s actual output is not empty.
Reduced accesses to GPU device memory and reduced data transfers between GPU and CPU memory
can also directly translate to decreased energy consumption, since accessing GPU HBM consumes
two or three orders of magnitude more energy than floating point arithmetic operations.

Reduced end-to-end inference latency. Serving LLMs suffers from long end-to-end inference
latency. For example, the GPT-3 architecture includes 175 billion parameters and requires many
seconds to serve a request. In existing incremental decoding approach, the computation for generating
each token depends on the keys and values of all previously generated tokens, which introduces
sequential dependencies between tokens and requires modern LLM serving systems to serialize the
generation of different tokens for each request. In SpecInfer, LLMs are used as a verifier that takes
a speculated token tree as an input and can simultaneously examine all tokens in the token tree by
making a single verification pass over the LLM. This approach enables parallelization across different
tokens in a single request and reduces the LLM’s end-to-end inference latency.

3 Speculative Inference

One major factor of SpecInfer is the design and implementation of the speculator. On the one hand,
more accurate speculation can lead to speculated token trees with longer matching lengths, which
in turn results in fewer LLM verification steps. On the other hand, due to the intrinsic expression
dynamism where some phrases in a sentence are easier to speculate while others are more challenging,
a fixed configuration to perform speculation (e.g., the beam width and depth when speculating using
beam search) leads to suboptimal performance, since a very small speculation window may result in
missed opportunities to match longer token sequences, while a very large speculation window may
produce unnecessary tokens.
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Figure 2: Illustrating SpecInfer’s collective boost-tuning technique. When using a single SSM to
generate token trees, SpecInfer can verified 2.6 tokens on average in each LLM decoding step. This
is due to the misalignment between SSM 1 and the LLM on the first four token sequences. By
collectively boost-tuning three SSMs, the average number of verified tokens per LLM decoding step
is improved to 7.2.

SpecInfer includes two key techniques to address this challenge. First, to improve the speculative
performance of a token tree, Section 3.1 introduces collective boost-tuning, a novel fine-tuning
technique that aligns the aggregated prediction of a set of SSMs with the LLM’s output using adaptive
boosting. Second, to tackle the dynamism across different speculations, Section 3.2 presents a
learning-based speculative scheduler that learns to discover the best speculative configuration for a
given input token sequence and a set of SSMs.

3.1 Collective Boost-Tuning

As identified in previous works [21, 32], a key limitation of using a single SSM for speculative
inference is that the alignment between the SSM and LLM is inherently bounded by the model
capacity gap between the two models. Our preliminary exploration shows that using a larger model
achieves better speculative performance but introduces additional memory overhead and inference
latency to run the larger speculative model.

Consequently, SpecInfer uses an unsupervised approach to collectively fine-tuning a pool of SSMs to
align their outputs with that of the LLM by leveraging the adaptive boosting technique, as shown
in Figure 2. SpecInfer’s SSMs are used to predict the next few tokens that will be generated by
an LLM, therefore SpecInfer uses general text datasets (e.g., the OpenWebText corpus [14] in our
evaluation) to adaptively align the aggregated output of multiple SSMs with the LLM in a fully
unsupervised fashion. In particular, we convert a text corpus into a collection of prompt samples
and uses the LLM to generate a token sequence for each prompt. SpecInfer first fine-tunes one SSM
at a time to the fullest and marks all prompt samples where the SSM and LLM generate identical
subsequent tokens. Next, SpecInfer filters all marked prompt samples and uses all remaining samples
in the corpus to fine-tune the next SSM to the fullest. By repeating this process for every SSM in
the pool, SpecInfer obtains a diverse set of SSMs whose aggregated output largely overlaps with
the LLM’s output on the training corpus. All SSMs have roughly identical inference latency, and
therefore running all SSMs on different GPUs in parallel does not increase the latency of speculative
inference compared to using a single SSM. Note that using multiple SSMs increases the memory
overhead for storing their parameters on GPUs. However, our evaluation shows that SpecInfer can
achieve significant performance improvement by using SSMs 40-100× smaller than the LLM, making
the overhead of hosting these SSMs negligible. In our evaluation, we perform collective boost-tuning
offline on publicly available datasets.
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3.2 Learning-based Speculative Scheduler

To discover an optimal configuration to launch multiple SSMs at each decoding step, we design a
learning-based speculative scheduler that learns to decide which SSMs to use for a given input token
sequence and the speculative configurations for these SSMs.

The scheduler includes a matching length predictor and cost model. The matching length predictor
takes as input the latest feature representation of the final hidden layer from the LLM and outputs a
vector of continuous numbers, each corresponding to the expected matching length under a specific
speculative configuration. SpecInfer uses a three-layer MLP as the neural architecture of the matching
length predictor and considers a configuration space of beam search for each SSM, where the beam
width b ∈ [1, 2, 4] and the beam depth d ∈ [1, 2, 4, 8, 16], therefore the MLP outputs a vector of 15
numbers, each represent the predicted matching length for a speculative configuration. The predictor
is also trained on publicly available datasets in an offload fashion. Note that obtaining the input
feature vector for the predictor does not involve extra cost as it’s self-contained in the SpecInfer’s
verifier (see Section 4).

To achieve higher matching length per unit time, we define the following cost function:

cost(b, d | h) = f(b, d | h)
Lverify(b, d) + Lspeculate(b, d)

, (1)

where b and d are the beam search width and depth, h is the input feature vector to the predictor,
and f(b, d | h) is the predicted matching length for the given speculative configuration (b, d) and
current context h. Lverify(b, d) and Lspeculate(b, d) are the estimated inference latency for the verifier
and speculator, respectively, which are measured by profiling the SpecInfer runtime system. Using
the cost function defined in Equation (1), SpecInfer chooses the configuration that minimizes the
expected cost for each SSM:

(b, d) = argmax
(b,d)

cost(b, d | h) (2)

4 Token Tree Verifier

This section introduces SpecInfer’s token tree verifier, which takes as input a token tree generated by
the speculator and verifies the correctness of its token sequences against a given LLM.

Token tree. SpecInfer uses a token tree to store the results generated by the learning-based specula-
tor. Each token tree N is a tree structure, where each node u ∈ N is labelled by token tu, and pu
represents u’s parent node in the token tree. For each node u, Su represents a sequence of tokens
identified by concatenating Spu and {tu}1.

SpecInfer receives multiple token sequences generated by different SSMs, each of which can be
considered as a token tree (with linear tree structure). SpecInfer first merges these token trees into a
single tree structure.
Definition 4.1 (Tree Merge). M is the tree merge of m token trees {Ni} (1 ≤ i ≤ m) if and only if
∀1 ≤ i ≤ m,∀u ∈ Ni,∃v ∈M such that Sv = Su and vice versa.

Intuitively, each token tree represents a set of token sequences. Merging multiple token trees produces
a new tree that includes all token sequences of the original trees.

A key idea behind the design of SpecInfer is simultaneously verifying all sequences of a token tree
against the original LLM’s output by making a single pass over the LLM architecture. Token tree
verification allows SpecInfer to opportunistically decode multiple tokens (instead of a single token
in the incremental decoding approach), resulting in reduced accesses to the LLM’s parameters. A
challenge SpecInfer must address in token tree verification is efficiently computing the attention
scores for all sequences of a token tree. SpecInfer performs tree attention, a fast and cheap approach
to performing Transformer-based attention computation for a token tree, and a number of important
system-level optimizations to address this challenge.

Section 4.1 describes tree attention, Section 4.2 introduces the mechanism SpecInfer uses to verify a
token tree against an LLM’s output, and Section 4.3 presents SpecInfer’s optimizations to accelerate
token tree verification.

1For the root node r, Sr represents the token sequence {tr}.
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4.1 Tree Attention

Transformer-based language models use the attention mechanism to reason about sequential informa-
tion [36]. Modern LLMs generally use decoder-only, multi-head self-attention layers, each of which
takes a single input tensor X and computes an output tensor O via scaled multiplicative formulations
as follows.

Qi = X ×WQ
i , Ki = X ×WK

i , Vi = X ×WV
i , (3)

Ai =
(Qi ×KT

i )√
d

, Hi = softmax(mask(Ai))Vi, O = (H1, ...,Hh)W
O (4)

where Qi, Ki, and Vi denote the query, key, and value tensors of the i-th attention head (1 ≤ i ≤ h),
WQ

i , WK
i , and WV

i are the corresponding weight matrices. Ai is an l × l matrix that represents the
attention scores between different tokens in the input sequence, where l is the sequence length. To
preserve causality when generating tokens (i.e., a token in the sequence should not affect the hidden
states of any preceding tokens), the following casual mask function is applied:

mask(A)jk =

{
Ajk j ≥ k

−∞ j < k
(5)

Intuitively, when computing the attention output of the j-th token in the sequence, all subsequent
tokens should have an attention score of −∞ to indicate that the subsequent tokens will not affect the
attention output of the j-th token2. In Equation 4, Hi represents the output of the i-th attention head,
and WO is a weight matrix used for computing the final output of the attention layer.

Note that the attention mechanism described above applies to a sequence of tokens. Therefore, a
straightforward approach to verifying a token tree is computing the attention scores for individual
token sequences (i.e., Su for all u ∈ N ). However, this approach is computationally very expensive
and involves redundant computations, since two token sequences sharing a common prefix have the
same attention outputs for the common prefix due to the casual mask in Equation 4. To address this
issue, we generalize the attention mechanism to apply it to tree structures. For each node u in a
token tree, its attention output is defined as the output of computing attention on Su (i.e., the token
sequence represented by u). Note that the semantic of SpecInfer’s tree attention is different from
prior tree-structured attention work, which we discuss in Section 7.

4.2 Verification

For a given speculated token tree N , SpecInfer uses the tree attention mechanism described in
Section 4.1 to compute an attention output for each node u ∈ N . A key advantage of this approach
is enabling SpecInfer to examine all tokens in parallel by visiting the LLM’s parameters once.
This parallel decoding procedure generates an output tensor O that includes a token for each node
u ∈ N . Algorithm 2 shows SpecInfer’s verification process, which starts from the root of N and
iteratively examines a node’s speculated results against the LLM’s original output. For a node u ∈ N ,
SpecInfer successfully speculates its next token if u includes a child node v (i.e., pv = u) whose
token matches the LLM’s output (i.e., tv = O(u)). In this case, SpecInfer finishes its verification for
node u and moves on to examine its child v. When the node u does not include a child that contains
the LLM’s output, SpecInfer adds O(v) as a verified node in N and terminates the verification
process. Finally, all verified nodes are appended to the current generated token sequence S. Token
tree verification allows SpecInfer to opportunistically decode multiple tokens (instead of a single
token in the incremental decoding approach), while preserving the same generative performance as
incremental decoding.

4.3 Optimizations

This section describes a number of system-level optimizations in SpecInfer to accelerate token tree
verification.

2Note that we use −∞ (instead of 0) to guarantee that the softmax’s output is 0 for these positions.
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Figure 3: Comparing SpecInfer’s tree-based parallel decoding with sequence and token-based
decoding.

Depth-first search to update key-value cache. As shown in Equation 4, the attention mechanism
of Transformer [36] requires accessing the keys and values of all preceding tokens to compute the
attention output of each new token. To avoid recomputing these keys and values, today’s LLM
inference systems generally cache the keys and values of all tokens for reuse in future iterations, since
the casual relation guarantees that a token’s key and value remain unchanged in subsequent iterations.

A key challenge SpecInfer must address in verifying a token tree is that different sequences of in
the token tree may include conflicting key-value caches. For the speculated token tree at the top
of Figure 3, two token sequences (t2, t3, t4, t5) and (t2, t3, t8, t9) have different keys and values
for the third and fourth positions. A straight forward approach to supporting key-value cache is
employing the sequence-based decoding of existing LLM inference systems and have a different
key-value cache for each sequence of a token tree, as shown in the top-left of Figure 3. However,
this approach requires multiple replicas of key-value caches for verifying different sequences and
introduces redundant computations since sequences in a token tree may share common prefixes.

Instead of caching the keys and values for individual token sequences of a token tree, SpecInfer reuses
the same key-value cache across all token sequences by leveraging a depth-first search mechanism
to traverse the token tree, as shown in the top-right of Figure 3, where the arrows indicate how
the key-value cache is updated when decoding different tokens. By following a depth-first order
to traverse the token tree and update the shared key-value cache, SpecInfer is able to maintain the
correct keys and values for all preceding tokens when computing the attention output of a new token.

Tree-based parallel decoding. Existing LLM inference systems use an incremental decoding
approach that decodes a single token in each iteration during the generative phase. Therefore,
a similar approach for computing tree attention is iteratively calculating the attention output for
individual tokens in the token tree by following the depth-first order described earlier. However,
this approach would result in high GPU kernel launch overhead since each kernel only computes
tree attention for a single token. A key challenge that prevents SpecInfer from batching multiple
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tokens is that the attention computation for different tokens require different key-value caches and
therefore cannot be processed in parallel. For example, the token-based decoding in Figure 3 shows
the key-value caches needed for each token.

SpecInfer uses a tree-based parallel decoding algorithm to opportunistically batch multiple tokens
in a token tree. Specifically, SpecInfer leverages the casual mask of generative LLM inference
and groups multiple tokens into a single kernel if each token is the subsequent token’s parent. For
example, a depth-first search to traverse the token tree in Figure 3 is (t3, t4, t5, t6, t7, t8, t9). Instead
of launching 7 individual kernels to compute the tree attention for these tokens, SpecInfer groups
them into three kernels: (t3, t4, t5), (t6, t7), and (t8, t9), within each of which a token is a child
of the previous token. To batch attention computation, SpecInfer uses the key-value cache of the
kernel’s last token (i.e., t5 for the first kernel), which results in attention scores that violate the casual
dependency. SpecInfer then fixes the attention scores for these pairs. This approach computes the
exact same attention output as incremental decoding, while achieving much fewer kernel launches
compared to the sequence and token-based decoding mechanism.

5 Discussion

5.1 Overheads of Speculative Inference and Token Tree Verification

SpecInfer accelerates generative LLM inference at the cost of memory and computation overheads.
This section analyzes these overheads and show that they are generally one or two orders of magnitude
smaller than the memory and computation cost of performing LLM inference using incremental
decoding.

Memory overhead. The memory overhead of SpecInfer’s speculation-verification approach comes
from two aspects. First, in addition to serving an LLM, SpecInfer also needs to allocate memory
for saving the parameters of one or multiple small models, which collectively speculate the LLM’s
output. Our evaluation shows that SpecInfer can achieve significant performance improvement by
using speculative models 40-100× smaller than the LLM. As a result, hosting each small speculative
model (SSM) increases the overall memory requirement by 1-2%. A second source of memory
overhead comes from the token tree verification engine, which verifies an entire token tree instead of
decoding a single token. Therefore, additional memory is needed for storing the keys, values, and
attention scores for all tokens in a token tree. Due to the necessity for supporting very long sequence
length in today’s LLM serving, we observe that the memory overhead associated with the token tree
is negligible compared to the key-value cache. For example, GPT-4 supports processing up to 32K
tokens in a single request; our evaluation shows that a token tree of size 32 or 64 already allows
SpecInfer to match xxx tokens on average.

Computation overhead. Similarly, the computation overhead introduced by speculation inference
and verification also comes from two aspects. First, SpecInfer needs to run multiple SSMs in the
incremental-decoding mode to generate candidate token sequences. SpecInfer processes the SSMs in
parallel across GPUs to minimize the latency for generating a speculated token tree. Our evaluation
shows that the latency of running a SSM in the incremental-decoding mode is 3.7× better than
that of an LLM. Second, SpecInfer verifies a token tree by computing the attention outputs for
all token sequences of the tree, most of which do not match the LLM’s output and therefore are
unnecessary in the incremental-decoding inference. However, the key-value cache mechanism of
existing LLM inference systems prevents them from serving a large number of requests in parallel,
resulting in under-utilized computation resources on GPUs when serving LLMs in incremental
decoding. SpecInfer’s token tree verification leverages these under-utilized resources and therefore
introduces negligible runtime overhead compared to incremental decoding.

5.2 Applications

Our speculative inference and token tree verification techniques can be directly applied to a variety of
generative LLM applications. We identify two practical scenarios where generative LLM inference
can significantly benefit from our techniques.
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Figure 4: Comparing the end-to-end inference latency of incremental decoding and SpecInfer on five
prompt datasets. We use LLaMA-7B as the LLM and all SSMs are derived from LLaMA-160M. The
performance is normalized by incremental decoding, and the numbers on the SpecInfer bars indicate
the speedups over incremental decoding.

Distributed generative LLM inference. The memory requirements of modern LLMs exceed
the capacity of a single compute node with one or multiple GPUs, and the current approach to
addressing the high memory requirement is distributing the LLM’s parameters across multiple GPUs.
For example, serving a single inference pipeline for GPT-3 with 175 billion parameters requires
more than 16 NVIDIA A100-40GB GPUs to store the model parameters in single-precision floating
points. Distributed generative LLM inference is largely limited by the latency to transfer intermediate
activations between GPUs for each LLM decoding step. While SpecInfer’s approach does not
directly reduce the amount of inter-GPU communications for LLM inference, SpecInfer verification
mechanism can increase the communication granularity and reduce the number of LLM decoding
steps.

Offloading-based generative LLM inference. Another practical scenario where SpecInfer’s
techniques can help is to help reduce the end-to-end inference latency for offloading-based generative
LLM serving systems, which leverages CPU DRAM to store an LLM’s parameters and loads a
subset of these parameters to GPUs for computation in a pipeline fashion [30]. By opportunistically
verifying multiple tokens, SpecInfer can effectively reduce the number of LLM decoding steps and
the overall communication between CPU DRAM and GPU HBM.

6 Evaluation

6.1 Implementation

SpecInfer was implemented on top of FlexFlow [19, 35], a distributed multi-GPU runtime for DNN
computation. FlexFlow exposes an API that allows the user to define a DNN model in terms of its
layers. The user can also provide a parallelization plan, specifying the degree of data, model, and
pipeline parallelism of each layer. During the training phase, FlexFlow can automatically discover
the best parallelization plan, which can then be saved and reused in the inference stage.

Internally, FlexFlow represents a DNN as a computational graph where each node is a region of
memory, and each edge is an operation on one or more regions. Operations can be represented
using three levels of abstraction: layers, operators, and tasks. The FlexFlow compiler transforms the
computational graph from the highest abstractions (layers) to the lowest (tasks). Tasks are also the
unit of parallelization; they are non-preemptible, and are executed asynchronously.

6.2 Experimental Setup

Datasets. We evaluate SpecInfer on five conversational datasets, namely Chatbot Instruction
Prompts (CIP) [25], ChatGpt Prompts (CP) [23], WebQA [1], Alpaca [33, 27], and PIQA [2]. We
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only use the prompts/questions from these datasets to form our input prompts to simulate the real-
world conversation trace. We randomly selected at most 1000 prompts from each dataset in our
evaluation.

Models. To test our system against mainstream generative LLMs, we evaluate our results using
two publicly available language models: OPT [44] and LLaMA [34]. More specifically, we select
OPT-13B and LLaMA-7B as the LLMs and collectively boost-tune SSMs from OPT-125M and
LLaMA-160M. The pre-trained model parameters for OPT-13B, LLaMA-7B, and OPT-125M were
directly acquired from their HuggingFace repositories [17]. We didn’t find a publicly available
pre-trained version of small LLaMA models, and therefore trained a LLaMA-160M from scratch for
one epoch using the Wikipedia dataset [10], which took approximately 35 hours on a single NVIDIA
A100 GPU. We also used the OpenWebText Corpus [14] to (1) collectively boost-tune multiple SSMs
for speculative inference, and (2) collect training data for the learning-based speculative scheduler.
Section 6.4 and Section 6.5 report our evaluation on these two components.

Platform. The experiments were conducted on an AWS g4dn.12xlarge instance, each of which
is equipped with four NVIDIA T4 16GB GPUs, 48 CPU cores, and 192 GB DRAM. The LLMs
used in our evaluation do not fit on a single T4 GPU. Therefore SpecInfer performs LLM inference
in single-precision floating points and serves the LLMs across the four GPUs using pipeline model
parallelism. SpecInfer serves each SSM on a dedicated GPU and runs these SSMs in parallel for a
given sequence of tokens.

6.3 End-to-end Performance

We compare the end-to-end inference latency between incremental decoding and SpecInfer on
the five prompt datasets. For each prompt dataset, we measured the inference latency of the two
approaches on up to 1000 prompts and reported the average inference latency. Figure 4 shows the
results. Compared to incremental decoding, SpecInfer reduces the inference latency by 1.9 - 2.7×
while generating the exact same sequence of tokens as incremental decoding for all prompts. The
performance improvement is mostly realized by SpecInfer’s ability to verify multiple tokens in a
single LLM decoding step. Next, we evaluate how collective boost-tuning and the learning-based
speculative scheduler help improve SpecInfer’s inference performance.

6.4 Collective Boost-Tuning

In this section, we demonstrate the effectiveness of collective boost-tuning in terms of improving
the average number of verified tokens in each LLM decoding step. For both the OPT and LLaMA
experiments, we fine-tuned four SSMs over the OpenWebText Corpus using collective boost-tuning
on top of the pre-trained OPT-125M and LLaMA-160M models, which provides a collection of five
SSMs (including the base SSM) in each experiment. As shown in Figure 5 and Figure 6, the average
number of tokens verified by SpecInfer in each LLM decoding step increases consistently across all
five datasets due to better alignment between the LLM and our tuned collection of SSMs. Table 1
and Table 2 further list the corresponding values and show an overall improvement of 26.4% and
24.8% respectively compared to using only a single pre-trained SSM.
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Table 1: Average number of tokens verified by SpecInfer in a decoding step. We used OPT-13B as
the LLM and used different numbers of collectively boost-tuned SSMs, all of which were derived
from OPT-125M. The beam depth is 16 for all SSMs.

# SSMs 1 2 3 4 5

CIP 3.00 3.39 3.52 3.58 3.74
CP 2.95 3.35 3.49 3.52 3.68

WebQA 2.51 2.92 3.04 3.09 3.20
Alpaca 3.33 3.89 4.06 4.17 4.35
PIQA 2.75 3.14 3.26 3.31 3.43
Avg 2.91 3.34 3.47 3.53 3.68

CIP CP WebQA Alpaca PIQA
Dataset

0

1

2

3

4

Av
g 

To
ke

ns
 G

en
er

at
e 

P
er

 L
LM

 R
un

1 SSM 2 SSMs 3 SSMs 4 SSMs 5 SSMs

Figure 5: Average number of tokens verified by SpecInfer in each LLM decoding step over five
datasets. We use a fixed speculation length of 16 for all the SSMs in this experiment. We used
OPT-13B as the LLM and used four SSMs boost-tuned from OPT-125M.
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Figure 6: Average number of tokens verified by SpecInfer in each LLM decoding step over five
datasets. We use a fixed speculation length of 16 for all the SSMs in this experiment. We used
LLaMA-7B as the LLM and used four SSMs boost-tuned from LLaMA-160M.
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Table 2: Average number of tokens verified by SpecInfer in a decoding step. We used LLaMA-7B as
the LLM and used different numbers of collectively boost-tuned SSMs, all of which were derived
from LLaMA-160M. The beam depth is 16 for all SSMs.

# SSMs 1 2 3 4 5

CIP 2.47 2.81 2.93 3.10 3.13
CP 1.97 2.37 2.47 2.64 2.65

WebQA 2.09 2.28 2.34 2.45 2.47
Alpaca 2.29 2.56 2.62 2.74 2.76
PIQA 1.89 2.13 2.21 2.34 2.36
Avg 2.14 2.43 2.51 2.65 2.67

Table 3: The number of LLM runs and SSM runs with or without the presence of the matching length
predictor. When there is no predictor, we use a fixed speculation length of 16 for all the SSMs in this
experiment. LLM: OPT-13B, SSMs: OPT-125M

LLM run SSM run

w/ predictor w/o predictor w/ predictor w/o predictor

CIP 8812 8449 56401 135184
CP 3625 3462 23172 55392

WebQA 12624 12080 74953 193280
Alpaca 11123 10684 72863 170944
PIQA 12625 11560 74548 184960

6.5 Learning-based Speculative Scheduler

For the learning-based speculative scheduler, we demonstrate some preliminary results on the
matching length predictor in this section. We use a three-layer MLP with a hidden feature size of
64 as our predictor. We train the predictor on 200K samples over the OpenWebText corpus. The
labels are generated using OPT-13B as the LLM and OPT-125M as the SSM. As shown in Table 3,
using the predictor can achieve similar LLM runs while reducing the SSM runs significantly due to
dynamic speculation length. Nevertheless, there is still plenty of space to improve the predictor as the
optimal SSM run would be the average matching length times the LLM run.

7 Related Work

Transformer-based [36] generative LLMs have demonstrated significant potential in numerous human-
level language modeling tasks by continuously increasing their sizes [28, 31, 9, 7]. As GPT-3 [3]
becomes the first model to surpass 100B parameters, multiple LLMs (>100B) have been released,
including OPT-175B [44], Bloom-176B [29], and PaLM [7]. Recent work has proposed a variety of
approaches to accelerating generative LLM inference, which can be categorized into two classes.

Lossless acceleration. Prior work has explored the idea of using an LLM as a verifier instead of
a decoder to boost inference. For example, Yang et al. [41] introduced inference with reference,
which leverages the overlap between an LLM’s output and the references obtained by retrieving
documents, and checks each reference’s appropriateness by examining the decoding results of the
LLM. Motivated by the idea of speculative execution in processor optimizations [4, 15], recent work
proposed speculative decoding, which uses a small language model to produce a sequence of tokens
and examines the correctness of these tokens using an LLM [21, 39, 32, 5, 20]. There are three key
differences between SpecInfer and these prior works. First, instead of only considering a single
sequence of tokens, SpecInfer generates and verifies a token tree, whose nodes each represent a unique
token sequence. SpecInfer performs tree attention to compute the attention output of these token
sequences in parallel and uses a novel tree-based decoding algorithm to reuse intermediate results
shared across these sequences. Second, prior attempts generally consider a single small language

13



model for speculation, which cannot align well with an LLM due to the model capacity gap between
them. SpecInfer introduces collective boost-tuning to adapt different SSMs to align with an LLM
under different scenarios, which largely increases the coverage of the speculated token trees produced
by SpecInfer. Third, an additional challenge SpecInfer has to address is deciding the speculative
configuration for a given speculation task. SpecInfer leverages an important observation that the
tokens generated by an LLM involve diverse difficulties to speculate, and uses a learning-based
speculator to learn to decide which SSMs to use and the speculative configurations for them.

Prior work has also introduced a variety of techniques to optimize ML computations on modern
hardware platforms. For example, TVM [6] and Ansor [45] automatically generate efficient kernels for
a given tensor program. TASO [18] and PET [38] automatically discover graph-level transformations
to optimize the computation graph of a neural architecture. SpecInfer’s techniques are orthogonal and
can be combined with these systems to accelerate generative LLM computation, which we believe is
a promising avenue for future work.

Lossy acceleration. Another line of research leverages model compression to reduce LLM inference
latency while compromising the predictive performance of the LLM. For example, prior work
proposed to leverage weight/activation quantization of LLMs to reduce the memory and computation
requirements of serving these LLMs [40, 12, 26, 42, 8]. Recent work further explores a variety of
structured pruning techniques for accelerating Transformer-based architectures [11, 37, 16]. A key
difference between SpecInfer and these piror works is that SpecInfer does not directly reduce the
computation requirement for performing LLM inference, but instead reorganizing LLM inference
computation in a more parallelizable way, which reduces memory accesses and inference latency at
the cost of manageable memory and computation overheads.

8 Conclusion

This paper introduces SpecInfer, an LLM serving system that accelerates generative LLM inference
with speculative inference and token tree verification. A key insight behind SpecInfer is to combine
various collectively boost-tuned versions of small language models to efficiently predict the LLM’s
outputs. SpecInfer significantly reduces the memory accesses to the LLM’s parameters and the
end-to-end LLM inference latency.
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