
A Multi-Level Superoptimizer for Tensor Programs
Mengdi Wu

Carnegie Mellon University
Pittsburgh, PA, USA

mengdiwu@andrew.cmu.edu

Xinhao Cheng
Carnegie Mellon University

Pittsburgh, PA, USA
xinhaoc@andrew.cmu.edu

Oded Padon
VMware Research
Palo Alto, CA, USA

oded.padon@gmail.com

Zhihao Jia
Carnegie Mellon University

Pittsburgh, PA, USA
zhihao@cmu.edu

Abstract
We introduce Mirage, the first multi-level superoptimizer for
tensor programs. A key idea in Mirage is 𝜇Graphs, a uniform
representation of tensor programs at the kernel, thread block,
and thread levels of the GPU compute hierarchy. 𝜇Graphs
enable Mirage to discover novel optimizations that combine
algebraic transformations, schedule transformations, and
generation of new custom kernels. To navigate the large
search space, Mirage introduces a pruning technique based
on abstraction that significantly reduces the search space and
provides a certain optimality guarantee. To ensure that the
optimized 𝜇Graph is equivalent to the input program, Mirage
introduces a probabilistic equivalence verification procedure
with strong theoretical guarantees. Our evaluation shows
that Mirage outperforms existing approaches by up to 3.5×
even for DNNs that are widely used and heavily optimized.
Mirage is publicly available at https : //github.com/mirage-
project/mirage.

1 Introduction
Enabling high-performance execution of deep neural net-
works (DNNs) on GPUs is critical for modern ML applica-
tions. Today’s DNN frameworks generally specify DNN com-
putation using tensor programs, which are directed acyclic
graphs whose nodes and edges represent tensor algebra
operators (e.g., matrix multiplications) and tensors (i.e., 𝑛-
dimensional array) shared between operators.

To optimize an input tensor program, existing frameworks
(e.g., PyTorch [31] and TensorFlow [10]) use manually de-
signed rules to map the tensor program to expert-written
GPU kernels. These approaches generally require extensive
engineering efforts to design and implement optimization
rules, and may miss some optimization opportunities. To
address these challenges, recent work introduced automated
approaches to optimizing tensor programs by searching over
a comprehensive space of program transformations and ap-
plying them based on their performance on target GPUs.
These approaches generally fall into two categories.

The first category ofwork, includingHalide [32], TVM [15],
and Ansor [45], is motivated by the idea of algorithm and

schedule separation1 introduced in Halide and optimizes the
schedule of a tensor program while fixing the algorithm. For
a given algorithm, these optimizers automatically generate
performant kernels by searching over possible strategies for
executing the kernel on the target hardware. However, due
to the linear algebra nature of DNNs, a tensor program can
be represented by a wide spectrum of mathematically equiva-
lent algorithms, and existing schedule-based optimizers only
consider kernels whose algorithms are manually specified
by users, resulting in missed optimization opportunities.

The second category of work, including TASO [26], Grap-
pler [3], Tensat [43], and PET [41] consider algebraic transfor-
mations, which exploit mathematical equivalence between
different algorithms for a tensor program. Example alge-
braic transformations include (1) converting a linear algebra
operator into another such as a convolution to a matrix mul-
tiplication, (2) fusing multiple operators to reduce memory
access and kernel overhead, and (3) reordering operators
based on commutativity and associativity. These algorithm
optimizers perform algebraic transformations at the algo-
rithm level and require programmers to manually define the
set of available kernels and their implementations. They are
thus limited by the performance of the provided kernels.
All existing automated optimization approaches, from

both categories, still require programmers to manually spec-
ify a set of kernels (each defined by a tensor function), and
then explore the search space of algebraic or schedule trans-
formations. However, some advanced performance optimiza-
tions require coordinated transformations at the kernel, thread
block, and thread levels of the GPU compute hierarchy, and
involve introducing completely new kernel computations
(e.g., a custom kernel that decomposes standard kernels and
fuses only some of their computations). Such optimizations
are not part of the search space of existing automated meth-
ods and must still be implemented manually.
One such example is FlashAttention [19] (see §3 for de-

tails), which optimizes attention [42] on GPUs by reordering
operators at the algorithm level (algebraic transformations),
reorganizing the computation across GPU kernels (yielding

1In the schedule optimization literature, an algorithm describes what to
compute in a kernel and a schedule specifies how to compute the kernel.

1

https://github.com/mirage-project/mirage
https://github.com/mirage-project/mirage

Input Tensor Program

Program Partitioning

Lax Subprogram Lax Subprogram

Lax Subprogram

𝜇Graph (§3)

Expression-Guided 𝜇Graph Generator (§4)

𝜇Graph 𝜇Graph…
𝜇Graph Candidate

Probabilistic Equivalence Verifier (§5)
Verified 𝜇Graph …

Verified 𝜇Graph
𝜇Graph Optimizer (§6)

…

Layout Optimizations Postprocessing

Optimized Tensor Program

Verified 𝜇Graph

Optimized 𝜇Graph

Figure 1. An overview of Mirage.

new custom kernels), and adapting the parallelization strat-
egy of each kernel to the GPU architecture (schedule trans-
formations). The transformations required for this example
cannot be automatically discovered by existing frameworks
and must therefore be implemented manually. An implemen-
tation of FlashAttention in Triton [38], a widely used tensor
program optimizer, includes more than 600 lines of code [9].
We present Mirage, the first multi-level superoptimizer

for tensor programs. Mirage is able to automatically dis-
cover and verify sophisticated tensor program optimizations
that require joint optimization of algebraic transformations,
schedule transformations, and discovery of new custom ker-
nels.

A key idea in Mirage is 𝜇Graphs, a hierarchical graph rep-
resentation that specifies a tensor program at multiple levels
of the GPU compute hierarchy. By uniformly treating the
kernel, thread block, and thread levels, 𝜇Graphs can capture
both algebraic and schedule transformations. Moreover, op-
timizing a 𝜇Graph can introduce new custom kernels, which
goes beyond both algebraic and schedule transformations.
For example, Mirage automatically discovers the 𝜇Graphs
that represent FlashAttention [19] and its inference variant
FlashDecoding [5] as well as other 𝜇Graphs that outperform
these manually designed kernels by up to 3.5× for certain
use cases. Most of these Mirage-discovered optimizations
are outside of the search space of existing approaches.

Figure 1 shows an overview of Mirage. Mirage first splits
an input tensor program into subprograms which fall in the
restricted Lax fragment. The Lax fragment, formally defined
in § refsec:verify, includes multi-linear operators such as
matrix multiplication and convolution, division (which is
useful for normalizations), and limited use of exponentiation
(which is useful for activations). The partitioning to Lax
subprograms reduces the optimization search space while

preserving most optimization opportunities; it also enables
Mirage’s probabilistic equivalence verifier.

Expression-guided 𝜇Graph generator. For each Lax sub-
program, Mirage’s expression-guided generator uses exhaus-
tive search to find possible 𝜇Graphs that are equivalent to
it. A key challenge Mirage has to address is its significantly
larger search space compared to prior superoptimization
techniques for ML. For example, TASO [26] and PET [41]
only search for tensor programs at the kernel level by using a
fixed set of pre-defined kernels, while Mirage simultaneously
considers superoptimizations at the kernel, thread block, and
thread levels. To efficiently navigate this significantly larger
and more complex search space, Mirage introduces a novel
pruning technique based on abstract expressions. This ap-
proach greatly reduces the number of 𝜇Graphs Mirage has
to consider while providing a theoretical guarantee on the
optimality of the discovered 𝜇Graphs (§ 4.3).

Probabilistic equivalence verifier. For a 𝜇Graph discov-
ered by Mirage, verifying its functional equivalence with the
input program introduces another challenge, since the input
and output tensors of a program include up to many mil-
lions of elements. A key idea behind Mirage is probabilistic
equivalence verification, which performs random tests over
finite fields to check equivalence between 𝜇Graphs. While
random tests can hardly provide any correctness guarantees
for general programs, Mirage relies on a novel theoretical
result to show that the restrictions of the Lax fragment en-
sure that for Lax programs, random tests over finite fields
offer strong correctness guarantees.We essentially show that
an algorithm for polynomial identity testing (PIT) [34, 48]
can be generalized to Lax programs, yielding a randomized
algorithm for Lax program equivalence that can be made
arbitrarily precise. Mirage uses this randomized algorithm to
(probabilistically) ensure that the output optimized program
is equivalent to the input program.

𝜇Graph optimizer. For each verified 𝜇Graph, Mirage’s
𝜇Graph optimizermaximizes its runtime performance by con-
sidering potential data layouts for all intermediate tensors
at all of the kernel, thread block, and thread levels. Finally,
Mirage returns an optimized tensor program based on the
best discovered 𝜇Graph for each individual Lax subprogram.

Evaluation results. We evaluate Mirage on 12 bench-
marks commonly used in today’s DNNs, including different
variants of attention [11, 35, 42], low-rank adaptation [25],
and multi-layer perceptron [24]. Even for DNN benchmarks
that are widely used and heavily optimized by existing sys-
tems such as the group-query attention used in today’s large
language models [40], Mirage still outperforms existing sys-
tems by up to 3.5×, by exploiting subtle custom kernels and
optimizations missing in existing systems.

2

Grid
Thread Block

Shared Memory

Device Memory

RF RF RF RF

Th
re

ad

Thread Block

Shared Memory

RF RF RF RF
Th

re
ad Per-Thread

Register File (RF)

Per-Thread-Block
Shared Memory

Per-GPU
Device Memory

Thread Block

Thread

Figure 2. GPU compute and memory hierarchy.

2 Multi-Level Graph Representation
Mirage uses a 𝜇Graph to specify the execution of a tensor
program on GPUs. A 𝜇Graph contains hierarchical graphs
at multiple levels to represent computation at the kernel,
block, and thread levels2. This section first describes the
GPU hierarchy and uses Figure 4c as a running example to
introduce the key components of a 𝜇Graph.

GPU hierarchy. Figure 2 shows the hierarchy of today’s
GPUs. Computation on GPUs is organized as kernels, each
of which is a function executed simultaneously on multiple
GPU cores in a single-program-multiple-data (SPMD) fash-
ion. A kernel includes a grid of thread blocks, each of which is
executed on one GPU streaming multiprocessor and includes
multiple threads to perform computation on individual data
elements. Each thread is associated with a per-thread register
file, and all threads within a thread block can access shared
memory to enable collective operations. Finally, all inputs
and outputs of a kernel are stored in GPU device memory.

Kernel graph. Each tensor program corresponds to one
kernel graph, where each node represents a kernel running
on an entire GPU and each edge is a tensor shared between
kernels. All tensors in a kernel graph are stored in GPU
device memory since different kernels cannot share data
in register file or shared memory. Each node in a kernel
graph can be a pre-defined kernel operator supported by
existing kernel libraries such as convolution by cuDNN [17]
and matrix multiplication by cuBLAS [18]. In addition, to
enable fine-grained inter-kernel optimizations such as kernel
fusion, a node in a kernel graph can also be a graph-defined
kernel operator, whose semantic and behavior are defined by
a lower-level (i.e., block) graph. As an example, both kernel
operators in Figure 4c are graph-defined operators, each of
which is specified by a block graph.

Block graph. A block graph specifies computation as-
sociated with a thread block3, where each node denotes a
block operator which specifies computation within a block
2For simplicity, we use the term block to refer to a thread block of a CUDA
kernel and thread to refer to a single CUDA thread.
3In the CUDA programming model, a kernel’s computation is defined as
computations for independent thread blocks.

block (x=0) block (x=1) block (x=2) block (x=3)
i=0

i=1

i=2

i=3

i=0

i=1

i=2

i=3

i=0

i=1

i=2

i=3

i=0

i=1

i=2

i=3

grid dimensions: [x=4]

lo
op

 d
im

: [
i=

4]

(a) imap= {𝑥↔column}, fmap= {𝑖↔ row}

block (x=0, y=0) block (x=1, y=0) block (x=0, y=1) block (x=1, y=1)

i=
 0

i=
 1

i=
 2

i=
 3

i=
 0

i=
 1

i=
 2

i=
 3

i=
 0

i=
 1

i=
 2

i=
 3

i=
 0

i=
 1

i=
 2

i=
 3

grid dimensions: [x=2, y=2]

loop dim: [i=4]

(b) imap= {𝑥↔ row, 𝑦↔𝜙 }, fmap= {𝑖↔column}

Figure 3. Demonstrating how an input tensor is partitioned
across blocks and for-loop iterations with imap and fmap.

and each edge (blue arrows in Figure 4c) is a tensor shared
between block operators. Mirage requires that all intermedi-
ate tensors within a block graph are stored in GPU shared
memory for two considerations. First, GPU shared memory
offers much higher bandwidth than device memory, and this
design allows Mirage to reduce device memory access by
maximally saving intermediate results in shared memory.
Second, for tensors whose sizes exceed the shared memory
capacity and must be stored in the device memory, Mirage
uses these tensors to split computation into multiple block
graphs, each of which only contains tensors in shared mem-
ory. This separation does not introduce additional access to
device memory.

Each block graph is also associated with a few properties
to specify its execution, which we introduce as follows.

Grid dimensions. All blocks within a kernel are orga-
nized by a mesh with up to 3 dimensions, identified as 𝑥 , 𝑦,
and 𝑧. Correspondingly, a block graph is associated with up
to three grid dimensions that specify the number of blocks
along the 𝑥 , 𝑦, and 𝑧 dimensions. The two block graphs in
Figure 4c launch 80 (i.e., 8 × 10) and 64 (i.e., 8 × 8) blocks.
First, for each input tensor to a graph-defined kernel op-

erator (e.g., 𝑄 , 𝐾 , and 𝑉 in the kernel graph in Figure 4c),
the associated block graph contains an imap, which speci-
fies how the input tensor is partitioned into sub-tensors for
individual blocks. For each grid dimension (i.e., 𝑥 , 𝑦, or 𝑧),
the imap maps it to (1) a data dimension of the input tensor
or (2) a special replica dimension 𝜙 . For (1), the mapped data
dimension is equally partitioned across blocks along the grid
dimension. For (2), the input tensor is replicated across these
blocks. As an example, block graph 1 in Figure 4c takes three
inputs — 𝑄 , 𝐾 , and 𝑉 , which represent the input tensors to

3

each block. For 𝑄 , its imap= {𝑥↔ℎ,𝑦↔𝜙} indicates that
the ℎ dimension of tensor 𝑄 is partitioned into 8 equally
sized chunks, and each of these chucks is replicated 10 times
along the 𝑦 dimension. As a result, each block takes an input
tensor 𝑄 of shape [ℎ=8, 𝑠 =1, 𝑑 =64].
Second, for each output tensor of a block graph (e.g., 𝐴

and 𝐵 in Figure 4c), the block graph includes an omap, which
specifies how the outputs of all blocks are concatenated to
construct the final output of the kernel operator (e.g., 𝐴 and
𝐵 in Figure 4c). In an omap, each grid dimension must map
to a data dimension of the output tensor, since different
blocks must save to disjoint tensors in device memory. For
𝐵 of shape [ℎ=1, 𝑠 =8, 𝑑 =64] in Figure 4c, its omap= {𝑥↔
ℎ,𝑦↔𝑑} indicates that blocks with the same 𝑥 index are
concatenated along the ℎ dimension and that blocks with
the same 𝑦 index are concatenated along the 𝑑 dimension,
resulting in a tensor 𝐵 of shape [ℎ=8, 𝑠 =8, 𝑑 =640].

For-loop dimensions. To fit large input tensors in shared
memory and allow cache reuse, a second property associated
with each block graph is for-loop dimensions, which collec-
tively specify how many times the block graph is executed
to complete a kernel. For example, block graph 1 in Figure 4c
has a for-loop dimension 𝑖 =20, indicating it is executed 20
times to finish the associated graph-defined kernel operator.
Correspondingly, each input tensor to a block graph is first
sent to an input iterator that loads a part of the tensor (e.g.,𝑄 ,
𝐾 , and 𝑉) from device memory to shared memory. Each in-
put iterator is associated with an fmap to specify which part
of the input tensor to load in each iteration. Formally, the
fmap maps each for-loop dimension to (1) a data dimension
of the input tensor or (2) the replica dimension 𝜙 . Similar to
the semantic of imap, the input tensor is equally partitioned
along that dimension for (1) and replicated for (2). Figure 3
shows how an input matrix is partitioned across blocks and
for-loop iterations with different imap and fmap.
In addition, a block graph contains output accumulators

to accumulate its output across iterations in shared memory
and save the final results back to device memory. Similar to
an input iterator, an output accumulator is also associated
with an fmap to specify how the output tensors of different
iterations are combined to produce the final results. Specif-
ically, the fmap maps each for-loop dimension to either a
data dimension, which results in concatenation of the out-
put along that dimension, or the replica dimension 𝜙 , which
results in the output being accumulated in shared memory.

Thread graph. A thread graph further reduces the scope
of computation from a block to a single thread. Similar to a
block graph, each thread graph is also associated with block
dimensions, which specify the organization of threads within
the block, and for-loop dimensions, which define the total
number of iterations to finish the defined computation. Each
thread graph includes input iterators, each of which loads an

input tensor (e.g., 𝐶 in Figure 4c) from GPU shared memory
to register file, and output accumulators, each of which saves
an output tensor from register file back to shared memory
(e.g., 𝐷 and 𝐸). A thread graph is the lowest level graph in a
𝜇Graph and only contains pre-defined thread operators.

Tensor layout. Each tensor in the kernel, block, or thread
graph is associated with a tensor layout (omitted in Figure 4
for simplicity), which specifies how the tensor is linearized in
memory. Note that tensor layout only affects the execution
performance of a 𝜇Graph and has no impact on its output.

Comparisonwith prior work. Prior work separately con-
siders algebraic [26, 41] or schedule transformations [15, 30,
32], while 𝜇Graphs can represent both in a uniform way.
Specifically, the grid and for-loop dimensions and their cor-
responding mappings (i.e., imap, omap, and fmap) to tensor
dimensions constitute a comprehensive search space of pos-
sible schedules for graph-defined operators. The hierarchical
graphs at the kernel, block, and thread levels allow Mirage
to explore algebraic transformations at these levels.

3 Case Study: Group-Query Attention
In this section, we use group-query attention [11] as a case
study to demonstrate the advantages of the 𝜇Graph repre-
sentation and Mirage’s superoptimization approach. Group-
query attention (GQA) reduces the memory requirement of
storing keys and values compared to conventional multi-
head attention [42], and has been widely used in recent large
language models such as LLAMA-2-70B [40]. GQA allows a
subset of query heads to share the same key and value head
when computing attention. Formally, GQA takes a query
tensor 𝑄 , a key tensor 𝐾 , and a value tensor 𝑉 as inputs
and computes an output tensor 𝑂 via scaled multiplicative
formulations:

𝐴𝑖 =
1
√
𝑑
(𝑄𝑖×𝐾⌊𝑖/𝑔⌋), 𝐻𝑖 = softmax(𝐴𝑖),𝑂𝑖 = 𝐻𝑖×𝑉⌊𝑖/𝑔⌋ (1)

where 𝑑 is the hidden dimension size (a constant), 𝑄𝑖 is the
tensor for the 𝑖-th query head (0≤ 𝑖 <ℎ),𝐾 𝑗 and𝑉𝑗 denote the
key and value tensors of the 𝑗-th key-value head (0≤ 𝑗 <ℎ/𝑔),
and 𝑔 is the number of subgroups in GQA.
Figure 4a shows the computation graph of GQA, where

𝑄 , 𝐾 , and 𝑉 denote the three input tensors and numbers
in bracket indicate their shapes. We use ℎ, 𝑠 , and 𝑑 to refer
to the head, sequence, and hidden dimensions of the ten-
sors. The computation graph shows incremental decoding
of GQA, where a single query token (i.e., 𝑠 =1 for 𝑄) attends
to 2000 previous tokens to compute the attention output. To
batch the first and last matrix multiplication in GQA, existing
frameworks (logically) replicate the key and value tensors
to match the head dimension of the query tensor. The Exp,
Sum, and Div operators collectively compute softmax.

To optimize memory access, FlashAttention [19] and its in-
ference variant FlashDecoding [5] apply amanually designed

4

Kernel graph

Repeat

Repeat

[h=8, s=2000, d=64]

[h=8, s=2000, d=64]

[h=64, s=1, d=64] Batch
Matmul Exp Sum Div Batch

Matmul O [h=64, s=1, d=64]

[h=64, s=2000, d=64]

[h=64, s=2000, d=64]

𝑄

𝐾

𝑉

(a) Computation graph for group-query attention.

Block graph 2

Kernel graph

Repeat

𝑄

𝐾

𝑉 Repeat

[h=8, s=2000, d=64]

[h=8, s=2000, d=64]

[h=64, s=1, d=64]

Kernel
Op 1

Block graph 1
grid size: [x=64, y=10], forloop: [i=20]

𝑄$

𝐾$

𝑉$

[h=1, s=1, d=64]
imap: {x↔h, y↔∅}

[h=1, s=200, d=64]
imap: {x↔h, y↔s}

[h=1, s=200, d=64]
imap: {x↔h, y↔s}

Input
Iterator

Input
Iterator

fmap: {i↔s}

fmap: {i↔s}

Input
Iterator GEMV Exp Sum

GEMV[s=10, d=64]

[s=10, d=64]

Output
Accum �̅�

[h=1, s=1, d=1]
omap: {x↔h, y↔s}

Output
Accum 𝐵$

[h=1, s=1, d=64]
omap: {x↔h, y↔s}

𝐴

𝐵

[h=64, s=10, d=1]

[h=64, s=10, d=64]

Kernel
Op 2

grid size: [x=64], forloop: []

�̅�′

𝐵′+ Input
Iterator

Input
Iterator

[h=1, s=10, d=1]
imap: {x↔h}

Sum

Sum

Div Output
Accum 𝑂$

O [h=64, s=1, d=64]

[h=1, s=10, d=64]
imap: {x↔h}

[h=1, s=1, d=64]
omap: {x↔h}

fmap: {}

fmap: {}

fmap: {i↔∅}

fmap: {}

fmap: {}

(b) Implementation of group-query attention in FlashDecoding [5] using two kernels. The first kernel computes two BatchMatmuls, Exp, and partial
Sum, and accumulates intermediate results in 𝐴 and 𝐵, while the second kernel concludes the Sum and computes Div.

Block graph 2

Kernel graph
𝑄

𝐾

𝑉

[h=8, s=2000, d=64]

[h=8, s=2000, d=64]

[h=64, s=1, d=64]

GraphDef
Op 1

Block graph 1

𝑄$

𝐾$

𝑉$

[h=8, s=1, d=64]
imap: {x↔h, y↔∅}

[h=1, s=200, d=64]
imap: {x↔h, y↔s}

[h=1, s=200, d=64]
imap: {x↔h, y↔s}

Input
Iterator

Input
Iterator

Input
Iterator Reshape GraphDef

Op1

Matmul

Output
Accum �̅�

[h=1, s=8, d=1]
omap: {x↔h, y↔d}

Output
Accum 𝐵$

[h=1, s=8, d=64]
omap: {x↔h, y↔d}

𝐴

𝐵

[h=8, s=8, d=10]

[h=8, s=8, d=640]

GraphDef
Op 2

grid size: [x=8, y=8], forloop: []

�̅�′

𝐵′* Input
Iterator

Input
Iterator

[h=1, s=1, d=10]
imap: {x↔h, y↔s}

Sum

Sum

Div Output
Accum 𝑂$

O [h=64, s=1, d=64]

[h=1, s=1, d=640]
imap: {x↔h, y↔s}

[h=1, s=1, d=64]
omap: {x↔h, y↔h}

Thread graph

Input
Iterator Exp Sum Output

Accum
Output
Accum

Tensor core operator

CUDA thread operator

Block operator

Kernel operator Tensors in device memory

Tensors in shared memory

Tensors in register file

Matmul

[s=10, d=64]

[s=8, d=64]

𝐶̿

block size: [x=8], forloop: []

𝐶̅ 𝐸$

𝐷*

𝐷0

𝐸1

[s=1, s’=10]
imap: {x↔s}

[s=1, s’=1]
omap: {x↔s}

[s=1, s’=10]
omap: {x↔s}

grid size: [x=8, y=10], forloop: [i=20]

fmap: {i↔s}

fmap: {i↔s}

fmap: {}

fmap: {}

fmap: {}

fmap: {i↔\phi}

fmap: {}

fmap: {}

(c) An optimized 𝜇Graph discovered by Mirage for group-query attention.

Figure 4. 𝜇Graph examples: Figure 4a is the computation graph for group-query attention (GQA). Figure 4b is the 𝜇Graph for
FlashDecoding, an expert-designed implementation of GQA [19]. Figure 4c demonstrates an optimized 𝜇Graph discovered by
Mirage, which further improves over FlashDecoding by reducing device memory access and reorganizing computation to
leverage tensor cores available on modern GPUs, which outperforms FlashDecoding by 2.2×. Numbers in brackets indicate
tensor shapes, and numbers in braces show the imap, omap, or fmap for the corresponding operators.

5

strategy to maximally reuse shared memory, represented by
the 𝜇Graph in Figure 4b. It reorders the final BatchMatmul
with the Div and partitions the Sum across multiple blocks,
which splits the computation associated with different query
heads to individual blocks. An issue with FlashDecoding is
that each block performs matrix-vector multiplication (GEMV)
since the query tensor only includes a single token, so it does
not benefit from tensor cores available on modern GPUs,
which accelerates matrix-matrix multiplication.

Figure 4c shows the best 𝜇Graph automatically discov-
ered by Mirage for computing GQA. The computation is
split into two graph-defined kernel operators with different
grid and loop dimensions to reduce device memory access.
Next, we highlight the key differences between the 𝜇Graph
discovered by Mirage and FlashDecoding. These differences
involve discovering new custom kernels and combining al-
gebraic and schedule transformations, making it infeasible
to discover the final 𝜇Graph by separately considering al-
gebraic and schedule transformations even when given the
FlashDecoding 𝜇Graph as the starting point. First, Mirage
does not use Repeat operators to replicate the key and value
tensors (algebraic transformation) and instead processes a
key-value head together with 8 query heads in a block (sched-
ule transformation). Second, within a block, Mirage intro-
duces a Reshape operator to reorganize the query tensor’s
shape from [ℎ = 8, 𝑠 = 1, 𝑑 = 64] to [ℎ = 1, 𝑠 = 8, 𝑑 = 64] (alge-
braic transformation), which can be considered as concate-
nating the token of each query heads into eight tokens of a
single query head. This reorganization allows Mirage to per-
form matrix-matrix multiplications (i.e., GEMM) using tensor
cores within each block. The Reshape also results in differ-
ent tensor shapes for intermediate results 𝐴 and 𝐵 (schedule
transformation). Finally, the Mirage-discovered 𝜇Graph uses
different schedules and data layouts than FlashDecoding
for processing the second block graph while resulting in
the same final output. This 𝜇Graph outperforms FlashDe-
coding by 2.2× on NVIDIA A100 GPUs. In addition to the
optimizations studied in this section, Mirage automatically
discovers additional optimizations for attention and other
DNN workloads, which we discuss in §7.

4 Expression-Guided 𝜇Graph Generator
This section introduces the Mirage 𝜇Graph generator, which
automatically discovers potential 𝜇Graphs for an input ten-
sor program. To generate 𝜇Graphs that capture optimizations
at all of the kernel, block, and thread levels, Mirage must
explore a significantly larger search space than existing su-
peroptimizers that only consider optimizations at the kernel
level. Mirage employs two key techniques to address this
challenge. First, based on an important observation that op-
timizations at the kernel and block levels are substantially
more critical to performance than optimizations at the thread
level since accessing device and shared memory is orders

Lax Program1 X

Y

Z

O

Compute abstract expression of the input Lax program

Kernel and block graph generation (§5.1)

X

Y

Z

X

Y

Z

X

Y

Z

Start from
the inputs
of the Lax
program

Repeatedly generate
kernel and block
operators

Prune out prefixes via abstract
expressions (§5.3)

✄
E

X

Y

Z

O

Generate kernel and block graphs w/o thread-graph-defined operators

X
Y

Z

O
Fuse subgraphs matching a pre-defined
pattern to thread-graph-defined operators

Thread graph construction (§5.2)

EO

3

2

¬subexpr(E, EO)

Figure 5. An overview of 𝜇Graph generator.

of magnitude more expensive than accessing register file,
Mirage’s 𝜇Graph generator employs a hybrid approach, con-
sidering all possible graphs up to a certain size at the kernel
and block levels, and using a rule-based strategy to construct
graphs at the thread level, which reduces the search space
while retaining most performance optimizations. Second, to
further prune the search space, Mirage introduces a pruning
technique based on an abstraction of 𝜇Graphs called abstract
expression, which reduces the number of 𝜇Graphs Mirage
has to consider while providing a theoretical guarantee on
the optimality of the discovered 𝜇Graphs.

4.1 Kernel and Block Graph Generation
Mirage generates kernel and block graphs incrementally and
leverages several pruning techniques to reduce the search
space, as shown in the second part of Figure 5. Specifically,
Mirage maintains a prefix of a valid 𝜇Graph, iteratively ex-
tending it with new operators. Here, prefix𝐺 ′ of𝐺 is defined
as a subgraph of 𝐺 such that ∀𝑢 ∈𝐺 ′,∀(𝑣,𝑢) ∈𝐺, 𝑣 ∈𝐺 ′. Mi-
rage generates the next operator in the kernel graph by
enumerating the kernel operator type 𝑡 and the input ten-
sors 𝐼 . If 𝑡 stands for the graph-defined operator type, Mirage
also incrementally generates the underlying block graph that
defines its kernel computation. To generate a block graph,
Mirage first enumerates the grid and for-loop dimensions

6

Algorithm 1 Mirage’s hybrid 𝜇Graph generation algorithm.
Input: A Lax program with a computation graph𝐺ref
Output: A set of 𝜇Graphs S
1: 𝐸𝑂←𝐸 (𝐺ref)
2: S0, S←∅,𝐺K← Inputs(𝐺ref)
3: GenerateNextKernelOperator(𝐺K)
4: for all𝐺 ∈ S0 do
5: S←S ∪ {ThreadGraphConstruction(𝐺) }
6: function GenerateNextKernelOperator(𝐺K)
7: S0←S0 ∪ {𝐺K}
8: for all kernel graph op type 𝑡 ; input set 𝐼 do
9: if (𝐼 , 𝑡) > (op.𝐼 , op.𝑡) for each op ∈𝐺K then
10: if 𝑡 is a pre-defined operator then
11: if 𝑜 :=ConstructOp(𝐺K, 𝐼 , 𝑡) is valid then
12: GenerateNextKernelOperator(𝐺K ∪ {𝑜 })
13: else ⊲ 𝑡 is a graph-defined operator
14: for all gridDims; forloopDims do
15: 𝐺B←TBGraph(𝐼 , gridDimd, forloopDims)
16: GenerateNextBlockOperator(𝐺K,𝐺B)
17: function GenerateNextBlockOperator(𝐺K,𝐺B)
18: if all shared tensors in𝐺B are consumed then
19: if 𝑜 :=ConstructOp(𝐺K,𝐺B .𝐼 ,𝐺B) is valid then
20: GenerateNextKernelOperator(𝐺K ∪ {𝑜 })
21: for all block graph op type 𝑡 ; input set 𝐼 do
22: if (𝐼 , 𝑡) > (op.𝐼 , op.𝑡) for each op ∈𝐺B then
23: if 𝑜 :=ConstructOp(𝐺B, 𝐼 , 𝑡) is valid then
24: GenerateNextBlockOperator(𝐺K,𝐺B ∪ {𝑜 })
25: function ConstructOp(𝐺, 𝐼, attrs)
26: 𝐸←ExprInfr(𝐸 (𝐼), attrs) ⊲ Table 1
27: if Subexpr(𝐸, 𝐸𝑂) then
28: 𝑆←𝐺.outputTensorShapeInfr(𝐼 , attrs) ⊲ Tensor shape
29: if 𝑆.valid,𝐺.mAlloc + 𝑆.size≤𝐺.mLimit then ⊲ Memory
30: return𝐺.constructOp(𝐼 , attrs)
31: return Invalid
32: function ThreadGraphConstruction(𝐺)
33: P← pre-defined patterns
34: 𝐺fused←𝐺

35: for all (𝐺𝑖 ,𝑂𝑖) ∈ P do
36: for all subgraph𝐺 ′ of𝐺 matching𝐺𝑖 do
37: Substitute𝐺 ′ with𝑂𝑖 in𝐺fused

38: return𝐺fused

(introduced in §2), enabling Mirage to calculate the input ten-
sor shapes of the block graph. Mirage then performs a nested
generation similar to that at the kernel level but without con-
sidering graph-defined operators. Line 6-16 and line 17-24 in
Algorithm 1 show how Mirage generates kernel and block
operators, respectively.
Mirage checks tensor shape (line 28) and memory usage

(line 29) before adding an operator, ensuring a valid prefix.
A prefix passes the memory usage check if: (1) all tensors
in the kernel graph can reside in device memory; and (2) all
tensors in each block graph can fit in shared memory.

To ensure identical 𝜇Graphs are generated only once, Mi-
rage defines the canonical form of 𝜇Graphs. Given a kernel
or block graph 𝐺 with its operators in topological order
𝑜1, . . . , 𝑜𝑛 , the index of the 𝑗-th output of 𝑜𝑖 is a tuple (𝑖, 𝑗).
Each operator 𝑜𝑖 in 𝐺 is assigned a rank (𝐼𝑖 , 𝑡𝑖), where 𝐼𝑖 is

Exp Sum Div Matmul OI1

I2

a ∑64ea ea/∑64ea

∑64b*(ea/∑64ea)
b

ea

Figure 6. Illustration of abstract expressions. The abstract
expressions of tensors are annotated on edges. A human-
friendly notation is used here: e𝑎 denotes exp(𝑎), ∑𝑘 𝑎 de-
notes sum(𝑘, 𝑎), 𝑎/𝑏 denotes div(𝑎, 𝑏), and 𝑎 ∗ 𝑏 denotes
mul(𝑎, 𝑏). The tensors 𝐼1, 𝐼2 and 𝑂 are all 64 × 64 matrices.

Table 1.Operators supported by Mirage. The second column
shows the levels of graphs supporting the operator (K, B and
T stand for kernel, block and thread graphs, respectively).
The last column defines the abstract expressions of the out-
puts of each operator. 𝐸 is the mapping from tensors to the
corresponding abstract expressions.

𝜇Graph Graph Abstract Expression of Output Tensor
Operator Level

InIter B E(InIter(𝑋))=E(𝑋)
OutAccu B E(OutAccu(𝑘𝑓 ,𝑚𝑓 , 𝑋))=sum(𝑘𝑓 , E(𝑋)) if𝑚𝑓 =𝜙 else E(𝑋)1
Matmul K, B, T E(Matmul(𝑋,𝑌))=sum(𝑘,mul(E(𝑋), E(𝑌)))2
Sum K, B, T E(Sum(𝑑𝑟 , 𝑘𝑟 , 𝑋))=sum(𝑘𝑟 , E(𝑋))3
EwAdd K, B, T E(EwAdd(𝑋,𝑌))=add(E(𝑋), E(𝑌))
EwMul K, B, T E(EwMul(𝑋,𝑌))=mul(E(𝑋), E(𝑌))
EwDiv K, B, T E(EwDiv(𝑋,𝑌))=div(E(𝑋), E(𝑌))
EwExp K, B, T E(EwExp(𝑋))=exp(E(𝑋))
Repeat K, B E(Repeat(𝑋))=E(𝑋)
Reshape K, B E(Reshape(𝑋))=E(𝑋)
1 𝑘𝑓 is the for-loop dimension;𝑚𝑓 is fmap.
2 𝑘 means the size of the last dimension of𝐴, i.e., the reduction dimension. Matmul is
performed on the inner most two dimensions and leading dimensions are batched.

3 Sum along the dimension 𝑑𝑟 for every 𝑘𝑟 elements.

the list of input tensor indices of 𝑜𝑖 and 𝑡𝑖 is the operator type.
A 𝜇Graph is in canonical form if, in all its kernel and block
graphs, the operators are in the increasing order of ranks.
Mirage generates only 𝜇Graphs in canonical form by requir-
ing that operators are added in the increasing order of ranks
(line 9 and line 22). This approach does not prune out any
potential solutions, since each 𝜇Graph can be transformed
to canonical form by reordering the operators.
In addition, Mirage utilizes the abstract expression tech-

nique to prune out prefixes that do not satisfy certain con-
straints, which will be introduced in §4.3.

4.2 Thread Graph Construction
Mirage constructs thread graphs in a way similar to operator
fusion, as shown in the third part of Figure 5 and line 4-line 5
in Algorithm 1. Specifically, Mirage has a set of pre-defined
patterns {(𝐺𝑖 ,𝑂𝑖)} where each 𝐺𝑖 is a graph consisting of
block operators and𝑂𝑖 is a thread graph. Given a 𝜇Graph, Mi-
rage traverses all its block graphs, replacing any subgraphs
that match 𝐺𝑖 with an operator defined by 𝑂𝑖 .

7

Table 2. Axiomatization of abstract expressions used for
pruning. Mirage checks whether an abstract expression 𝐸1
is a subexpression of 𝐸2 by querying an SMT solver to check
if subexpr(𝐸1, 𝐸2) is entailed by these axioms.

Abstract Expression Property Comment

Equivalence Axioms 𝐴eq

∀𝑥,𝑦. add(𝑥,𝑦)=add(𝑦, 𝑥) commutativity
∀𝑥,𝑦. mul(𝑥,𝑦)=mul(𝑦, 𝑥) commutativity
∀𝑥,𝑦, 𝑧. add(𝑥, add(𝑦, 𝑧))=add(add(𝑥,𝑦), 𝑧) associativity
∀𝑥,𝑦, 𝑧. mul(𝑥,mul(𝑦, 𝑧))=mul(mul(𝑥,𝑦), 𝑧) associativity
∀𝑥,𝑦, 𝑧. add(mul(𝑥, 𝑧),mul(𝑦, 𝑧))=mul(add(𝑥,𝑦), 𝑧) distributivity
∀𝑥,𝑦, 𝑧. add(div(𝑥, 𝑧), div(𝑦, 𝑧))=div(add(𝑥,𝑦), 𝑧) associativity
∀𝑥,𝑦, 𝑧. mul(𝑥, div(𝑦, 𝑧))=div(mul(𝑥,𝑦), 𝑧) associativity
∀𝑥,𝑦, 𝑧. div(div(𝑥,𝑦), 𝑧)=div(𝑥,mul(𝑦, 𝑧)) associativity
∀𝑥 . 𝑥 =sum(1, 𝑥) identity reduction
∀𝑥, 𝑖, 𝑗 . sum(𝑖, sum(𝑗, 𝑥))=sum(𝑖 ∗ 𝑗, 𝑥) associativity
∀𝑥,𝑦, 𝑖 . sum(𝑖, add(𝑥,𝑦))=add(sum(𝑖, 𝑥), sum(𝑖, 𝑦)) associativity
∀𝑥,𝑦, 𝑖 . sum(𝑖,mul(𝑥,𝑦))=mul(sum(𝑖, 𝑥), 𝑦) distributivity
∀𝑥,𝑦, 𝑖 . sum(𝑖, div(𝑥,𝑦))=div(sum(𝑖, 𝑥), 𝑦) distributivity

Subexpression Axioms 𝐴sub

∀𝑥,𝑦. subexpr(𝑥, add(𝑥,𝑦))
∀𝑥,𝑦. subexpr(𝑥,mul(𝑥,𝑦))
∀𝑥,𝑦. subexpr(𝑥, div(𝑥,𝑦))
∀𝑥,𝑦. subexpr(𝑦, div(𝑥,𝑦))
∀𝑥 . subexpr(𝑥, exp(𝑥))
∀𝑥, 𝑖 . subexpr(𝑥, sum(𝑖, 𝑥))
∀𝑥 . subexpr(𝑥, 𝑥) reflexivity
∀𝑥,𝑦, 𝑧. subexpr(𝑥,𝑦) ∧ subexpr(𝑦, 𝑧)→subexpr(𝑥, 𝑧) transitivity

4.3 Pruning via Abstract Expressions
When searching the space of possible 𝜇Graphs, we aim to
avoid 𝜇Graph prefixes whose intermediate results cannot
contribute to the desired computation. For example, for the
input program 𝑋 · 𝑍 +𝑌 · 𝑍 , we can prune a prefix that com-
putes𝑋 ·𝑌 , but we should not prune one that computes𝑋 +𝑌 ,
as (𝑋 + 𝑌) · 𝑍 is equivalent to the input program. However,
how can we determine whether a prefix can contribute to
a desired computation while searching for that computa-
tion? Below, we develop a pruning technique driven by this
intuition that circumvents the “chicken and egg” problem
via abstraction. First, we present the abstraction — abstract
expressions — and then explain how it is used for pruning. Fi-
nally, we offer a theoretical guarantee that under certain con-
ditions, this pruning does not exclude the optimal 𝜇Graph.

Abstract expressions. Recall that each edge in a 𝜇Graph
corresponds to a tensor-valued function of the input tensors.
Intuitively, abstract expressions abstract these functions by
ignoring the differences between elements from the same
input tensor. Formally, abstract expressions are first-order
logic terms over the theory of integers and uninterpreted
functions. In a 𝜇Graph, the abstract expression of each edge,
denoted by E(·), is defined as shown in Table 1. During the
computation of a 𝜇Graph’s abstract expression, all graph-
defined operators are “inlined”. Specifically, the expressions

computed for a graph-defined operator’s inputs serve as in-
puts to the lower-level graph, and the expressions for the out-
puts of this lower-level graph become the output expressions
of the graph-defined operator. Figure 6 shows the abstract
expressions for a subgraph of attention.

While abstract expressions capture some information about
the function computed at each edge, they also abstract away
much of it. For example, if 𝑋 is a 𝑘 ×𝑘 matrix, summing over
the rows and summing over the columns lead to the same
abstract expression—sum(𝑘, E(𝑋)). But keeping 𝑘 as part of
the abstract expression is crucial for effective pruning.

Abstract subexpression and pruning. We use abstract
expressions to prune the search space of 𝜇Graphs by formaliz-
ing two relations over abstract expressions: equivalence and
abstract subexpression. We then prune every 𝜇Graph prefix
whose abstract expression is not a subexpression of some
abstract expression that is equivalent to that of the input
program. We formalize abstract expressions as uninterpreted
functions in first-order logic over the theory of integer arith-
metic and uninterpreted functions, and use an SMT solver
to reason about them based on two sets of axioms defined in
Table 2: 𝐴eq and 𝐴sub. 𝐴eq axiomatizes equivalence between
abstract expressions. As will become clear below, these ax-
ioms need not be sound—it is not necessary that 𝜇Graphs
whose abstract expressions are equivalent are actually equiv-
alent. (As mentioned earlier, non-equivalent 𝜇Graphs can
have identical abstract expressions.) 𝐴sub axiomatizes the ab-
stract subexpression relation between abstract expressions.
The key property of this relation is that whenever a 𝜇Graph
𝐺1 is a prefix of 𝐺2, meaning 𝐺2 can be obtained from 𝐺1 by
adding more operators, then E(𝐺1) is an abstract subexpres-
sion of E(𝐺2), i.e., 𝐴sub |= subexpr(E(𝐺1), E(𝐺2)), where |=
denotes entailment modulo the theory of integer arithmetic
and uninterpreted functions.

During the search, Algorithm 1 first computes the abstract
expression of the input Lax program, 𝐸𝑂 , and prunes away
any 𝜇Graph prefix𝐺 if𝐴eq∪𝐴sub ̸ |=subexpr(E(𝐺), 𝐸𝑂). That
is, we prune a graph if its abstract expression is not a subex-
pression of 𝐸𝑂 . The check is performed by invoking an SMT
solver (Z3 [20]). As an optimization, check results are cached
and reused, since during the search Mirage may encounter
multiple 𝜇Graphs with identical abstract expressions and
SMT queries are relatively expensive.

Theoretical guarantee and the pruning-optimality
tradeoff. Intuitively, our pruning would keep any prefix that
can lead to a 𝜇Graph whose abstract expression is equivalent
(according to𝐴eq) to that of the input Lax program. Formally:

Theorem 1 (Pruning via Abstract Expressions). For an input
𝜇Graph𝐺0, and a 𝜇Graph𝐺 equivalent to𝐺0, if𝐴eq |=𝐸 (𝐺0)=
𝐸 (𝐺) then 𝐺 will be generated by Algorithm 1.

Proof. By Tables 1 and 2, we show that for any operator
op, if 𝑌 = op(𝑋1, . . . , 𝑋𝑛) then 𝐴sub |= subexpr(E(𝑋𝑖), E(𝑌))

8

(for 1≤ 𝑖 ≤𝑛). That is, an input to an operator is always an
abstract subexpression of its output. By the reflexivity and
transitivity axioms included in 𝐴sub, it follows for any 𝐺 ′
that is a prefix of 𝐺 , 𝐴sub |=subexpr(E(𝐺 ′), E(𝐺)). Together
with the assumption that 𝐴eq |=𝐸 (𝐺0)=𝐸 (𝐺), it follows that
𝐴eq ∪ 𝐴sub |= subexpr(E(𝐺 ′), E(𝐺0)). Thus, any prefix of 𝐺
will not be pruned, and 𝐺 will be generated by Mirage. □

The theorem highlights the role of abstract expressions in
solving the “chicken and egg” problem outlined above. To
decide if a prefix 𝜇Graph is useful, we reason about whether
it is a prefix of a useful computation in the abstract. The
choice of the abstraction and of the axioms 𝐴eq represents
a tradeoff between optimality and pruning. As Theorem 1
shows, we are only guaranteed to find the optimal 𝜇Graph
such that 𝐴eq imply equivalence of its abstract expression
to that of the input program. The stronger the axioms, the
theorem covers more 𝜇Graphs, but we also get less pruning
because more prefixes would pass the subexpression test. In
particular, note that 𝐴eq does not consider cancellation (e.g.,
div(mul(𝑥,𝑦), 𝑦) =𝑦). As a result, Mirage may miss some
equivalent 𝜇Graphs. But including an axiom for cancella-
tion of division and multiplication would make everything a
subexpression of everything, therefore nulling the desired
pruning. As our evaluation shows, our choice of 𝐴eq yields a
good balance between pruning and optimality.

5 Probabilistic Equivalence Verifier
Mirage’s probabilistic equivalence verifier checks if a candi-
date 𝜇Graph is equivalent to the desired Lax subprogram.
The key idea is to evaluate both on random inputs in two
finite fields. Using finite fields instead of floating point num-
bers not only avoids floating point errors, but also leads to a
strong theoretical guarantee: the probability of accepting a
non-equivalent 𝜇Graph can be made arbitrarily low.
For general programs, random tests can hardly provide

any correctness guarantees. However, we show that for Lax
programs (formally defined below), random testing provides
a probabilistic correctness guarantee, and repeated tests can
reduce the error probability to an arbitrarily small threshold.
Prior work [41] has applied a similar technique to check

equivalence between tensor programs that only contain lin-
ear operators (e.g., matrix multiplication, convolution). We
develop a random testing technique that also supports divi-
sion and exponentiation, which are needed for many DNN
optimizations (e.g., the attention optimization in §3).

Mirage verifies equivalence between Lax 𝜇Graphs (linear,
division, and an exponential) defined below. We introduce
the main theoretical results in §5.1 and present Mirage’s
verification methodology in §5.2.

Definition 2 (Lax 𝜇Graph). A 𝜇Graph 𝐺 is a Lax 𝜇Graph
if (1)𝐺 contains only multi-linear operators4, division, and
exponentiation, and (2) every path from an input to an output
in 𝐺 includes at most one exponentiation.

5.1 Theoretical Foundations
Without loss of generality, we assume a Lax 𝜇Graph𝐺 takes
𝑛 input tensors and produces one output tensor. Our theo-
retical results can directly generalize to Lax 𝜇Graph with
multiple outputs. Since each Lax 𝜇Graph includes linear op-
erators, divisions, and at most one exponentiation along each
path, the computation for each entry of the output tensor
can be expressed in the following form (by using standard
identities such as

𝑎
𝑏
𝑐
𝑑

= 𝑎𝑑
𝑏𝑐
, 𝑎
𝑏
+ 𝑐

𝑑
= 𝑎𝑑+𝑏𝑐

𝑏𝑑
, 𝑒𝑥𝑒𝑦 =𝑒𝑥+𝑦):

𝑘∑︁
𝑖=1

𝑓𝑖

𝑔𝑖
𝑒

(
ℎ𝑖
𝑢𝑖

)
, (2)

where 𝑓𝑖 , 𝑔𝑖 , ℎ𝑖 , and 𝑢𝑖 (1≤ 𝑖 ≤𝑘) are polynomials over the
entries of the input tensors.
The main theoretical result that underpins our random-

ized equivalence verification is the following theorem, which
extends polynomial identity testing (PIT) [34, 48] on finite
fields to Lax 𝜇Graphs. Note that the difference of two Lax
𝜇Graphs is also of the form of Equation (2). Therefore, iden-
tity testing of two Lax 𝜇Graphs can be done by testing if
an expression of that form is zero. Because of the use of
exponentiation, we use two finite fields instead of one.5

Theorem 3. Let Z𝑝 ,Z𝑞 be the finite field of integers modulo
𝑝 and 𝑞, respectively, where 𝑝, 𝑞 are primes such that 𝑞 divides
𝑝−1. Let𝑑, 𝑘 ∈N s.t.𝑑𝑘4<𝑞. Let 𝑓1, . . . , 𝑓𝑘 , 𝑔1, . . . , 𝑔𝑘 :Z𝑁𝑝 →Z𝑝
be polynomials over Z𝑝 and ℎ1, . . . , ℎ𝑘 , 𝑢1, . . . , 𝑢𝑘 :Z𝑀𝑞 →Z𝑞 be
polynomials over Z𝑞 , where the degrees of all polynomials are
at most 𝑑 . Let G be the set of 𝑞-th roots of unity in Z𝑝 . If
ℎ𝑖/𝑢𝑖 .ℎ 𝑗/𝑢 𝑗 for all 𝑖≠ 𝑗 , and 𝑓𝑖 , 𝑔𝑖 , ℎ𝑖 . 0 for all 𝑖 , then

Pr
x←Z𝑁𝑝 ,y←Z𝑀𝑞 ,𝜔←G

[
𝑘∑︁
𝑖=1

𝑓𝑖 (x)
𝑔𝑖 (x)

𝜔
ℎ𝑖 (y)
𝑢𝑖 (y) = 0 ∧ E

]
≤ 1− 1

𝑘
+𝑜

(
1
𝑘

)
,

where E is the event that 𝑔𝑖 (x), 𝑢𝑖 (y)≠0 for all 𝑖 .

5.2 Random Tests over Finite Fields
Mirage leverages Theorem 3 to probabilistically verify the
equivalence of two 𝜇Graphs by performing random testing
over the finite fields Z𝑝 and Z𝑞 as defined in Theorem 3. To
check the equivalence of two 𝜇Graphs, Mirage first generates
the input tensors, where each entry is uniformly sampled
from Z𝑝 × Z𝑞 . Mirage also samples 𝜔 , which is used for
4An operator op with 𝑛 inputs is multi-linear if op is linear to all inputs 𝐼𝑘 :
(1) ∀𝑋,𝑌 .op(𝐼1, ..., 𝐼𝑘−1, 𝑋, 𝐼𝑘+1, ..., 𝐼𝑛) + op(𝐼1, ..., 𝐼𝑘−1, 𝑌 , 𝐼𝑘+1, ..., 𝐼𝑛) =
op(𝐼1, ..., 𝐼𝑘−1, 𝑋 +𝑌, 𝐼𝑘+1, ..., 𝐼𝑛) , and
(2) 𝛼 · op(𝐼1, ..., 𝐼𝑘−1, 𝑋, 𝐼𝑘+1, ..., 𝐼𝑛) =op(𝐼1, ..., 𝐼𝑘−1, 𝛼 · 𝑋, 𝐼𝑘+1, ..., 𝐼𝑛) .
5We use two primes 𝑝 and 𝑞 for polynomial identity testing [34, 48] outside
and inside the exponents, respectively. The condition 𝑞 divides 𝑝 − 1 is to
ensure the existence of 𝑞-th roots of unity in Z𝑝 .

9

Table 3. Arithmetic operations for random testing. Mirage
selects two prime numbers 𝑝 and 𝑞 such that 𝑞 divides 𝑝 − 1.
𝑥𝑝 and 𝑥𝑞 are values from Z𝑝 and Z𝑞 , respectively.

Opt. Opd. 1 Opd. 2 Output

Add. (𝑥𝑝 , 𝑥𝑞) (𝑦𝑝 , 𝑦𝑞)
(
𝑥𝑝 + 𝑦𝑝 (mod𝑝), 𝑥𝑞 + 𝑦𝑞 (mod𝑞)

)
Sub. (𝑥𝑝 , 𝑥𝑞) (𝑦𝑝 , 𝑦𝑞)

(
𝑥𝑝 − 𝑦𝑝 (mod𝑝), 𝑥𝑞 − 𝑦𝑞 (mod𝑞)

)
Mul. (𝑥𝑝 , 𝑥𝑞) (𝑦𝑝 , 𝑦𝑞)

(
𝑥𝑝𝑦𝑝 (mod𝑝), 𝑥𝑞𝑦𝑞 (mod𝑞)

)
Div. (𝑥𝑝 , 𝑥𝑞) (𝑦𝑝 , 𝑦𝑞)

(
𝑥𝑝𝑦

−1
𝑝 (mod𝑝), 𝑥𝑞𝑦−1𝑞 (mod𝑞)

)
Exp. (𝑥𝑝 , 𝑥𝑞) -

(
𝜔𝑥𝑞 (mod𝑝), −

)

exponentiation, uniformly from all the 𝑞-roots of unity in
Z𝑝 . Mirage then evaluates the two 𝜇Graphs over the finite
fields for the same inputs using the operations defined in
Table 3. As explained in §5.1, Z𝑝 and Z𝑞 are used outside and
inside the exponent, respectively. All operations except ex-
ponentiation are implemented via modular arithmetic on Z𝑝
and Z𝑞 separately. Exponentiation uses the value 𝑥𝑞 from Z𝑞
and transforms it to a value in Z𝑝 by computing𝜔𝑥𝑞 (mod 𝑝).
Note that in a Lax 𝜇Graph, exponentiation will be performed
at most once along each path. Finally, Mirage checks whether
the two 𝜇Graphs produce identical outputs. This process
is repeated multiple times, and the two 𝜇Graphs pass the
equivalence test if they pass all random tests. The following
theorem, which follows from Theorem 3, shows that this
process can yield an arbitrarily low error rate.

Theorem 4. Equivalent 𝜇Graphs always pass 𝜇Graph verifi-
cation. For two non-equivalent 𝜇Graphs and a given probability
threshold 0<𝛿 ≤ 1, the 𝜇Graphs pass all Ω(𝑘 · ln 1

𝛿
) random

tests with probability at most 𝛿 .

6 𝜇Graph Optimizer
For each verified 𝜇Graph, Mirage’s 𝜇Graph optimizer maxi-
mizes its runtime performance by considering possible data
layouts for all intermediate tensors at the kernel, block, and
thread levels. Mirage defers layout optimizations after ver-
ification to enable two benefits. First, data layouts do not
affect the correctness of a generated 𝜇Graph, and omitting
layouts when generating 𝜇Graphs reduces the search space
Mirage must consider since 𝜇Graphs with the same graph
topology and different data layouts are considered identical
by the 𝜇Graph generator. Second, optimizing layout after
verification minimizes the layout optimization workload and
allows Mirage to explore all possible layout combinations.

For each 𝜇Graph, the optimizer enumerates all supported
layouts for each intermediate tensor of the 𝜇Graph at the ker-
nel, block, and thread levels, profiles the performance of the
final kernels on target hardware, and selects the layouts that
yield the best performance for the 𝜇Graph. Finally, Mirage
selects the best discovered 𝜇Graph as the output program.

Table 4. DNN benchmarks used in our evaluation.

Name Description Base Architecture

MHA Multi-head attention (3 modes) LLaMA-7B [39]
GQA Group-query attention (3 modes) LLaMA-2-70B [40]
MQA Multi-query attention (3 modes) Falcon-7B [12]
MLP Multi-layer perceptron Adapter Tuning [24]
MoE Mixture-of-experts Mixtral-7B [27]
LoRA Low-rank adaptation LLaMA-7B-LoRA [6]

7 Evaluation
7.1 Implementation
Mirage is implemented in 13K lines of C++ and CUDA code.
Kernel operators are implemented with the cuDNN and
cuBLAS libraries [17, 18], and block and thread operators
are implemented using cuTLASS [2] and CUDA functions.
Mirage uses Z3 4.12.6 as the SMT solver [20].
Our implementation supports the operators listed in Ta-

ble 1. Mirage can be extended to include new linear operators
such as variants of convolution or matrix multiplication at
the kernel, block, and/or thread levels. To support a new
linear operator, Mirage requires (1) an efficient floating point
implementation of the operator at the kernel, block, and/or
thread levels; (2) an implementation of the operator over
modular arithmetic (see §5); and (3) an extension to the ab-
stract expressions axioms 𝐴eq and 𝐴sub for it (see §4.3).
To utilize Theorems 3 and 4, random tests should be per-

formed with large enough prime numbers 𝑝 and𝑞 and should
be iterated multiple times. Our current implementation uses
the largest values of 𝑝 and 𝑞 whose product fits in 16-bit
integers (i.e., 𝑝 =227, 𝑞=113) to perform the random testing
on GPUs, leveraging Mirage’s GPU optimizations such as
maintaining intermediate results in GPU shared memory,
which allows Mirage to accelerate its search procedure. We
also use a single random test without iterating it and com-
pare all elements of the output tensors. We note that this
equivalence verification procedure still does not introduce
any false negatives. While it may introduce false positives,
we have not observed any in practice. For these reasons, we
consider this procedure to be sufficient for the search pro-
cess, and we plan to add an additional verification step that
provides the theoretical guarantees only for the best 𝜇Graph
at the end of the optimization process.

7.2 Experimental Setup
We evaluated Mirage on 12 benchmarks commonly used
by existing DNNs, summarized in Table 4. MHA and MLP
are the two main building blocks of today’s large language
models (LLMs). GQA andMQA reducememory requirements
of MHA and have been widely deployed in recent LLMs. MoE
uses multiple experts, each of which is an MLP architecture,
to improve the predictive performance of a DNN without
increasing its latency. LoRA enables low-rank adaptation

10

BS=1 BS=8
MHA (IncDec)

0.0

0.5

1.0

1.3x 0.9x

BS=1 BS=8
MHA (SpecDec)

0.0

0.5

1.0

1.3x 0.9x

BS=1 BS=8
MHA (PreFill)

0.0

0.5

1.0
1.0x 0.9x

BS=1 BS=8
GQA (IncDec)

0

1

2

3

3.5x 2.1x

BS=1 BS=8
GQA (SpecDec)

0

1

2
2.2x 1.5x

BS=1 BS=8
GQA (PreFill)

0.0

0.5

1.0

1.5
1.6x 1.4x

BS=1 BS=8
MQA (IncDec)

0.0

0.5

1.0

1.5

1.7x 1.5x

BS=1 BS=8
MQA (SpecDec)

0.0

0.5

1.0

1.0x 1.4x

BS=1 BS=8
MQA (PreFill)

0.0

0.5

1.0

1.5

1.3x 1.7x

BS=1 BS=8
LoRA

0

1

2

1.4x 2.3x

BS=1 BS=8
MLP

0

1

2

3
1.8x 3.0x

BS=1 BS=8
MOE

0.0

0.5

1.0

1.4x 1.4x

Re
la

ti
ve

 P
er

fo
rm

an
ce

FlashAttention
FlashDecoding

TensorRT
TensorRT-LLM PyTorch Triton Mirage

Figure 7. Comparing Mirage with existing systems for 12 benchmarks on an A100 GPU. IncDec, SpecDec, and PreFill
indicate the incremental decoding, speculative decoding, and prefilling phases of attention. The performance of all systems are
normalized by the best prior result (higher is better). Numbers above the Mirage bars show the speedup over the best existing
systems.

for finetuning a DNN on different tasks. For all attention
mechanisms, we assume 4096 key-value tokens and evaluate
Mirage in three different scenarios: incremental decoding (1
query token), speculative decoding (32 query tokens), and
chunked pre-filling (512 query tokens).

We use a Perlmutter compute node for all experiments [8],
which is equipped with four NVIDIA 40GB A100 GPUs and
256 GB DRAM. All our benchmarks fit on a single A100 GPU
except GQA (used for LLaMA-2-70B), which is generally
parallelized across four A100 GPUs using tensor model par-
allelism [36]. Therefore, we evaluate GQA under the tensor
model parallelism strategy (i.e., the 8 key-value heads are
equally partitioned across four GPUs). Since the performance
of Mirage and all baselines only depends on the shapes of
input tensors, we repeat all performance experiments 1,000
times using random inputs and report the average run time.
We observed negligible variance across different runs.

One of our benchmarks, MLP, uses the ReLU non-linear
operator, which is not natively supported byMirage. To apply
Mirage to MLP, we replace ReLU by exponentiation, which is
also a non-linear function and is not used by MLP. We then
change exponentiation in the resulting optimized 𝜇Graph
back to ReLU and verify equivalence by manual examination.

Another one of our benchmarks, LoRA, requires concate-
nation to express a common tensor optimization: fusing two
matrix multiplications via concatenation. To support this op-
timization in Mirage, we add a new linear operator that takes
four inputs and computes 𝑓 (𝑊,𝑋,𝑌, 𝑍) = (𝑊 ∥𝑋) × (𝑌 ∥𝑍),
where ∥ is tensor concatenation. This operator is equivalent

to computing𝑊 × 𝑌 +𝑋 × 𝑍 . We define the abstract expres-
sion associated with the new operator as: E(𝑓 (𝑊,𝑋,𝑌, 𝑍))=
add(sum(𝑘1,mul(E(𝑊), E(𝑌))), sum(𝑘2,mul(E(𝑋), E(𝑍)))),
where 𝑘1 and 𝑘2 are the last dimensions of𝑊 and 𝑋 .

Unless otherwise stated, Mirage considers up to 5 opera-
tors in the kernel graph and up to 7 operators in each block
graph.

7.3 Performance Results
Figure 7 compares the performance of Mirage and existing
tensor program optimizers on 12 DNN benchmarks using
two different batch sizes. All systems use half-precision float-
ing points to serve all DNN benchmarks. PyTorch [31] uses
the highly-engineered cuDNN and cuBLAS libraries [17, 18]
to perform DNN operators on GPUs. TensorRT and its LLM
variant TensorRT-LLM include a set of manually-designed
and highly-optimized kernels for common tensor operators
such as attention [37]. Triton [38] is a schedule-based op-
timizer for generating high-performance tensor programs
and has been deployed in existing DNN systems, achieving
superior performance than other schedule-based optimizers.
We do not compare Mirage with existing superoptimizers
(e.g., TASO [26] or PET [41]) since the DNNs we use as input
do not contain purely algebraic optimization opportunities
at the kernel level.

MHA, GQA, and MQA. Multi-head, multi-query, and
group-query attention are the backbone of today’s large lan-
guage models and have been heavily optimized by existing

11

frameworks. For example, FlashAttention and FlashDecod-
ing are expert designed kernels for attention and have been
adopted in most of today’s LLM inference systems [19]. For
MHA,Mirage discovers both the FlashAttention and FlashDe-
coding kernels and selects a 𝜇Graph similar to FlashDecod-
ing, achieving on-par performance as existing systems.
For GQA and MQA, Mirage discovers kernels that out-

perform best existing systems by up to 3.5× and 1.7× re-
spectively. In addition to the optimization demonstrated in
Figure 4, the speedup is also achieved by Mirage’s ability to
automatically parallelize attention computation efficiently
across blocks within a kernel. In particular, the blocks of a
kernel are organized by a mesh with up to three dimensions,
but attention computation can be parallelized in more dimen-
sions. As a result, existing manually-designed kernels use
different heuristics to select up to 3 dimensions to parallelize
attention. For example, FlashAttention [19] parallelizes atten-
tion across blocks using the sample, head, and query sequence
dimensions, while FlashDecoding leverages the sample, head,
and key-value sequence dimensions, both of which are effi-
cient for MHAwith many attention heads but suboptimal for
MQA and GQAwith limited attention heads. Specifically, the
GQA kernel from LLaMA-2-70B only contains two key-value
heads. For single-batch speculative decoding, which involves
computing attention across 256 queries and 1024 key-value
pairs, utilizing all 108 streaming multiprocessors on an A100
GPU requires splitting the query sequence into 64 chunks for
FlashAttention (or splitting the key-value sequence into 64
chunks for FlashDecoding), as illustrated in Figure 8(a). Each
block loads 256/64=4 query vectors, all 1024 key vectors, and
all 1024 value vectors, resulting in 2052 vector loads.
In contrast, Mirage automatically selects the most effi-

cient dimensions among sample, head, query sequence, and
key-value sequence, and uses different 𝜇Graphs for different
attention scenarios, reducing memory access and improving
performance. Figure 8 compares the FlashAttention kernel
and Mirage’s generated kernel for GQA in the single-batch
speculative decoding phase. Instead of parallelizing across
the sample, head, and query sequence dimensions, Mirage
finds a 𝜇Graph that parallelizes across the head, query se-
quence, and key-value sequence dimensions. As a result, each
block only needs to load 256/8=32 query vectors, 1024/8=128
key vectors, and 1024/8=128 value vectors, reducing memory
access by 7× and kernel execution time by 2.2×.
Implementing Mirage’s 𝜇Graphs in existing systems is

possible but requires extensive engineering effort to sup-
port different kernels for different scenarios, while Mirage
automatically generates them and verify their correctness.

LoRA. Low-rank adaptation (LoRA) introduces a pair of
low-rank adapters to the linear operators of a pre-trained
DNN to improve its predictive performance on downstream
tasks. Existing tensor program optimizers launch separate

Query (256)

Ke
y

(1
02

4)

Queries Loaded By Block 0

Ke
ys

 L
oa

de
d

By
 B

lo
ck

 0

Th
re

ad
 B

lo
ck

 0

Va
lu

es
 L

oa
de

d
By

 B
lo

ck
 0

Va
lu

e
(1

02
4)

Th
re

ad
 B

lo
ck

 1

Th
re

ad
 B

lo
ck

 6
3

Attention Matrix

……

(a) FlashAttention

Ke
y

(1
02

4)

Va
lu

e
(1

02
4)

Query (256)

Queries Loaded By Block 0

Ke
ys

 L
oa

de
d

By
 B

lo
ck

 0

Block
0

Va
lu

e
Lo

ad
ed

 B
y

Bl
oc

k
0

Block
7

Attention Matrix

Block
63

……

…
…

(b)Mirage

Figure 8. Comparing thread block assignments between
FlashAttention and the 𝜇Graph discovered by Mirage.
FlashAttention and FlashDecoding only parallelize Attention
computation across the query or the key-value dimension;
Mirage opportunistically leverages both dimensions to re-
duce the queries/keys/values loaded by each thread block.

kernels for the original linear operator and the two new lin-
ear operators in LoRA (Figure 9a), which introduces high
kernel launch overheads since the LoRA operators involve
very low computational costs. Figure 9b shows the best
𝜇Graph discovered by Mirage for LoRA, which fuses the
three Matmuls and the subsequent Add into a single kernel.
Mirage reorganizes the computation into two thread-block
level Matmuls by leveraging the following algebraic trans-
formation:𝑊 ×𝑋 + 𝐵 ×𝐴 ×𝑋 = (𝑊 ∥𝐵) ×

(
𝑋 ∥(𝐴 ×𝑋)

)
. The

Concats in Figure 9b do not involve any computation and
are performed by updating tensor offsets in GPU shared
memory. This 𝜇Graph reduces the execution cost of LoRA
by 2.3×.

MLP. Multi-layer perceptron (MLP) is commonly used in
DNNs to capture non-linear representations.We use theMLP
configuration introduced in adapter tuning [24]. Existing ten-
sor program optimizers generally fuse the first Matmul with

12

[di=4096, dr=16]

Kernel graph

[s=8, di=4096]

[di=4096, do=4096] Matmul𝑊

𝑋

𝐴 Matmul

𝐵

Matmul

Add

[di=4096, dr=16]

[dr=16, do=4096]

𝑂

[s=8, do=4096]
𝑂&

(a) The kernel graph for LoRA in existing systems.

Kernel graph

[s=8, di=4096]

[di=4096, do=4096] 𝑊

𝑋

𝐴

𝐵

[di=4096, dr=16]

[dr=16, do=4096]

𝑂 [s=8, do=4096]GraphDef
Op 1

Block graph
grid size: [x=64], forloop: [i=64]

�̅�

𝑋'

𝑊(

Input
Iterator

Input
Iterator

Input
Iterator Matmul

[di=4096, do=64]
imap: {x↔do}

fmap: {i↔di}

[s=8, di=4096]
imap: {x↔∅}

fmap: {i↔di}

fmap: {i↔di}

[di=4096, dr=16]
imap: {x↔∅}

𝐵'
Input

Iterator[dr=16, do=64]
imap: {x↔do}

fmap: {i↔∅}

Concat

Concat

[dr=16, do=64]

Matmul

[s=8, di=64]

[s=8, dr=16]

[dm=80, do=64]

[s=8, dm=80]

Output
Accum 𝑂'

[s=8, do=64]
omap: {x↔do}

(b) The best 𝜇Graph discovered by Mirage for LoRA.

Figure 9. Comparing the tensor programs used by existing
optimizers and by Mirage for LoRA: 𝑂 =𝑊 ×𝑋 + 𝐵 ×𝐴 ×𝑋 .
Note that both matrices 𝐴 and 𝐵 are low-rank.

[di=64, dr=8]
𝑂"

Kernel graph

[di=4096, dr=16]

[s=8, di=4096] Matmul + ReLU𝑋

𝐴

𝐵
Add

[dr=16, do=4096]
𝑂

[s=16, do=4096]

Matmul

(a) The kernel graph for MLP in existing systems.

Kernel graph

[di=4096, dr=8]

[s=8, di=4096] 𝑋

𝐴

𝐵[dr=8, do=4096]

GraphDef
Op 1

Block graph 1
grid size: [x=64], forloop: []

𝑋$

�̅� Input
Iterator

Input
Iterator Matmul

[di=64, dr=8]
imap: {x↔di}
[s=8, di=64]

imap: {x↔di}

GraphDef
Op 2𝑀

Output
Accum 𝑀'

[s=8, dr=8]
omap: {x↔dr}

[s=8, dr=512]

grid size: [x=64], forloop: []
Block graph 2

𝑋$

𝑀'

𝐵$[dr=8, do=64]
imap: {x↔do}
[s=8, dr=512]
imap: {x↔∅}
[s=8, di=64]

imap: {x↔di}

Input
Iterator

Input
Iterator

Input
Iterator

Sum ReLU

Add Output
Accum 𝑂$

[s=8, do=64]
omap: {x↔do}

Matmul

(b) The best 𝜇Graph discovered by Mirage for MLP.

Figure 10. Comparing the 𝜇Graphs used by existing opti-
mizers and Mirage for MLP.

Table 5. Ablation study on Mirage’s techniques to acceler-
ate 𝜇Graph generation. We incrementally disable abstract
expression (§4.3) and canonical form (§4.1), then evaluate
the search times for GQA as we adjust the maximum number
of operators within a block graph.

Max # Ops in Mirage w/o abstract w/o canonical
a block graph expression form of 𝜇Graphs

4 9sec <1sec <1sec
5 2.3 min 249 min >12h
6 20 min >12h >12h
7 76 min >12h >12h

the subsequent ReLU to perform ReLU activation immedi-
ately after matrix multiplication to reduce kernel launch
overhead and access to GPU device memory, as shown in
Figure 10a. However, the first Matmul has a small output
tensor shape (e.g., 𝐵 × 16 in adapter tuning where 𝐵 is the
batch size), which cannot fully utilize an A100 GPU with 108
stream multi-processors. In contrast, the best 𝜇Graph discov-
ered by Mirage (Figure 10b) performs partial summation of
the first Matmul in the first kernel, and fuses the remaining
summation, ReLU, second Matmul, and Add in the second ker-
nel. This design enables more parallelism for the first kernel
and better utilizes an A100 GPU, yielding a 3× speedup.

7.4 Optimization Time and Ablation Study
Generally, Mirage takes up to six hours to optimize each
of our benchmarks. We present more detailed results and
an ablation study focusing on GQA. We evaluate how our
techniques allow Mirage to explore large 𝜇Graphs while
maintaining low search time. We focus on two techniques:
pruning via abstract expressions (§ 4.3) and the canonical
form of 𝜇Graphs (§ 4.1). Table 5 reports the search times
for GQA as we adjust the maximum number of operators
in a block graph. For searches that consider 4 operators in
a block graph, pruning via abstract expressions slightly in-
creases the search time due to the cost of SMT queries. For
larger-scale searches, the pruning allows Mirage to explore
𝜇Graphs whose block graphs can each have at most 7 op-
erators, while disabling abstract expression (and canonical
form of 𝜇Graphs) restricts Mirage to consider up to 5 (and
4) operators in a block graph in order to finish the search
in 12 hours. Note that Mirage needs to consider 7 operators
in a block graph in order to discover the optimizations in
Figure 4 for GQA.

8 Related Work
Manually-designed kernels have been widely used in exist-
ing frameworks such as TensorFlowXLA [1, 10], PyTorch [31],
and TensorRT [37]. Recently, significant engineering effort
has been dedicated to manually designing, implementing,
and optimizingGPU kernels for commonly usedDNNs (known

13

as foundation models [14]). For example, to optimize the at-
tention mechanism of Transformer [42], recent work has
introduced various kernels based on FlashAttention [4, 5, 19,
23]. Due to the increasing complexity of modern GPU archi-
tectures (e.g., tensor cores in A100s [28] and thread block
clusters in H100s [7]), manually designed kernels may miss
subtle optimizations that are hard to discover manually.
Superoptimization-based approaches. Superoptimization
was originally introduced to find optimal code for an instruc-
tion sequences [13, 29, 33]. Recent work has applied superop-
timization techniques to tensor programs [26, 41, 44, 46]. All
these attempts only consider algebraic transformations at
the kernel level and cannot discover sophisticated optimiza-
tions that require jointly considering algebraic and schedule
transformations at all of the kernel, block, and thread levels.
Schedule-based approaches, includingHalide [32], TVM [15,
16], and Ansor [45] among others [21, 22, 47], are based
on the idea of algorithm-schedule separation introduced in
Halide and search for an optimized schedule to execute a
given algorithm on GPUs. Schedule-based approaches rely
on users to explicitly specify the algorithm for each kernel
and their performance is limited to the provided algorithms.

9 Conclusion
This paper proposes Mirage, the first multi-level superopti-
mizer for tensor programs. Mirage introduces a hierarchy
graph representation to specify a tensor program at the ker-
nel, thread block, and thread levels of the GPU compute
hierarchy, and uses a novel pruning technique based on ab-
straction to significantly reduce the search space Mirage
needs to consider while providing a certain optimality guar-
antee. Mirage outperforms existing tensor program optimiz-
ers by up to 3.5× even for DNNs that are widely used and
heavily optimized.

References
[1] Xla: Optimizing compiler for tensorflow. https : //www.tensorflow.org/

xla, 2017.
[2] Nvidia/cutlass: Cuda templates for linear algebra subroutines. https :

//github.com/NVIDIA/cutlass, 2019.
[3] Tensorflow graph optimization with grappler. https : //www.tensorflow.

org/guide/graph_optimization, 2019.
[4] Transformer related optimizations. https : //github.com/NVIDIA/

FasterTransformer, 2020.
[5] Flash-decoding for long-context inference. https : //crfm.stanford.edu/

2023/10/12/flashdecoding.html, 2023.
[6] Llama-7b-lora. https : //huggingface.co/Laurie/llama7b- lora-merged/

tree/main, 2023.
[7] Nvidia h100 tensor core gpu. https : //www.nvidia.com/en- us/data-

center/h100/, 2023.
[8] Perlmutter supercomputer. https : //docs.nersc.gov/systems/

perlmutter/architecture/, 2023.
[9] A Triton implementation of the FlashAttention2 algorithm. https : //

triton- lang.org/main/getting- started/tutorials/06- fused- attention.
html, 2023.

[10] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
flow: A system for large-scale machine learning. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI, 2016.

[11] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy,
Federico Lebrón, and Sumit Sanghai. Gqa: Training generalized multi-
query transformer models from multi-head checkpoints, 2023.

[12] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessan-
dro Cappelli, Ruxandra Cojocaru, Merouane Debbah, Etienne Goffinet,
Daniel Heslow, Julien Launay, Quentin Malartic, Badreddine Noune,
Baptiste Pannier, and Guilherme Penedo. Falcon-40B: an open large
language model with state-of-the-art performance. 2023.

[13] Sorav Bansal and Alex Aiken. Automatic generation of peephole
superoptimizers. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XII, 2006.

[14] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Sim-
ran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg,
Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch,
Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kath-
leen Creel, Jared QuincyDavis, Dora Demszky, Chris Donahue,Moussa
Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin
Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie,
Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tat-
sunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny
Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Juraf-
sky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna,
Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee,
Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma,
Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell,
Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan,
Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Ju-
lian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung
Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghu-
nathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo
Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav
Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan
Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William
Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro
Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang,
Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy
Liang. On the opportunities and risks of foundation models, 2022.

[15] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.
Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. TVM: end-to-end optimization stack for deep learning.
CoRR, abs/1802.04799, 2018.

[16] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, ThierryMoreau,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Learning to
optimize tensor programs. InAdvances in Neural Information Processing
Systems 31, NeurIPS’18. 2018.

[17] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. CoRR, abs/1410.0759, 2014.

[18] Dense Linear Algebra on GPUs. https : //developer.nvidia.com/cublas,
2016.

[19] Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-
decoding for long-context inference, 2023.

[20] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, 2008.

14

https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://www.tensorflow.org/guide/graph_optimization
https://www.tensorflow.org/guide/graph_optimization
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://huggingface.co/Laurie/llama7b-lora-merged/tree/main
https://huggingface.co/Laurie/llama7b-lora-merged/tree/main
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html
https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html
https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html
https://developer.nvidia.com/cublas

[21] Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang
Lai, Zihao Ye, Lianmin Zheng, Cody Hao Yu, Yong Yu, and Tianqi
Chen. Tensorir: An abstraction for automatic tensorized program
optimization, 2022.

[22] Bastian Hagedorn, Bin Fan, Hanfeng Chen, Cris Cecka, Michael Gar-
land, and Vinod Grover. Graphene: An ir for optimized tensor computa-
tions on gpus. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, ASPLOS 2023, page 302–313, New York, NY, USA,
2023. Association for Computing Machinery.

[23] Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu,
Kangdi Chen, Yuhan Dong, and Yu Wang. Flashdecoding++: Faster
large language model inference on gpus, 2024.

[24] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone,
Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and
Sylvain Gelly. Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages 2790–2799. PMLR,
2019.

[25] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adapta-
tion of large language models. arXiv preprint arXiv:2106.09685, 2021.

[26] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei
Zaharia, and Alex Aiken. Taso: Optimizing deep learning computation
with automatic generation of graph substitutions. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP ’19,
page 47–62, New York, NY, USA, 2019. Association for Computing
Machinery.

[27] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gi-
anna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b,
2023.

[28] StefanoMarkidis, StevenWei Der Chien, Erwin Laure, Ivy Bo Peng, and
Jeffrey S. Vetter. Nvidia tensor core programmability, performance &
precision. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, May 2018.

[29] Henry Massalin. Superoptimizer: a look at the smallest program. In
ACM SIGARCH Computer Architecture News, volume 15, 1987.

[30] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-
Kelley, and Kayvon Fatahalian. Automatically scheduling halide image
processing pipelines. ACM Trans. Graph., 35(4), 2016.

[31] Tensors and Dynamic neural networks in Python with strong GPU
acceleration. https : //pytorch.org, 2017.

[32] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. Halide: A language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’13, 2013.

[33] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superopti-
mization. In ACM SIGPLAN Notices, volume 48, 2013.

[34] J. T. Schwartz. Fast probabilistic algorithms for verification of polyno-
mial identities. J. ACM, 27(4):701–717, oct 1980.

[35] Noam Shazeer. Fast transformer decoding: One write-head is all you
need, 2019.

[36] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-
billion parameter language models using model parallelism. CoRR,

abs/1909.08053, 2019.
[37] NVIDIA TensorRT: Programmable inference accelerator. https : //

developer.nvidia.com/tensorrt, 2017.
[38] Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate

language and compiler for tiled neural network computations. In Pro-
ceedings of the 3rd ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, MAPL 2019, page 10–19, New
York, NY, USA, 2019. Association for Computing Machinery.

[39] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[40] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-
tuned chat models, 2023.

[41] HaojieWang, Jidong Zhai, Mingyu Gao, ZixuanMa, Shizhi Tang, Liyan
Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia.
PET: Optimizing tensor programs with partially equivalent transfor-
mations and automated corrections. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 21), pages 37–54.
USENIX Association, July 2021.

[42] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf,
Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Syl-
vain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush.
Transformers: State-of-the-art machine learning for pytorch, tensor-
flow, and jax. https : //github.com/huggingface/transformers, 2022.

[43] Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max
Willsey, Sudip Roy, and Jacques Pienaar. Equality saturation for tensor
graph superoptimization, 2021.

[44] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey,
Sudip Roy, and Jacques Pienaar. Equality Saturation for Tensor Graph
Superoptimization. Proceedings of Machine Learning and Systems,
3:255–268, March 2021.

[45] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao
Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik
Sen, Joseph E. Gonzalez, and Ion Stoica. Ansor : Generating high-
performance tensor programs for deep learning. CoRR, abs/2006.06762,
2020.

[46] Liyan Zheng, Haojie Wang, Jidong Zhai, Muyan Hu, Zixuan Ma,
Tuowei Wang, Shuhong Huang, Xupeng Miao, Shizhi Tang, Kezhao
Huang, and Zhihao Jia. EINNET: Optimizing tensor programs with
Derivation-Based transformations. In 17th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 23), pages 739–755,
Boston, MA, July 2023. USENIX Association.

[47] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng.
Flextensor: An automatic schedule exploration and optimization frame-
work for tensor computation on heterogeneous system. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’20, page
859–873, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[48] Richard Zippel. Probabilistic algorithms for sparse polynomials. In
International symposium on symbolic and algebraic manipulation, pages
216–226. Springer, 1979.

15

https://pytorch.org
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://github.com/huggingface/transformers

	Abstract
	1 Introduction
	2 Multi-Level Graph Representation
	3 Case Study: Group-Query Attention
	4 Expression-Guided Graph Generator
	4.1 Kernel and Block Graph Generation
	4.2 Thread Graph Construction
	4.3 Pruning via Abstract Expressions

	5 Probabilistic Equivalence Verifier
	5.1 Theoretical Foundations
	5.2 Random Tests over Finite Fields

	6 Graph Optimizer
	7 Evaluation
	7.1 Implementation
	7.2 Experimental Setup
	7.3 Performance Results
	7.4 Optimization Time and Ablation Study

	8 Related Work
	9 Conclusion
	References

