EINNET: Optimizing Tensor Programs with Derivation-Based Transformations

Liyan Zheng Haojie Wang Jidong Zhai Muyan Hu Zixuan Ma Tuowei Wang
Shuhong Huang Xupeng Miao† Shizhi Tang Kezhao Huang Zhihao Jia†
Tsinghua University † Carnegie Mellon University

Abstract

Boosting the execution performance of deep neural networks (DNNs) is critical due to their wide adoption in real-world applications. However, existing approaches to optimizing the tensor computation of DNNs only consider transformations representable by a fixed set of predefined tensor operators, resulting in a highly restricted optimization space. To address this issue, we propose EINNET, a derivation-based tensor program optimizer. EINNET optimizes tensor programs by leveraging transformations between general tensor algebra expressions and automatically creating new operators desired by transformations, enabling a significantly larger search space that includes those supported by prior works as special cases.

Evaluation on seven DNNs shows that EINNET outperforms existing tensor program optimizers by up to 2.72× (1.52× on average) on NVIDIA A100 and up to 2.68× (1.55× on average) on NVIDIA V100. EINNET is publicly available at https://github.com/InfiniTensor/InfiniTensor.

1 Introduction

Fast execution of deep neural networks (DNNs) is critical in a variety of tasks, such as autonomous driving [16, 21, 26], object detection [15, 18], speech recognition [5, 17], and machine translation [37, 39]. A DNN is generally represented as a tensor program, which is a directed acyclic graph containing tensor operators (e.g., convolution, matrix multiplication) performed on a set of tensors (i.e., n-dimensional arrays).

To improve the runtime performance of a DNN, existing frameworks (TensorFlow [3], PyTorch [31], and TensorRT [35]) rely on manually-designed rules to map an input tensor program to expert-written kernel libraries. Although widely used, these approaches require extensive engineering efforts and miss optimization opportunities hard to manually discover. To address these problems, recent works have proposed a variety of automated approaches that optimize DNN computation by searching over a set of candidate program transformations or generating high performance kernels on specific hardware. We classify these works into two categories based on their search spaces.

The first category of work, including TVM [7] and Ansor [40], is motivated by Halide’s idea of compute/schedule separation [33] and optimizes tensor programs at the operator level. For a given tensor operator, they automatically generate high-performance kernels by searching over schedules, each of which specifies an architecture-dependent execution plan on particular hardware. To optimize the graph structure of a tensor program, TVM and Ansor greedily apply a fixed set of expert-designed program transformations.

The second category of work optimizes tensor programs using graph-level transformations, which reorganize the DNN computation in more efficient ways. As two representative systems, TASO [20] and PET [38] adopt a superoptimization-based approach to discovering graph transformations. They generate candidate graph transformations by enumerating all possible graphs over a given set of tensor operators up to a fixed size, and search to apply these generated transformations to an input tensor program.

Both operator- and graph-level optimizers only consider program transformations whose nodes are tensor operators predefined by optimizer developers, as shown in the grey box of Figure 1. We call these transformations predefined operator representable (POR) transformations. Despite the fact that...
existing tensor program optimizers only use POR transformations to optimize tensor programs, POR transformations only exhibit limited opportunities for performance optimizations. In this paper, we propose to explore general tensor algebra transformations whose nodes are general tensor operators. Compared to POR transformations, general tensor algebra transformations constitute a significantly larger optimization space, which includes POR transformations as special cases, as shown in the yellow box of Figure 1.

To discover general tensor algebra transformations, we present EINNET, a derivation-based tensor program optimizer. A key difference between EINNET and prior work (e.g., TASO and PET) is that EINNET reveals operator computation semantics in automated graph transformations by applying derivation rules to tensor algebra expressions. By deriving computation at the expression level, EINNET can reorganize computation into arbitrary tensor expressions and map them into both predefined operators with highly optimized implementations and new auto-generated operators desired by derivations. Expression-level derivations allow EINNET to discover a variety of novel program transformations missing in existing frameworks, since these transformations require highly customized tensor operators not predefined in existing optimizers. Example transformations newly discovered by EINNET include: (1) modifying the computation semantics of an operator to improve efficiency, (2) replacing inefficient operators with highly-optimized alternatives and customized tensor operators to bridge the gap, and (3) aggressively reorganizing computation graphs to enable subsequent graph-level optimizations.

EINNET mainly addresses the following three challenges:

The first challenge is automatically discovering transformation opportunities between general expressions. TASO and PET only consider a fixed set of predefined operators, but there are infinitely many possible general expressions. Hence, directly applying superoptimization (i.e., enumerating all possible graphs over general expressions) is infeasible. EINNET addresses this challenge by presenting a derivation-based mechanism that automatically transforms an expression to equivalent alternatives by applying a collection of derivation rules. Since most derived expressions cannot be simply represented as predefined operators, we introduce eOperators (expression as an operator) to represent non-POR computation. eOperators enable EINNET to discover a variety of optimizing transformations between expressions.

The second challenge is converting expressions back to kernels that can be executed on DNN accelerators, a process we term expression instantiation. Although existing kernel generators (e.g., TVM and Ansor) can generate kernels for a given expression, doing so is suboptimal since existing vendor-provided libraries (e.g., cuDNN [10] and cuBLAS [11]) offer highly-optimized kernels for a set of predefined operators. EINNET opportunistically matches a part of an expression with predefined operators to take advantage of the highly-optimized kernels from vendor-provided libraries; the remaining part of the expression is lowered to an off-the-shelf kernel generator (i.e., TVM [7]).

The third challenge is quickly finding optimizing transformations in the search space of general tensor algebra transformations. In particular, optimizing a tensor program normally requires applying a long sequence of derivation rules (e.g., up to 12 in our evaluation), which cannot be efficiently discovered by a traversal-based search algorithm. To address this challenge, EINNET employs a two-stage search approach to applying derivations, where an explorative derivation stage considers applying all possible derivations to the current expression to create a comprehensive collection of expressions, and a converging derivation stage uses expression distance to guide the search towards promising candidates. This distance-guided approach allows EINNET to discover complex optimizations requiring long sequences of derivations under a reasonable search budget.

We evaluate EINNET on seven real-world DNN models covering a variety of machine learning tasks. We compare EINNET with state-of-the-art frameworks on two GPU platforms, NVIDIA A100 and V100. Evaluation shows that EINNET is up to $2.72 \times$ faster than existing tensor program optimizers. The significant performance improvement indicates that EINNET benefits from the new optimization opportunities enabled by derivation-based optimizations.

This paper makes the following contributions:

- We extend the POR optimization space to the general tensor algebra optimization space by combining operator computation semantics and computation graphs with tensor algebra expressions.
We present the first attempt to explore a significantly larger expression search space using a derivation-based mechanism.

We build EINNet, an implementation of the above techniques with over 23K lines of C++ and Python code, which achieves up to 2.72× speedup over existing tensor program optimizers.

2 Overview and Motivating Example

Figure 2 shows an overview of EINNet, a tensor program optimizer with derivation-based transformations. For an input tensor program, EINNet first splits it into multiple subprograms consisting of predefined operators. Each subprogram is translated to a tensor algebra expression (§3) by a program translator. Then, EINNet’s derivation-based optimizer uses different derivation rules, including inter- and intra-expression derivation rules (§4) and expression instantiation rules (§5), to generate optimized subprograms for each expression, which consists of both predefined operators and eOperators. Finally, EINNet selects the best discovered transformation for each subprogram and post-optimizes the expressions to construct an efficient tensor program (§6).

Motivating example. As a motivating example, Figure 3(a) shows an optimization found by EINNet. It first performs an intra-expression derivation to transform convolutions into matrix multiplications, and then performs inter-expression derivation to fuse multiple operators into one. The red operators, such as OffsetReduce, DLT (data layout transformation), and OffsetReduce+Relu, are eOperators automatically discovered and generated by EINNet. Figure 3(b) shows the details of the new optimization discovered by EINNet for Conv3x3 in Figure 3(a). Figure 3(c) illustrates the classic im2col [36] optimization for convolution, which is widely implemented in existing libraries and also covered by the automatic optimization space of EINNet. Different from copying input tensors for the kernel size times in im2col, the newly discovered transformation copies output tensors the same number of times. It can be more efficient when the output size is smaller than the input size, and achieves a 2× speedup compared with cuDNN on the NVIDIA A100 GPU for certain convolutions in ResNet-18 [19] in our evaluation.

Existing tensor program optimizers cannot automatically discover such transformations because: (1) the transformations require eOperators (e.g., adding intermediate tensors with offsets), which are outside of the POR transformation space explored by superoptimization-based frameworks such as TASO [20] and PET [38], and (2) the transformations modify the computation semantics instead of the schedule, and thus cannot be found by schedule-based optimizers like TVM [7] and Ansor [40].

3 Tensor Algebra Expression

EINNet represents a tensor program as tensor algebra expressions, which defines how to compute each element of output tensors from input tensors. Figure 4 shows the expression of multiplying three matrices (i.e., $A \times B \times C$). We now describe the components of an expression. For simplicity, we assume an expression has one output. EINNet’s expression can be easily generalized to multiple outputs.

Traversal and summation notations. A traversal notation, denoted as $\operatorname{List}_{i=x_{0}}^{x_{1}}$, consists of an iterator x and an iterating space $[x_{0}, x_{1})$. The traversal notation corresponds to a dimen-
\[
\begin{align*}
& \sum_{c=0}^{C} \sum_{r=0}^{R} \sum_{k_0=0}^{K} \sum_{k_1=0}^{K} \sum_{k_2=0}^{K} A[c,k_0]B[k_0,k_1]C[k_1,r] \\
& = \sum_{c'=0}^{C} \sum_{r'=0}^{R} \sum_{k_1=0}^{K} \sum_{k_2=0}^{K} \sum_{r=0}^{R} \sum_{k_0=0}^{K} A[c',k_1]B[k_1,k_2]C[k_2,r]
\end{align*}
\]

(a) Summation notation
(b) Scope

Figure 4: A tensor algebra expression example for two matrix multiplications \(A \times B \times C\). The red box highlights a scope that instantiates the intermediate result of \(A \times B\). Figure 4: A tensor algebra expression example for two matrix multiplications \(A \times B \times C\). The red box highlights a scope that instantiates the intermediate result of \(A \times B\).

\[\sum_{x \in \mathbb{R}} \sum_{y \in \mathbb{R}} f(T[\tau(x, y)])\]

where \(T = \{T_0, T_1, \ldots\}\) is a list of input tensors, \(\tau(x, y)\) is the indexing function that computes element indexes for tensors in \(T\) using iterators \(x\) and \(y\), and \(f\) is the computation taking on the indexed elements of \(T\).

4 Derivation Rules

To discover highly-optimized expressions for an input tensor program, EINNet uses derivation rules to apply transformations on an input expression. Table 1 summarizes the derivation rules used by EINNet. Note that the mathematical equivalence of derivation rules guarantees the equivalence of derived expressions discovered by EINNet.

Different from schedule primitives of kernel generators that are designed to discover optimized schedules of a given expression on specific hardware, EINNet’s derivation rules focus on transform the computation semantics of tensor expressions, such as reorganizing computation into efficient operators.

4.1 Intra-Expression Derivation

Intra-expression derivation rules transform an expression into other functionally equivalent forms, which is essential for constructing a comprehensive search space of expressions for a tensor program. Figure 5 shows the optimization details in Figure 3(b). It splits the expression of \(\text{Conv3x3}\) into two parts, derives one part toward a predefined operator \(\text{Matmul}\), and then converts the other part to an eOperator. We now describe these intra-expression derivation rules.

Summation splitting divides a summation notation \(\sum_x\) into two separate summations \(\sum_{t_l}\) and \(\sum_{t_r}\) and instantiates the result of the inner summation by converting it to a scope:
A variable substitution constructs an intermediate scope with new traversal iterators. To preserve functional equivalence, the original iterator \tilde{x} is used to construct the final result using the output of the intermediate scope.

Although numerous possible variable substitutions exist for an expression, EinNet infers legal ones by analyzing indexing functions in expressions and checking whether they can form bijections. In Figure 5, EinNet applies a variable substitution to transform the expression from E_2 to E_3 using a bijective function Φ that maps $(r, s, f, h + r, w + s)$ to (r, s, f, t_1, t_2). Specifically, $h + r$ and $w + s$ are substituted with t_1 and t_2 in E_3. To automatically identify promising variable substitutions among all alternatives, §6.1 introduces expression distance, a novel technique for efficiently exploring the search space.

Traversals merging combines the traversal notations in two separate scopes into one scope using an indexing function Φ: $\sum_{x,y} f(T(\tau(\Phi(x,y)))) \Rightarrow \sum_{\tilde{x},\tilde{y}} f(T(\tau(\Phi(x,y))))$ where indexing function Φ maps the outer scope iterators x, y to the inner scope iterators \tilde{x} \tilde{y} and satisfies $\Phi(\tilde{x}, \tilde{y}) \subseteq X \times Y \subseteq Z$.

In the example of Figure 5, EinNet applies traversal merging to transform E_4 to E_5. For this transformation, the outer traversal and summation notations and the inner traversal notation both include five iterators (i.e., $\tilde{x} = (h, w, f)$, $\tilde{y} = (w, s)$, and $\tilde{z} = (r, s, f, h + r, w + s)$). Traaversal merging is applied with an identity mapping function Φ and an indexing function $\tau(r, s, f, h + r, w + s)$. Traversal merging removes a scope and preserves the same computation graph.

Boundary relaxing and tightening. Boundary tightening inspects whether the computation for some output elements can be avoided if these elements are constants for arbitrary
inputs. EiNNET executes constant propagation on expressions to deal with constant numbers in expressions and paddings in tensors. If an output region has constant values, EiNNET converts it into an attribute of tensors to avoid unnecessary computation. In contrast, boundary relaxing enlarges tensors by adding extra paddings and redundant computations to explore more optimizations. Figure 6 shows the optimization that pads a Conv5×5 to a Conv6×6 and then converts it to a Conv3×3 with quadrupled output channels. The following formula shows how relaxing and tightening are performed:

\[
\begin{align*}
\mathcal{X} &\rightarrow \mathcal{X}' \quad \text{if} \quad \mathcal{X} \subseteq \mathcal{X}', \quad \text{and} \quad \mathbf{T} \quad \text{has a constant value in} \quad \mathcal{X}' \setminus \mathcal{X}.
\end{align*}
\]

To limit the number of possible candidate parameters for this rule, EiNNET relaxes and tightens boundaries to a common constant. In the running example in Figure 5, the formula in \(\mathcal{E}_4\) performs boundary relaxing on \(t_1\) and \(t_2\), transforming their ranges from \([r, H + r)\) and \([s, W + s)\) to \([-1, H + 1)\) and \([-1, W + 1)\), respectively, as the ranges of \(r\) and \(s\) are \([-1, 1]\) for a \(3 \times 3\) convolution kernel. After boundary relaxing, the computation graph is transformed from Figure 5 (b) to (c). If multiple plans exist, the most strict one is selected to prevent extra redundant computing. Meanwhile, EiNNET is still able to find the transformations introducing more redundancy by applying the rule multiple times.

EiNNET performs boundary tightening to transform \(\mathcal{E}_3\) into \(\mathcal{E}_6\). In \(\mathcal{E}_3\), as the computation performed on \(t_1 = -1\), \(t_2 = 0\), \(r = W\) falls in the paddings of tensor \(A\), the computation result is zero as well. Hence, the ranges of \(t_1\) and \(t_2\) are tightened from \([-1, H + 1)\) and \([-1, W + 1)\) to \([0, H)\) and \([0, W)\), respectively. After boundary tightening, the computation graph is transformed from Figure 5 (c) to (d).

Derivation search space. The derivation rules allow EiNNET to explore a large search space of expressions. Figure 7 illustrates the derivation search space of a \(3 \times 3\) convolution. By applying different derivation rules, the initial expression is derived into various equivalent expressions, shown as the computation graphs in Figure 7. The motivating example shown in Figure 5 is identified by the derivation path \((a) \rightarrow (b) \rightarrow (c) \rightarrow (d) \rightarrow (e)\). The figure also shows many other expressions discovered by EiNNET: By deriving the expression in \((d)\) to Conv1x1 instead of Matmul, EiNNET discovers a new expression in \((f)\). By merging summation iterators, expression \((i)\) adopts an eOperator to concatenate multiple inputs with offsets for the following Matmul, which represents the conventional Im2col optimization [36]. Expression \((k)\) shows a group convolution is equivalent to the original one by duplicating its input. Expressions \((n)\) and \((p)\) show two additional candidate expressions, both of which decompose the \(3 \times 3\) convolution into smaller convolutions while preserving output using derived eOperators.

4.2 Inter-Expression Derivation

We now introduce the inter-expression derivations rule in EiNNET for splitting, merging, and fusing expressions.

Expression splitting divides an expression into two independent ones by partitioning the original expression’s traversal space \(\mathcal{X}\) into two subsaces \(\mathcal{X}_1\) and \(\mathcal{X}_2\), where \(\mathcal{X} \subseteq \mathcal{X}_1 \cup \mathcal{X}_2\):

\[
\prod\limits_{\mathcal{X}_1} f(\mathbf{T}[\mathbf{x}(\mathbf{x})]) \Rightarrow \prod\limits_{\mathcal{X}_1} f(\mathbf{T}[\mathbf{x}(\mathbf{x})]) \sim \prod\limits_{\mathcal{X}_2} f(\mathbf{T}[\mathbf{x}(\mathbf{x})])
\]

where \(\sim\) denotes the independence of the two expressions.

Expression merging is the reverse of expression splitting. It merges two independent expressions with the same computation by merging their traversal spaces \(\mathcal{X}_1 \cup \mathcal{X}_2 \subseteq \mathcal{X}\):

\[
\prod\limits_{\mathcal{X}} f(\mathbf{T}[\mathbf{x}(\mathbf{x})]) \sim \prod\limits_{\mathcal{X}_2} f(\mathbf{T}[\mathbf{x}(\mathbf{x})]) \Rightarrow \prod\limits_{\mathcal{X}} f(\mathbf{T}[\mathbf{x}(\mathbf{x})])
\]

Expression fusion fuses multiple dependent expressions into one using the following rule:

\[
\prod\limits_{\mathcal{Y}} g(\mathbf{T}'[\mathbf{y}(\mathbf{y})]) \circ \prod\limits_{\mathcal{X}} f(\mathbf{T}[\mathbf{x}(\mathbf{x})]) \Rightarrow \prod\limits_{\mathcal{Y}} g(\prod\limits_{\mathcal{X}} f(\mathbf{T}[\mathbf{x}(\mathbf{x})]))[\mathbf{y}(\mathbf{y})]
\]

where \(\mathbf{T}'\) is equal to the computation result of the highlighted part in the above expression, and \(\mathcal{E}_1 \circ \mathcal{E}_2\) denotes that the result of expression \(\mathcal{E}_2\) is fed as inputs to expression \(\mathcal{E}_1\).

Figure 3(a) shows a sequence of derivations involving inter-expression derivation. EiNNET first applies intra-expression derivation rules to transform Conv3x3 and Conv1x1 to two Matmuls and an eOperator. Since the two Matmuls share the same input and computation pattern, EiNNET is able to apply the expression merging rule upon them. As shown in the dashed box, EiNNET transposes and concatenates the two weight tensors as the input for Matmul. The outputs of Matmul are split to get two equivalent outputs. Furthermore, EiNNET applies the expression fusion rule to perform vertical operator fusion, an optimization fusing a chain of operators into a single kernel to reduce data movement and kernel launch overhead. In the solid boxes in Figure 3(a), EiNNET fuses memory-bound operators (e.g., OffsetReduce and ReLU) into one eOperator by applying expression fusion.
5 Expression Instantiation

Although EinNet can treat all expressions as eOperators and use an off-the-shelf kernel generator (e.g., TVM in our implementation) to generate executable programs, doing so would result in suboptimal performance. This is because existing vendor-provided tensor libraries such as cuDNN [10] and cuBLAS [11] include a collection of highly optimized tensor algebra kernels that outperform their counterparts generated by tensor compilers. The performance and expressiveness trade-off between hand-tuned and auto-generated kernels introduces both challenges and opportunities: we should opportunistically lower some expressions to vendor-provided kernels to realize their performance advantages and use kernel generators to generate executable programs for remaining expressions. We refer to this task as expression instantiation.

EinNet considers two derivation rules for expression instantiation: (1) operator matching allows EinNet to opportunistically use existing highly optimized kernels (e.g., cuDNN [10] and cuBLAS [11]) to achieve high performance, and (2) eOperator generation enables flexible kernel generation for an arbitrary eOperator. After applying these rules, the instantiated scopes are replaced with tensors in the original expression and are separated from the following derivation.

To lower expressions to kernels, EinNet uses a strategy that maps compute-intensive expressions to predefined operators and employs a kernel generator for memory-bound expressions. This strategy allows EinNet to benefit from existing vendor libraries and maintain low compilation time, since memory-bound expressions usually involve a small schedule space in existing code generation frameworks [7]. While a more aggressive utilization of kernel generators has the potential to outperform the opportunistic strategy, it introduces significant kernel tuning overhead for millions of possible expressions during the program optimization. This is due to the difficulty in accurately estimating the performance of a kernel without actually tuning and profiling it.

To determine whether an expression is compute-intensive or memory-bound, EinNet analyzes its arithmetic intensity, calculated as the ratio between its FLOPs and tensor sizes. Expressions with arithmetic intensity lower than a threshold (4 in our evaluation) are considered memory-bound eOperators. EinNet decides whether to perform operator matching or eOperator generation for this expression based on this metric. The following introduces these two instantiation rules.

5.1 Operator Matching

Mapping an expression to a predefined operator is challenging since an operator can be represented in various expressions. For example, while expressions in Figure 8(a-b) have distinct forms, they can both be instantiated as batched matrix multiplication kernels in cuBLAS as it supports tensors with flexible data layouts.
EINNet uses an *iterator mapping table* to determine if a given expression can be mapped to a predefined operator, where iterators of each operator are grouped based on whether the iterator appears in the operator’s input/output tensors. Table 2 shows the iterator mapping table for several operators with two input and one output tensors, including element-wise operators, batched matrix multiplication, convolution, and G2BMM [23] (general to batch matrix multiplication).

Each row in the table corresponds to an operator, while each column shows an iterator group. The iterator mapping table also records the coefficients of iterators in the index of each tensor for operator matching. It can be extended to support operators with an arbitrary number of inputs and outputs.

The iterator mapping table allows EINNet to determine if an expression can be mapped to an operator as follows:

1. **Match tensors.** To map a given expression to an operator, EINNet enumerates all possible one-to-one mappings between the expression and operator’s input/output tensors. For example, to map the expression in Figure 8 (b) to `BMM` (i.e., expression in Figure 8 (a)), there exist two possible mappings, `{A → X, B → Y}` and `{A → Y, B → X}`.

2. **Match iterators.** For each tensor mapping, EINNet further enumerates all possible ways to match iterators between the expression and operator using the iterator mapping table described above. For example, assuming a tensor mapping `{A → X, B → Y}` in Figure 8, iterators `{u, v, x, w}` in (b) are mapped to iterators `{b, m, k, n}` in (a) based on the iterator mapping table (iterators in the same group are marked in the same color). When there are multiple iterators in the same group, EINNet enumerates all possible mappings between these iterators.

3. **Match operator attributes.** Many predefined operators contain attributes to specify computation. E.g., modern BLAS libraries use `lda` and `ldb` to control the data layouts for input tensors in matrix multiplication. To match these attributes, EINNet flattens the input and output tensors (i.e., reshapes them into one-dimensional tensors) to hide the complexity of tensor shapes. EINNet then matches the operator attributes by examining the variable coefficients of the flattened tensors. Figure 8(c-d) show how EINNet determines the attributes `l_0` and `l_1` for a `BMM` operator. It flattens the tensor B in both expressions and compares their coefficients: `l_0 = l_0 + l_1`, `l_1 = l_2`. The stride of `n`-dimension of tensor `Y`. The coefficient of `w` in Expression (d) is also checked to be equal to that of `n` in Expression (c), as they are a pair of matched iterators.

Table 2: Iterator mapping table. Iterators are categorized by where they appear in expressions. For each iterator group, Y and N indicate whether the iterators appear in the index of corresponding tensors.

<table>
<thead>
<tr>
<th>Operators</th>
<th>Tensor algebra expressions</th>
<th>Iterator groups (I_0/I_1/O_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>O_0[m, n] = L_{mn} I_0[m, n] + I_1[m, n]</td>
<td>Y/Y/Y</td>
</tr>
<tr>
<td>BatchMatmul</td>
<td>O_0[b, m, n] = L_{bmn} I_0[b, m, k] I_1[b, k, n]</td>
<td>m.n</td>
</tr>
<tr>
<td>Conv</td>
<td>O_0[n, h, w, f] = L_{nhwf} \sum_{c} I_0[n, h + r, w + s, c] I_1[r, s, f, c]</td>
<td>b m n k</td>
</tr>
<tr>
<td>G2BMM</td>
<td>O_0[b, m, w] = L_{bmn} \sum_{k} I_0[b, m, k] I_1[b, k, m + D + (w - W)]</td>
<td>b m w</td>
</tr>
</tbody>
</table>

\[T1 = \text{tvm.te.compute}(H, W, F), \lambda h, w, f: \text{tvm.te.sum}(T1[r, s, h+r, w+s, f], \text{axis}=[r, s]) \]

Figure 9: Lowering `E7` in Figure 5 to TVM.

5.2 eOperator Generation

For expressions that cannot be mapped to vendor-provided predefined operators, EINNet converts them into eOperators. Since an eOperator precisely defines its computation, EINNet can directly feed it to an off-the-shelf kernel generation framework (e.g., TVM [7]). For example, for expression `E7` in Figure 5, which corresponds to `OffsetReduce` in the transformed computation graph, EINNet feeds it to TVM by converting its iterator space into a tensor and the computation expression into a lambda function. Figure 9 shows the TVM code generated by EINNet for expression `E7`, which can be an input program to TVM to generate an executable kernel.

6 Program Optimizer

This section describes EINNet’s *program optimizer*, which uses the expression derivation and instantiation techniques described in §4 and §5 to optimize input tensor programs. These derivation rules create a large and complex search space of programs functionally equivalent to the input. EINNet uses a *distance-guided* search algorithm to explore the space (§6.1) and develops a *fingerprinting* technique to prune redundancy (§6.2). Finally, §6.3 describes how EINNet orchestrates these techniques to perform end-to-end optimizations.

6.1 Distance-Guided Search

To explore the search space created by EINNet’s derivations, a purely randomized search strategy can only explore either a limited set of paths or small searching depths, leading to suboptimal performance. To address this challenge, EINNet develops a two-stage *distance-guided* search algorithm to apply derivations. It includes an *explorative derivation* stage and a *converging derivation* stage, as shown in Figure 10.

Explorative derivation. During explorative derivation, EINNet iteratively applies all derivation rules to the current expression. A hyperparameter `MaxDepth` determines...
the maximum number of derivation rules EINNET applies
during explorative derivation. As described in §5, EINNET
opportunistically uses vendor-provided kernel libraries to
maximize performance. Thus, EINNET leverages converging
derivation to quickly derive an expression toward a target
operator (e.g., operators in cuDNN and cuBLAS). EINNET
automatically generates necessary eOperators to bridge the
gap between the current expression and target operator.

Converging derivation. During converging derivation,
EINNET first selects a target operator and uses a novel metric,
expression distance, to guide the applications of derivation
rules in this stage. Expression distance measures the dif-
fERENCE between a given expression \(E_1 \) and the canonical
expression of a given operator \(\mathcal{E}_2 \). To calculate the distance
between \(E_1 \) and \(\mathcal{E}_2 \), EINNET first matches all iterators in \(E_1 \)
and \(\mathcal{E}_2 \) using the iterator mapping table (see §5.1) and counts
the total number of mismatched iterators as their distance.

Specifically, each iterator mismatch between the current ex-
pression and target operator indicates that the two expressions
have a different number of iterators in an iterator group (see
Table 2). EINNET applies derivation rules to fix mismatches,
such as variable substitution rules to merge/split iterators,
resulting in reduced expression distances. For example, to
derive the expression in the inner scope of \(\mathcal{E}_2 \) in Figure 5
to a Matmul, EINNET compares their iterators (Table 2) and
obtains the following matches: \(t_1, t_2 \rightarrow m; r, s, f \rightarrow n; c \rightarrow k \).
To fix mismatches, EINNET applies variable substitutions to
merge iterators \(t_1 \) and \(t_2 \) into \(m \) and merge \(r, s, f \) into \(n \).

After all iterators are matched, EINNET infers the shape of
each input/output tensor according to the target operator and
constructs new tensors from existing ones by adding eOperators.
For example, the new input tensor \(A' \) and weight tensor
\(K' \) for Matmul are constructed by the following expressions:

\[
A'[m, k] = A'[t_1 \times W + t_2, c] = A[t_1, t_2, c] \tag{2}
\]

\[
K'[k, n] = K'[c, r \times S \times F + s \times F + f] = K[r, s, f, c] \tag{3}
\]

where the mapping functions are \((m, k) = \Phi_A(t_1, t_2, c) = (t_1 \times W + t_2, c) \) and \((k, n) = \Phi_K(r, s, f, c) = (c, r \times S \times F + s \times F + f) \), and \(W, S, \) and \(F \) are the range of the iterators \(w, s \) and \(f \). EINNET automatically generates Expression (2) and (3) to
fix the mismatch and reduce the expression distance.

During converging derivation, EINNET only considers
derivations that reduce the expression distance of the current
expression and target operator, allowing EINNET to prune
most derivations and quickly converge to the target operator.

By enumerating operators in the iterator mapping table as
the target operator, EINNET finds transformations involving
different operators.

Delayed code generation. To accelerate the search, EINNET
estimates the performance of derived programs to avoid
frequent code generation for eOperators. Specifically, the
execution time of a predefined operator is measured by
profiling its kernel on hardware. Meanwhile, the run time of
an eOperator is estimated based on its input/output sizes and
hardware memory bandwidth. We observe that this estimation
is accurate since eOperators are memory-bound and usually
account for a small part of the total execution time.

6.2 Redundancy Pruning

Applying different sequences of derivations may result in the
same expression. For example, splitting an iterator into two
and then merging them results in the original one. To prune
redundancy, EINNET uses a **fingerprint** technique to detect
duplicate expressions. A fingerprint is a hash of an expression
and can eliminate the following sources of redundancy:

- **Summation reordering:** summations can be reordered,
e.g., \(\sum_i \sum_j f(x, y) \) is equivalent with \(\sum_j \sum_i f(x, y) \). Note that
traversal reordering does not imply equivalence since it
involves layout transformations.

- **Operand reordering:** operands of commutative binary
operations can be reordered, e.g., \(L_{x=0} L_{y=0} f(x, y) \)
and \(L_{x=0} L_{y=0} f(y, z) \) are equivalent, and \((x, y)\) in the former
one should be mapped to \((y, z)\) in the latter one.

- **Tensor renaming:** tensors introduced by different scopes
may have the same value.

To eliminate the above sources of redundancy, EINNET
adopts the following methods to calculate fingerprints. For a
traversal iterator, EINNET uses its iterator space and its order
relative to all other traversal notations in the current scope as
its fingerprint. Since order is considered, fingerprint can
differentiate traversal iterators with the same iterator spaces
but in different locations of the traversal notations. For a
summation iterator, EINNET only uses its iterator space as
its fingerprint. Thus expressions under summation reordering
have the same fingerprint. To account for operand reordering,
EINNET uses the operation type and an **order-independent**
hash for commutative operations (e.g., addition) and an
order-dependent hash for other operations. The fingerprint of a
tensor depends on its source. For an input tensor, EINNET
calculates its fingerprint by hashing its name. For an interme-
diate tensor generated by a scope, its fingerprint is identical
to that of the expression that produces the tensor.
Algorithm 1 Program-level optimizer.

1: Input: An input tensor program \mathcal{P}
2: Output: An optimized tensor program \mathcal{P}_{opt}
3: $\mathcal{P}_{\text{opt}} = \emptyset$
4: $\mathcal{R} = \text{inter-expression rule set}$
5: $\mathcal{S}\mathcal{P} = \text{split } \mathcal{P}$ and translate subprograms into expressions
6: for $E_0 \in \mathcal{S}\mathcal{P}$ do
7: $Q = \{E_0\}$
8: for $E \in Q$ do
9: for $r \in \mathcal{R}$ do
10: $Q = Q + r(E)$
11: $Q = Q + \text{DISTANCE GUIDED SEARCH}(E)$
12: Add the best transformation in Q into \mathcal{P}_{opt}
13: $\text{POSTOPTIMIZATION}(\mathcal{P}_{\text{opt}})$
14: return \mathcal{P}_{opt}

Figure 11: Post-optimization for InfoGAN. Red blocks represent eOperators. DLT means data layout transformation.

6.3 End-to-End Workflow

Algorithm 1 shows EINNET’s workflow for optimizing an input tensor program in an end-to-end fashion. For an input program, EINNET first splits it into multiple subprograms using non-linear activation operators as the splitting points. This is because activation operators often do not provide further optimization opportunities other than fusion, as discovered by prior work [38]. For each subprogram, EINNET translates it into expressions using the canonical expression of each operator. Since a subprogram may include multiple operators and thus multiple expressions, EINNET applies inter-expression derivation rules (Line 11) and feeds each expression to the distance-guided search (§6.1) for performing intra-expression derivations (Line 12). Instead of integrating intra- and inter-expression optimizations in a unified search space and performing them jointly, the separate search prioritizes the transformations that can map expressions into operators. Thus, EINNET is able to find promising transformations quickly and prune unnecessary search states according to the execution time of transformed results.

Finally, EINNET selects the best-discovered expression of each subprogram, performs post-optimization, and generates an optimized tensor program. Figure 11 shows two types of post-optimization: eOperator fusion and compile-time expression evaluation. EINNET generates eOperators to facilitate optimizing transformations when optimizing a subprogram. During post-optimization, consecutive eOperators are fused into a single eOperator by applying inter-expression derivations. The dashed boxes in Figure 11(b) and (c) show such cases. EINNET also detects compile-time computable expressions to reduce runtime overhead. For example, the data layout transformation E_2 in Figure 11 can be processed during post-optimization.

7 Evaluation

7.1 Experimental Setup

Implementation of EINNET. EINNET is built with over 23K lines of C++ and Python code. We realize the tensor expression derivation system from scratch and implement an execution runtime for tensor programs. Users can both define tensor programs in EINNET directly and load existing ones in the ONNX format [29]. To support an operator in derivation, EINNET requires its tensor expression and operator attribute constraints to automatically convert it between expressions and operators. We set the default maximum search depth of explorative derivation to 7, which is an empirical configuration satisfying both optimization quality and search time.

Platform. We evaluate EINNET on a server with dual Intel Xeon E5-2680 v4 CPUs, NVIDIA A100 40GB and V100 32GB PCIe GPUs. All experiments use CUDA 11.0.2, cuBLAS 11.1.0, and cuDNN 8.0.3.

7.2 End-to-End Performance

We first compare the end-to-end inference performance of EINNET against today’s DNN frameworks, including TensorFlow v2.4 [4], TensorFlow XLA [2], Nimble [22], TVM v0.10 with Anisor [7], TensorRT v8.2 [35], and PET v0.1 [38]. All frameworks use the same version of cuBLAS and cuDNN as their backend and the same data type FP32 in computation for a fair comparison. For the new attention operator in Longformer, we provide an auto-tuned kernel for TVM, TensorRT, PET, and EINNET, and implement it by
Though TensorRT is not open source, the profiling results which executes models in ET can have better performance in models like ResNet-brings significant speedups over ET. As shown in Figure 13, while ET still outperforms existing optimizers by 1.4× on A100 and 2.0× on V100. For both CNNs (e.g., GCN) and language models (e.g., Longformer), ET is able to improve their performance by more than 2×. Among the seven models, ResNet-18 has been heavily optimized by existing tensor program frameworks and optimizers; however, ET still outperforms existing optimizers by 1.2× on V100, by applying the novel transformations shown in Figure 3. For CSRNet, a typical optimization case of PET, ET discovers similar transformations by derivations and eliminates extra introduced transposes, indicating that ET’s derivation rules can perform PET’s optimizations and uncover additional improvements.

Figure 13 shows the speedup with the computation data type of TF32 and Tensor Cores on A100. To show the benefits provided by ET, we create a baseline ET which executes models in ET with derivation optimizations disabled. As shown in Figure 13, while ET usually brings significant speedups over ET-Base and TensorRT, TensorRT can have better performance in models like ResNet-18. Though TensorRT is not open source, the profiling results show that it leverages many efficient GPU kernels besides cuBLAS and cuDNN. This can be an important source of its high performance, which is beyond the current search space of ET.

7.3 Optimization Analysis

This section analyzes the optimizations discovered by ET on these DNNs. To highlight transformations beyond the scope of existing tensor program optimizers, we focus on transformations involving eOperators.

Transforming operator types. ET is able to opportunistically substitute an inefficient operator with well-optimized operators of different types. In ResNet-18 and InfoGAN, the transformations from Conv and ConvTranspose to Matmul are profitable. Table 3 shows a detailed performance analysis. As shown in Figure 3(b), ET transforms a Conv3x3 to a Matmul and an eOperator (OffsetReduce), which significantly reduces GPU DRAM accesses from 56.7 MB to 10.5 MB and achieves a 2.7× speedup. As another

Table 3: Performance studies on the cases in §7.3. The Algo column shows the best convolution algorithm for cuDNN, where IGMEM, FFT, and WING refer to implicit GEMM, Fast Fourier Transform, and Winograd [24] algorithms. The DRAM and L2 columns show the amount of memory access.

<table>
<thead>
<tr>
<th>Input shape</th>
<th>Conv Alg.</th>
<th>Time (ms)</th>
<th>DRAM (MB)</th>
<th>L2 (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,512,7,7]</td>
<td>Original</td>
<td>56.7</td>
<td>70.6</td>
<td></td>
</tr>
<tr>
<td>[16,256,2,2]</td>
<td>Optimized</td>
<td>10.5</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>[16,32,224,224]</td>
<td>Original</td>
<td>7.4</td>
<td>579</td>
<td></td>
</tr>
<tr>
<td>[8,10000,64]</td>
<td>Optimized</td>
<td>20.9</td>
<td>19750</td>
<td></td>
</tr>
</tbody>
</table>
example, EINNET also derives a strided ConvTranspose to a Matmul and another eOperator that selectively aggregates the output of Matmul according to the derived expression. This transformation significantly reduces L2 access, a key contribution to performance optimization.

Transforming operator attributes. EINNET can also transform operator attributes by leveraging eOperators. Figure 6 shows such an optimization for convolution, which converts its kernel size from 5×5 to 3×3, allowing EINNET to use more advanced convolution algorithms best suited for 3×3 convolutions. To realize this transformation, an eOperator is added to split the output of Conv3x3 across the channel dimension and reduce the intermediate results with corresponding offsets. Although padding the convolution kernel introduces additional computation, Table 3 shows that it enables using the Winograd algorithm for convolution, which further reduces compute time and memory access.

Transforming tensor layouts. eOperators allow EINNET to accelerate DNN computation by optimizing tensor layouts. Figure 14 shows such a layout optimization for Longformer, which uses a dilated G2BMM (general to band matrix multiplication) to compute sparse attention. G2BMM has the same computation pattern as Matmul and only computes a subset of output. The blue boxes in Figure 14(a) show the output locations with a dilation of 2. EINNET discovers an optimizing layout transformation that reorders the odd and even rows or columns, converting the dilated G2BMM to a non-dilated one, as shown in Figure 14(b), which greatly reduces non-contiguous memory accesses at the cost of introducing two redundant elements (marked as red in the figure). As shown in Table 3, this transformation can reduce L2 cache access by 95.9% and execution time by 78.0%.

Transforming graph structures. For the Longformer case shown in Figure 14(d), four data layout transformations are introduced to accelerate dilated G2BMM. While they are not predefined operators, EINNET finds that the middle two are reciprocal through expression fusion and eliminates them since they do not affect the Softmax computation in between.

A more complex example is in GCN, which has a repeated structure of spatially separable convolutions (i.e., sequential Conv3x3s and ConvKx1s). As shown in Figure 15(b), EINNET first transforms convolutions to Matmuls and eOperators, and then merges the first two Matmuls into a single Matmul. While the two following Matmuls do not share common inputs, they have an identical computation pattern and can be merged into a BatchMatmul by applying the expression merging and operator matching rules. Note that the left part of Figure 15(c) is computed at compile-time by EINNET since it only involves weight tensors. These transformations optimize subgraph execution time by 4.9× on A100 with batch size of one.

7.4 Integration with Different Backends

Since EINNET searches expression space, it can cooperate with different backends, including math libraries and schedule-based code generation frameworks. To show the improvements of EINNET on these backends, we evaluate EINNET with cuBLAS/cuDNN, AutoTVM [7], and TVM auto-scheduler Ansor [8]. The evaluation is carried out on the same transformations illustrated in §7.3.

Figure 16 shows EINNET can optimize tensor programs on different backends. For the Conv3x3 in ResNet-18, and the ConvTranspose in InfoGAN, transforming them to Matmuls and eOperators has significant speedup over all three platforms. While the transformation from Conv5x5 to Conv3x3 is beneficial for cuDNN, it does not have perfor-
7.5 Analysis of Automated Derivation

The search space of EINNET is determined by heuristic parameters, e.g., the maximum search depth for the distance-guided search algorithm (§6.1), which specifies the largest steps of derivation applied to an expression. A larger search depth enables more potential optimizations but introduces larger searching overhead. Figure 17 analyzes the speedup EINNET can achieve with different maximum search depths on InfoGAN and Longformer. On InfoGAN, EINNET has improvement when the searching step increases from 2 to 4, as new transformations are explored with a deeper search. While for Longformer, the major speedup comes from the transformation found in a 4-step derivation. In conclusion, the key takeaway is that EINNET can achieve most of the performance improvement at moderate depth.

To evaluate the proposed techniques for derivation, we evaluate the searching process on the four cases in Table 3 with and without converging derivation and expression fingerprint.

Distance-guided derivation (§6.1) provides a deterministic derivation direction to reduce search overhead. As shown in Figure 18(a), the search time grows exponentially with the maximum depth of explorative derivation (i.e., MaxDepth in Figure 10). EINNET adopts converging derivation to reduce the search depth of explorative derivation. Figure 18(b) shows the number of applied explorative derivations in these cases.

In the case of ConvTranspose, the explorative derivation requires a search with MaxDepth = 12 to discover the target expression. But with converging derivation, EINNET only requires a search with MaxDepth = 6, which means that matching a vendor-provided operator needs a six-step (12 − 6) search and converging derivation can reduce this unnecessary search. Thus, this optimization leads to a significant reduction of the search time by more than 99.0%.

Expression fingerprint (§6.2) prunes redundant searching states. Figure 19 shows the intermediate states and search time with and without the fingerprint mechanism. During the number of explorative derivation steps with and without converging derivation.

7.5 Analysis of Automated Derivation

The search space of EINNET is determined by heuristic parameters, e.g., the maximum search depth for the distance-guided search algorithm (§6.1), which specifies the largest steps of derivation applied to an expression. A larger search depth enables more potential optimizations but introduces larger searching overhead. Figure 17 analyzes the speedup EINNET can achieve with different maximum search depths on InfoGAN and Longformer. On InfoGAN, EINNET has improvement when the searching step increases from 2 to 4, as new transformations are explored with a deeper search. While for Longformer, the major speedup comes from the transformation found in a 4-step derivation. In conclusion, the key takeaway is that EINNET can achieve most of the performance improvement at moderate depth.

To evaluate the proposed techniques for derivation, we evaluate the searching process on the four cases in Table 3 with and without converging derivation and expression fingerprint.

Distance-guided derivation (§6.1) provides a deterministic derivation direction to reduce search overhead. As shown in Figure 18(a), the search time grows exponentially with the maximum depth of explorative derivation (i.e., MaxDepth in Figure 10). EINNET adopts converging derivation to reduce the search depth of explorative derivation. Figure 18(b) shows the number of applied explorative derivations in these cases.

In the case of ConvTranspose, the explorative derivation requires a search with MaxDepth = 12 to discover the target expression. But with converging derivation, EINNET only requires a search with MaxDepth = 6, which means that matching a vendor-provided operator needs a six-step (12 − 6) search and converging derivation can reduce this unnecessary search. Thus, this optimization leads to a significant reduction of the search time by more than 99.0%.

Expression fingerprint (§6.2) prunes redundant searching states. Figure 19 shows the intermediate states and search time with and without the fingerprint mechanism. During

8 Related Work

Rule-based approaches such as TensorFlow XLA [2], TensorFlow [35], and Grappler [1], are widely used and perform optimizations like constant folding and layout optimization. While they can efficiently optimize computation graphs, it requires extensive expert efforts and only performs manually discovered optimizations. For operator fusion, DNNFusion [28] adopts operator-level mathematical-property-based graph rewrite rules, such as associative and commutative properties. However, such rewriting rules are mainly designed for element-wise operators and cannot be easily extended to arbitrary operators since many complex operators, such as convolution and matrix multiplication, do not follow associative and commutative properties. EINNET derives tensor programs at expression level to exploit general program transformations, including splitting, fusing, and reorganizing computation into operators and eOperators. This avoids manually summarizing rules for each operator.

Superoptimization-based approaches. TASO [20] and
We propose EINNet, a derivation-based tensor program optimizer, which extends the optimization space of tensor programs from predefined operator representable transformations to general expressions and can create new operators desired by transformations. EINNet can outperform state-of-the-art frameworks by up to $2.72 \times$ on NVIDIA GPUs.

9 Conclusion

We propose EINNet, a derivation-based tensor program optimizer, which extends the optimization space of tensor programs from predefined operator representable transformations to general expressions and can create new operators desired by transformations. EINNet can outperform state-of-the-art frameworks by up to $2.72 \times$ on NVIDIA GPUs.

References

[1] Tensorflow graph optimization with grappler; tensorflow core.

A Artifact Appendix

Abstract
This artifact appendix helps the readers reproduce the main evaluation results of the paper: EinNet: Optimizing Tensor Programs with Derivation-Based Transformations.

Scope
This artifact can be used for evaluating and reproducing the main results of the paper, including the model-level evaluation, operator-level evaluation, and the ablation studies and hyper-parameter studies on search strategies.

Contents
The following evaluation results are contained in the artifact:

E1: An end-to-end performance comparison between EinNet and other frameworks. (Figure 12)

E2: Performance studies on the cases in §7.3. (Table 3)

E3: Operator performance before and after optimization on the math libraries and code generation framework Ansor. (Figure 15)

E4: Speedup under different maximum search depths. (Figure 16)

E5: Search time with different MaxDepth and the number of explorative derivation steps with and without converging derivation. (Figure 17)

E6: Ablation study of expression fingerprint pruning. (Figure 18)

Hosting
The source code of this artifact can be found on GitHub: https://github.com/zhengly123/OSDI23-EinNet-AE, the main branch, with the commit ID 26a47d9.

Requirements

Hardware dependencies
Dual Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, NVIDIA A100-PCI-40GB GPU, NVIDIA V100-PCIE-32GB GPU.

Software dependencies
The artifact is evaluated on Ubuntu 22.04 LTS (Linux kernel 5.15.0-58). The artifact relies on CUDA 11.0.2 and cuDNN 8.0.3. The following frameworks are required as baselines:
1. TensorFlow 2.4
2. TensorRT 8.0
3. PET 1.0
4. Nimble with the commit ID bac6d10
5. TVM v0.10.0

Experiments workflow
The installation instruction and the following experiments are included in this artifact. All DNN benchmarks use synthetic input data in GPU device memory to remove the side effects of data transfers between CPU and GPU.

End-to-end performance (E1)
This experiment reproduces Figure 12 in the paper. Refer to OSDI23-EinNet-AE/0_model/README.md to prepare the environment and data. The detailed commands for each baseline are provided in separate run.sh and readme files in subdirectories.

Performance studies on the cases in §7.3 (E2)
See README.md and run.sh in OSDI23-EinNet-AE/1_op.

Operator performance (E3)
See README.md and run.sh in OSDI23-EinNet-AE/2_kernel_generator.

Speedup & Depth (E4)
See README.md and evaluate_max_depth.py in OSDI23-EinNet-AE/3_search_depth.

Search Time (E5)
See README.md and run.sh in OSDI23-EinNet-AE/4_search_time.

Ablation Study (E6)
See README.md and run.sh in OSDI23-EinNet-AE/5_fingerprint.