
AdaServe: Accelerating Multi-SLO LLM Serving with
SLO-Customized Speculative Decoding

Zikun Li
∗

Carnegie Mellon University

USA

Zhuofu Chen
∗†

Princeton University

USA

Remi Delacourt

EPFL

Switzerland

Gabriele Oliaro

Carnegie Mellon University

USA

Zeyu Wang

Carnegie Mellon University

USA

Qinghan Chen

Carnegie Mellon University

USA

Shuhuai Lin

Carnegie Mellon University

USA

April Yang

Carnegie Mellon University

USA

Zhihao Zhang

Carnegie Mellon University

USA

Zhuoming Chen

Carnegie Mellon University

USA

Yi-Hsiang Lai

Amazon Web Services

USA

Xinhao Cheng

Carnegie Mellon University

USA

Xupeng Miao

Purdue University

USA

Zhihao Jia

Carnegie Mellon University

Amazon Web Services

USA

Abstract
Modern large language model (LLM) applications exhibit

diverse service-level objectives (SLOs), from low-latency re-

quirements in interactive coding assistants to more relaxed

constraints in data wrangling tasks. Existing LLM serving

systems, which rely on uniform batching and scheduling

strategies, often fail to meet these heterogeneous SLOs con-

currently. We present AdaServe, the first LLM serving sys-

tem designed to support efficient multi-SLO serving through

SLO-customized speculative decoding. AdaServe formulates

multi-SLO serving as a constrained optimization problem

and introduces a hardware-aware algorithm that constructs

a speculation tree tailored to each request’s latency target.

It features a speculate-select-verify pipeline that enables

fine-grained control over decoding speed while maximizing

system throughput. AdaServe further adapts to workload

variation by dynamically adjusting speculation parameters.

Evaluations across diverse workloads show that AdaServe

reduces SLO violations by up to 4.3× and improves goodput

∗
Contributed equally.

†
Work done during internship at Carnegie Mellon University.

This work is licensed under a Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License.

EUROSYS ’26, Edinburgh, Scotland Uk
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2212-7/26/04

https://doi.org/10.1145/3767295.3769315

by up to 1.9× compared to the best-performing baselines,

highlighting its effectiveness in multi-SLO serving.

CCS Concepts: • Computing methodologies→ Artifi-
cial intelligence; Parallel computing methodologies; •
Information systems→ Computing platforms.

Keywords: Large Language Model Serving, Speculative De-

coding, Generative AI

ACM Reference Format:
Zikun Li, Zhuofu Chen, Remi Delacourt, Gabriele Oliaro, Zeyu

Wang, Qinghan Chen, Shuhuai Lin, April Yang, Zhihao Zhang,

Zhuoming Chen, Yi-Hsiang Lai, Xinhao Cheng, Xupeng Miao,

and Zhihao Jia. 2026. AdaServe: Accelerating Multi-SLO LLM Serv-

ing with SLO-Customized Speculative Decoding. In 21st European
Conference on Computer Systems (EUROSYS ’26), April 27–30, 2026,
Edinburgh, Scotland Uk. ACM, New York, NY, USA, 20 pages. https:
//doi.org/10.1145/3767295.3769315

1 Introduction
Large language models (LLMs) such as ChatGPT, Gemini

and Claude have revolutionized various applications includ-

ing conversational chatbots [2, 11, 15, 41], code generation

tools [7, 27, 46], and virtual assistants [12, 53]. Despite these

advances, deploying LLMs in real-world settings remains

challenging, particularly in ensuring timely and reliable re-

sponses under varying operational conditions. Modern in-

dustrial LLMs are trained to support an increasingly diverse

range of applications. These applications exhibit varying

service-level objectives (SLOs), driven by user expectations

1

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3767295.3769315
https://doi.org/10.1145/3767295.3769315
https://doi.org/10.1145/3767295.3769315

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Zikun Li, Zhuofu Chen, et al.

and operational contexts. For example, LLM-powered chat-

bots must deliver text responses at rates slightly exceed-

ing human reading speed, approximately 10 tokens per sec-

ond [4, 29, 60]. In contrast, coding copilots require much

faster responses—producing tens of tokens within 400ms—to

ensure seamless interactions [10, 51]. Furthermore, emerging

applications in complex reasoning [17, 20] and data wran-

gling [37] can tolerate higher latencies, as they prioritize

depth and result quality over immediacy.

The diverse SLOs of various LLM applications present sub-

stantial challenges for LLM serving infrastructures. Existing

systems typically employ a uniform serving strategy, treating

incoming requests homogeneously without considering their

specific SLOs. State-of-the-art systems like vLLM [22] and

TensorRT-LLM [38] leverage continuous batching to improve

throughput and GPU utilization by batching tokens from dif-

ferent requests [58]. This method schedules execution at the

iteration granularity, resulting in uniform per-token latency

across batched requests. As shown in Figure 2, existing sys-

tems using continuous batching for multi-SLO LLM serving

may violate the stringent SLOs.

Enhancing serving systems to deliver smoother and faster

user experiences in online inference has become a central

focus of recent research, with many works proposing tech-

niques to improve the SLO attainment of continuous batch-

ing. For example, Sarathi-Serve [1] introduces chunked-prefill,

partitioning long prefill requests into smaller segments to

reduce Time-to-First-Token (TTFT). FastServe [54] employs

preemptive scheduling to mitigate latency from long se-

quences. VTC [47] ensures fair scheduling by tracking pro-

cessed tokens for each service and prioritizing under-served

requests. Despite advances in capacity, adaptivity, and fair-

ness, existing approaches lack explicit mechanisms to accom-

modate concurrent, heterogeneous SLOs and, as shown in

Figure 1, consistently fail to prioritize stricter requests.

Optimizing continuous batching alone cannot resolve its

structural limitation in multi-SLO serving, as iteration-level

scheduling enforces uniform per-token latency. A deeper

challenge arises from the inherent tradeoff between latency

and throughput: satisfying tight SLOs requires restricting

batch sizes, which reduces throughput, increases congestion,

and ultimately degrades overall SLO attainment across re-

quest categories. For example, vLLM+Priority attempts to

address urgent requests by constraining batch sizes and pre-

empting non-urgent requests during decoding, but as shown

in Figure 1, this approach further worsens SLO attainment.

High-volume multi-SLO serving requires decoupling serv-

ing throughput from per-request latency—a constraint inher-

ent to continuous batching thatmust be overcome. Achieving

this decoupling calls for a new paradigm. Speculative decod-
ing (SD) [6, 23, 33], recently proposed in the literature, fully

exploits under-utilized hardware resources to speculatively

decode future tokens, thereby enabling adaptive control of

Cat 1 Requests Cat 2 Requests
0

10
20
30
40
50
60

Pe
r-t

ok
en

 la
te

nc
y

(m
s)

2% 4% 1% 0% 0% 62% 82% 37% 7% 8%

SLO1

SLO2

vLLM
vLLM + Chunked prefill

vLLM + Priority
FastServe

VTC

Figure 1. Existing systems cannot efficiently support multi-

SLO LLM serving.

Output Tokens

Req 1

Req 2

Req 2

Req 1

SLO-Customized
Speculative Decoding

1 SD Iteration
Latency

Token a Token b Token c

Token x Token y

AdaServe

Attained

Attained

Attained

Existing Systems

Req 1

Req 2

Req 2

Req 1
Violation

Continuous
Batching

1 Iteration
Latency

Token x

Token a
SLO

SLO

SLO SLO SLO

SLO SLO

Figure 2. Comparing AdaServe and existing systems with

continuous batching.

per-request latency without sacrificing throughput and of-

fering a suitable path toward multi-SLO serving. Specifically,

SD predicts multiple output tokens at once during the spec-

ulation phase, trading potential inaccuracies for substantial

gains in efficiency. This process is followed by a single ver-

ification step using the LLM to simultaneously verify the

correctness of the output tokens to ensure lossless genera-

tion. Unlike continuous batching and its derivatives, which

conform to the conventional auto-regressive decoding model

with its per-token iterative processing, speculative decod-

ing alternates between speculation and verification phases,

potentially producing multiple tokens in one step. This dis-

tinct decoding mechanism breaks the intrinsic per-token

latency limitations of traditional methods, providing oppor-

tunities to dynamically allocate computational resources

among batched requests, thereby more effectively meeting

the diverse SLO requirements of multiple requests within

the same batch.

However, integrating speculative decoding in multi-SLO

LLM serving systems presents three key challenges.

Quantifying hardware processing power. Processing
power of modern GPUs significantly influences the maxi-

mum number of tokens from all requests that can be verified

in parallel, therefore impacting the overall throughput of the

serving system. This capacity varies with hardware specifica-

tions; however, existing SD methods lack designs optimized

for high-throughput serving and often overlook this aspect.

2

AdaServe: Accelerating Multi-SLO LLM Serving with SLO-Customized Speculative Decoding EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

Fine-grained control of decoding speed. Existing SD

methods generally focus on maximizing decoding speed.

However, within the context of multi-SLO serving, the pri-

mary objectives are SLO attainment. Instead of maximizing

decoding speed for individual requests, it is critical to mod-

ulate the decoding rate to use minimal hardware resources

while maximally sustaining the SLOs of individual requests,

therefore maximizing overall system performance.

Adapting to fluctuating workloads. Existing SD meth-

ods typically adopt a static speculation strategy [33], assum-

ing a fixed workload and uniform performance objectives.

However, in multi-SLO serving scenarios, the workload of

different applications—as well as the distribution of requests

with varying SLO requirements—can change significantly

over time [49].These dynamics alter the optimal tradeoff

between speculation aggressiveness and speedup in SD.

To address these challenges, we propose AdaServe, the

first system designed to support efficient and adaptive multi-

SLO LLM serving. AdaServe is hardware-aware, utilizing

profiling-based roofline models to quantify the available

hardware processing power on different GPU platforms. To

fully utilize the hardware capability, we introduce an algo-

rithm that constructs theoretically optimal draft token trees

for all requests. This algorithm ensures that each request is

served at the appropriate decoding speed to meet its individ-

ual SLO while maximizing overall system throughput.

Building on this foundation, we propose SLO-customized
speculative decoding, a practical variant of the optimal algo-

rithm tailored to real-world deployment constraints. SLO-

customized speculative decoding uses the speculator to esti-

mate the probability of each token being verified by the LLM

and constructs a near-optimal token tree for each request

based on these estimates. It adopts a speculate-select-verify
pipeline: the speculator first generates a candidate token

tree for each request; AdaServe then selects the subset of

tokens to verify with the LLM. This decoupling of specula-

tion and selection significantly reduces the overhead of draft

model decoding. Finally, AdaServe dynamically tunes the

speculation parameters based on the system load, allowing

it to smoothly adapt to changes in request distribution and

workload intensity over time.

We have conducted extensive evaluations to compare

AdaServe with existing LLM serving systems across work-

loads from diverse services and applications. The results

show that AdaServe consistently outperforms all baselines.

Specifically, AdaServe achieves up to 4.3× reduction in SLO

violation rate and 1.9× higher goodput over the best baseline.
Moreover, as the proportion of requests with strict SLOs in-

creases, AdaServe maintains high SLO attainment, achieving

up to 1.5× higher SLO satisfaction and 64% higher goodput

relative to the best competing system. Finally, when serving

requests with strict Time-Per-Output-Token (TPOT) SLO re-

quirements, AdaServe achieves up to 1.38× higher goodput

Request
Auto-regressive decoding:

Request
Speculative decoding:

+1 token +1 token +1 token

+3 tokens +1 token +2 tokens

LLM decoding LLM verifying Speculation

time

time

Figure 3. Speculative decoding accelerates LLM inference.

(b) A draft
token tree

Prompt: Describe the structure of an atom.
LLM output: An atom consists of three …

(a) A draft sequence

𝑡!
(An)

𝑡"
(atom)

𝑡#
(is)

𝑡$
(the)

𝑡%
(basic)

✅ ✅
❌

𝑡&
(unit)

𝑡'
(consists)

✅ ✅

✅ ✅

❌
𝑡!

(An)
𝑡"

(atom)
𝑡#
(is)

𝑡%
(consists)

𝑡$
(the)

𝑡&
(of)

𝑡'
(three)

✅LLM accepts❌LLM rejects

𝑡(
(atom.)

𝑡(
(atom.)

Draft token Correct token Root token

Figure 4. Draft sequence and draft token tree.

than the best baseline, demonstrating a significant improve-

ment in the latency-throughput tradeoff.

2 Background
LLM serving. Most modern LLMs are based on the Trans-

former architecture and generate tokens in an auto-regressive
fashion. In each inference forward pass—referred to as a

decoding iteration—the model consumes the entire input

sequence and produces a single new token. This newly gen-

erated token is then appended to the input sequence for the

next iteration. During each decoding iteration, only one to-

ken is produced, yet the entire model must be loaded from

device memory. This results in memory-bound execution

that under-utilizes GPU’s compute resources and motivates

batching to promote GPU utilization. Current LLM serv-

ing systems—such as vLLM [22], TensorRT-LLM [38] and

Sarathi-Serve [1]—adopt continuous batching, which allows

sequences to enter and leave the batch at each iteration,

further increasing GPU utilization.

However, these systems struggle to support multi-SLO

serving with both high SLO attainment and throughput due

to two key limitations. First, continuous batching treats all

requests uniformly, making it difficult to customize service

for individual SLOs. Second, strict latency requirements favor

small batch sizes, limiting parallelism and GPU utilization.

Conversely, increasing batch size improves throughput but

sacrifices latency, reducing the ability to meet tight SLOs.

3

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Zikun Li, Zhuofu Chen, et al.

Speculative decoding. Speculative decoding (SD) is a

technique for accelerating LLM inference by enabling multi-

ple tokens to be generated in a single decoding iteration [6,

23, 33, 55]. It uses a smaller and faster draft model to predict

multiple candidate tokens for each request. These candidates

are then verified in parallel using the full LLM in a single

verification iteration [5, 14, 25, 33].

As illustrated in Figure 3, SD consists of two phases: spec-
ulation, where the drafter proposes token candidates, and

verification, where the LLM checks their correctness. SD re-

duces per-token latency by shifting some computation to

the smaller model and exploiting the underutilized compute

resources of the memory-bound LLM. Verification is per-

formed in parallel and typically incurs minimal additional

latency compared to a standard decoding iteration [9].

In SD, the draft is not restricted to a linear token sequence;

it can also take the form of a draft token tree, as illustrated in
Figure 4. Tree-based speculation generalizes sequence-based

drafting by offering multiple candidates per position, thereby

improving speculation success rates [5, 9, 33]. The root of

the draft token tree is the last generated token (or prompt

token if no tokens have been generated). Each node in the

tree represents a token, and paths from the root correspond

to possible continuation sequences [5, 9, 24, 33]. The LLM

verifies all tokens in the tree in parallel, and the length of the

accepted path determines the decoding speedup achieved in

that iteration.

3 Problem Formulation
We now formulate the multi-SLO LLM serving problem. In

each decoding iteration, given a batch of requests and the

token budget—the total number of tokens to verify in this

decoding iteration
1
—the goal ofmulti-SLO serving is twofold:

(1) to meet the various TPOT SLO requirements of different

requests in the batch and (2) to maximize the number of

tokens accepted by the LLM during verification.

Formally, given a batch of𝑛 requests, denoted as {𝑟1, . . . , 𝑟𝑛},
and the total token budget 𝐵, the goal is to construct 𝑛 token

trees {𝑇1, . . . ,𝑇𝑛} for these requests to maximize the expected

number of accepted tokens for one decoding iteration, which

is expressed as: 𝐸 [∑𝑛
𝑖=1 𝑎𝑐𝑐 (𝑇𝑖)] =

∑𝑛
𝑖=1 𝐸 [𝑎𝑐𝑐 (𝑇𝑖)], where

𝑎𝑐𝑐 (𝑇) is a random variable denoting the number of accepted

tokens in𝑇 by the LLM verification. This optimization is sub-

ject to the following constraints:

1. Budget constraint: The total number of nodes across

all token trees must not exceed the hardware budget:

𝑛∑︁
𝑖=1

|𝑇𝑖 | ≤ 𝐵 (1)

where |𝑇𝑖 | denotes the number of tokens in the 𝑖-th

token tree.

1
The total budget is determined based on hardware profiling. AdaServe

chooses an optimal budget that balances decoding throughput and latency.

2. TPOT constraint: For each request 𝑟𝑖 , the expected

number of accepted tokens must satisfy the TPOT

requirement:

𝑙𝑖 + 𝑡𝑠𝑝𝑒𝑐
𝑜𝑖 + 𝑎𝑐𝑐 (𝑇𝑖)

≤ 𝑡𝑇𝑃𝑂𝑇𝑖 , ∀𝑖 = 1, . . . , 𝑛 (2)

where 𝑙𝑖 denotes the current latency of request 𝑟𝑖 start-

ing from the first decoding step, 𝑜𝑖 denotes the current

number of tokens decoded in request 𝑟𝑖 , 𝑡
𝑠𝑝𝑒𝑐

denotes

the latency of a decoding iteration and, 𝑡𝑇𝑃𝑂𝑇𝑖 denotes

the TPOT SLO of request 𝑟𝑖 .

Intuitively, the budget constraint ensures that the computa-

tional intensity of LLM verification stays within the available

budget, and the TPOT constraint ensures that the SLO re-

quirements of the requests are satisfied after the current de-

coding iteration. For each request 𝑟𝑖 , we can rewrite the TPOT

constraint as: 𝑎𝑐𝑐 (𝑇𝑖) ≥ (𝑙𝑖+𝑡𝑠𝑝𝑒𝑐)/𝑡𝑇𝑃𝑂𝑇𝑖 −𝑜𝑖 . To further sim-

plify this constraint, we define𝐴(𝑟𝑖) = (𝑙𝑖 +𝑡𝑠𝑝𝑒𝑐)/𝑡𝑇𝑃𝑂𝑇𝑖 −𝑜𝑖 ,
which denotes the minimum number of tokens that must be

accepted for the 𝑖-th request in the current decoding itera-

tion to attain its TPOT SLO. With this definition, the TPOT

constraint can be simplified as: 𝑎𝑐𝑐 (𝑇𝑖) ≥ 𝐴(𝑟𝑖),∀𝑖 = 1, . . . , 𝑛.

Since the values of the random variable 𝑎𝑐𝑐 (𝑇𝑖) is not known
during speculation, we relax the TPOT constraint by replac-

ing 𝑎𝑐𝑐 (𝑇𝑖) with its expectation. The relaxed constraint is

expressed as:

𝐸 [𝑎𝑐𝑐 (𝑇𝑖)] ≥ 𝐴(𝑟𝑖),∀𝑖 = 1, . . . , 𝑛 (3)

This relaxation not only simplifies the constraint but also

enables a more compact expression through the following

decomposition of 𝐸 [𝑎𝑐𝑐 (𝑇𝑖)].

Theorem 3.1 (Decomposition of the expected number of

accepted tokens).

𝐸 [𝑎𝑐𝑐 (𝑇)] =
∑︁
𝑣∈𝑇

𝑓 (𝑣) (4)

where 𝑓 (𝑣) is the path probability of node 𝑣 ∈ 𝑇 , defined
as the probability in which the LLM accepts the path, which
represents a sequence of tokens, from the root node to node 𝑣
conditioned on the current token sequence of the request.

As proven in prior work [9, 24], Theorem 3.1 allows us to

rewrite the relaxed TPOT constraint as:∑︁
𝑣∈𝑇𝑖

𝑓 (𝑣) ≥ 𝐴(𝑟𝑖),∀𝑖 = 1, . . . , 𝑛 (5)

Based on Theorem 3.1, we can reformulate the objective

of the problem as

𝑛∑︁
𝑖=1

𝐸 [𝑎𝑐𝑐 (𝑇𝑖)] =
∑︁

𝑣∈⋃𝑛
𝑖=1𝑇𝑖

𝑓 (𝑣) (6)

4

AdaServe: Accelerating Multi-SLO LLM Serving with SLO-Customized Speculative Decoding EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

Root token Token added for SLO Token added for throughput Discarded token Correction token

A speculation step A verification step

Batch
size = 2

Request 𝑟!
Request 𝑟"

Step 1

Speculation (Construct
candidate token trees)

Step 2 Step 3

Req 𝒓𝟎
𝑡$
(!)

𝑡"
(!)

(0.7)

(0.2)

𝑡!
(!)

(1.0)

𝑡'
(!)

𝑡(
(!)

(0.42)

(0.21)
𝑡$
(!)

𝑡"
(!)

(0.7)

(0.2)

𝑡!
(!)

(1.0)

𝑡'
(!)

𝑡(
(!)

(0.42)

(0.21)

𝑡)
(!)

𝑡*
(!)

(0.294)

(0.126)

𝑡"
(!)

𝑡$
(!)

(0.7)

(0.2)

𝑡!
(!)

(1.0)
𝑡!
(!)

(1.0)

Req 𝒓𝟏
𝑡$
(")

𝑡"
(")

(0.5)

(0.4)

𝑡!
(")

(1.0)

𝑡'
(")

𝑡(
(")

(0.35)

(0.24)
𝑡$
(")

𝑡"
(")

(0.5)

(0.4)

𝑡!
(")

(1.0)

𝑡'
(")

𝑡(
(")

(0.35)

(0.24)

𝑡)
(")

𝑡*
(")

(0.14)

(0.14)
𝑡$
(")

𝑡"
(")

(0.5)

(0.4)

𝑡!
(")

(1.0)
𝑡!
(")

(1.0)

❌

0.7

0.2

0.5

0.6

0.3

0.7

0.6

Beam width 𝒘 = 𝟐, depth 𝒅 = 𝟑

0.4

0.7

0.6

0.4

0.4

Verification 𝑡"
(!)

𝑡!
(!)

𝑡'
(!) 𝑡)

(!)

Req 𝒓𝟎 ✅ ✅ ❌

𝑡"
(!)

𝑡$
(!)

𝑡'
(!)

𝑡!
(!)Req 𝒓𝟏 ✅

𝑡,
(!) 𝑡,

(")

SLO-Customized
Selection

Budget = 8
𝑡"
(!)

𝑡$
(!)

(0.7)

(0.2)

𝑡!
(!)

(1.0)

𝑡'
(!)

𝑡(
(!)

(0.42)

(0.21)

𝑡)
(!)

𝑡*
(!)

(0.294)

(0.126)

Req 𝒓𝟎

𝐴-./ 𝑟! = 0.6
𝑡$
(")

𝑡"
(")

(0.5)

(0.4)

𝑡!
(")

(1.0)

𝑡'
(")

𝑡(
(")

(0.35)

(0.24)

𝑡)
(")

𝑡*
(")

(0.14)

(0.14)

Req 𝒓𝟏

𝐴-./ 𝑟" = 0.8

Remaining Budget = 3

Draft Token Trees

Throughput-Optimized
Selection 𝑡"

(!)

𝑡$
(!)

(0.7)

(0.2)

𝑡!
(!)

(1.0)

𝑡'
(!)

𝑡(
(!)

(0.42)

(0.21)

𝑡)
(!)

𝑡*
(!)

(0.294)

(0.126)

Req 𝒓𝟎
𝑡$
(")

𝑡"
(")

(0.5)

(0.4)

𝑡!
(")

(1.0)

𝑡'
(")

𝑡(
(")

(0.35)

(0.24)

𝑡)
(")

𝑡*
(")

(0.14)

(0.14)

Req 𝒓𝟏

Figure 5. SLO-customized speculative decoding. In this example, there are two requests in the batch. The budget is 8. In the

speculation step, both requests construct a candidate token tree with 3 steps of speculator decoding and beam search where

the beam width 𝑤 = 2. During the SLO-customized selection, 𝐴𝑐𝑎𝑝 (𝑟0) = 0.6, and adding token 𝑡
(0)
1

, whose approximated

path probability is 0.7, to 𝑇0 is enough to attain 𝑟0’s TPOT SLO. In the same manner, tokens 𝑡
(1)
1

and 𝑡
(1)
2

are added to 𝑇1

(0.5+ 0.4 > 0.8 = 𝐴𝑐𝑎𝑝 (𝑟1)). This is followed by the throughput-optimized selection with remaining budget 3, where tokens 𝑡
(0)
3

,

𝑡
(0)
5

and 𝑡
(1)
3

are added to their corresponding draft token trees because they have the largest approximated path probabilities

among the remaining tokens. Now, AdaServe finishes the construction of the draft token trees for both requests. The rest of

the tokens in the candidate token trees are discarded. Finally, the draft token trees are submitted to the LLM for verification.

4 SLO-Customized Serving
Building on the problem formulation in Section 3, this sec-

tion presents our approach to multi-SLO serving. Section 4.1

introduces an algorithm that computes a globally optimal
solution. To make this algorithm practical for real-world

LLM serving, we address key integration challenges in Sec-

tion 4.2, along with AdaServe ’s strategies for overcoming

them. These strategies are realized in a fine-grained specula-

tive decoding pipeline, detailed in Section 4.3.

4.1 Optimal Token Tree Construction
We introduce an algorithm that discovers a globally optimal

solution to the multi-SLO serving problem, as outlined in

Section 3. The algorithm relies on the assumption that the

path probability 𝑓 (𝑣) for any node 𝑣 in the𝑇𝑖𝑛𝑓 (𝑟) of request
𝑟 is known during the construction of the token trees. Here,

𝑇𝑖𝑛𝑓 (𝑟) represents the |𝑉 |-ary infinite-depth token tree for

request 𝑟 , where |𝑉 | is the vocabulary size. Each node within

𝑇𝑖𝑛𝑓 (𝑟) corresponds to a token, and the path from the root

to any node 𝑣 forms a sequence of tokens. This tree struc-

ture captures all possible output token sequences along with

their probabilities (i.e. 𝑓 (𝑣)), which are contingent upon the

current token sequence of 𝑟 .

In practice, the assumption of known path probabilities

does not always hold; we address this in Section 4.2. Under

this assumption, however, we introduce an iterative greedy

algorithm to construct optimal token trees in two steps. In

5

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Zikun Li, Zhuofu Chen, et al.

Algorithm1 An algorithm that outputs the optimal solution

to the SLO-aware scheduling problem.

1: Inputs: requests {𝑟1, . . . , 𝑟𝑛} , a budget 𝐵 and 𝑓 (𝑣) for all 𝑣 in
𝑇𝑖𝑛𝑓 (𝑟𝑖),∀𝑖 = 1, . . . , 𝑛.

2: Output: The optimal draft token tree for each request.

3: 𝑆𝑎𝑑𝑑𝑒𝑑 ← ∅ ⊲ The set of added nodes.

4: for 𝑖 = 1, . . . 𝑛 do
5: Initialize the root of 𝑇𝑖 .

6: 𝑛𝑎𝑐𝑐 [𝑖] ← 1.0

⊲ Step 1: Add nodes toward SLO requirements.

7: for 𝑖 = 1, . . . 𝑛 do
8: while 𝑛𝑎𝑐𝑐 [𝑖] < 𝐴(𝑟𝑖) do
9: if 𝐵 <= 0 then
10: Return INVALID

11: 𝑣 ← GetTop(𝑇𝑖𝑛𝑓 (𝑟𝑖) − 𝑆𝑎𝑑𝑑𝑒𝑑)
12: 𝑇𝑖 .Add(𝑣)
13: 𝑛𝑎𝑐𝑐 [𝑖] ← 𝑛𝑎𝑐𝑐 [𝑖] + 𝑓 (𝑣)
14: 𝑆𝑎𝑑𝑑𝑒𝑑 .Add(𝑣)
15: 𝐵 ← 𝐵 − 1

⊲ Step 2: Add the rest of tokens.

16: while 𝐵 ≥ 0 do
17: 𝑣 ← GetTop(⋃𝑛

𝑖=1𝑇𝑖𝑛𝑓 (𝑟𝑖) − 𝑆𝑎𝑑𝑑𝑒𝑑)
18: 𝑖 ← GetReqIdx(𝑣)
19: 𝑇𝑖 .Add(𝑣)
20: 𝑆𝑎𝑑𝑑𝑒𝑑 .Add(𝑣)
21: 𝐵 ← 𝐵 − 1.
22: Return {𝑇1, . . . ,𝑇𝑛}.

the first step, the algorithm grows each request’s draft to-

ken tree (i.e., 𝑇𝑖) by selecting and inserting the node with

the highest 𝑓 (𝑣) from 𝑇𝑖𝑛𝑓 (𝑟). This procedure is repeated

until the TPOT constraints (Equation (5)) are satisfied for all

requests. If the algorithm determines that the TPOT SLOs

cannot be simultaneously met within the given budget, it

returns INVALID. In the second step, the algorithm allocates

any remaining budget to insert additional high-𝑓 (𝑣) nodes
from the union of all𝑇𝑖𝑛𝑓 (𝑟𝑖), where each𝑇𝑖𝑛𝑓 (𝑟𝑖) represents
the |𝑉 |-ary infinite-depth token tree for request 𝑟𝑖 .

Appendix B shows that a node chosen greedily by this

algorithm is always connected to its parent, ensuring that

the constructed token trees are valid. The pseudocode for

this algorithm is presented in Algorithm 1. A formal proof

of the algorithm’s optimality is given in Appendix C.

4.2 Challenges
Applying the optimal token tree construction algorithm in

practice presents two key challenges. Next, we describe them

and the techniques used in AdaServe to address them.

Challenge 1: unknown path probabilities 𝑓 (𝑣). Algo-
rithm 1 assumes that the path probability 𝑓 (𝑣) for any node

𝑣 ∈ 𝑇𝑡𝑜𝑡𝑎𝑙 is known during token tree construction. However,

in practice, these probabilities are not available a priori. They

depend on the LLM’s verification of all speculated tokens

within the token tree and the subsequent computation of

acceptance rates—steps that can only be performed after the

token tree has been constructed.

Solution. Our key insight is to leverage the logits of the

drafter to approximate path probabilities. Specifically, for all

𝑣 ∈ 𝑇𝑖𝑛𝑓 (𝑟𝑖), we approximate:∏
𝑢∈𝑃𝑎𝑡ℎ (𝑣)

𝑀𝑞 (𝑢 |𝑋, 𝑃𝑎𝑡ℎ(𝑢.𝑝𝑎𝑟𝑒𝑛𝑡)) ≈ 𝑓 (𝑣) (7)

where 𝑀𝑞 denotes the draft model used for speculation,

which takes a token sequence as input and outputs a proba-

bility distribution over the vocabulary. The function 𝑃𝑎𝑡ℎ(𝑣)
denotes the sequence of nodes from the root of the token tree

to node 𝑣 . This observation is supported by prior work [24].

Intuitively, draft models used for speculation are generally

trained using the same datasets and with similar objectives

as the target LLMs, yielding comparable language modeling

capabilities. Moreover, recent studies [25, 61] show that draft

models distilled from large models perform well in specula-

tive decoding. Distillation aligns the logits of the draft model

with those of the large model, making them well-suited for

approximating conditional acceptance probabilities. Conse-

quently, the logits of the draft model are accurate surrogates

for estimating 𝑓 (𝑣) during token tree construction.

Notably, AdaServe is architecture-agnostic to the drafter:

any model that produces token-level logits aligned with the

verifier’s distribution can be used, including smaller mod-

els from the same family as the target LLM, knowledge-

distilled drafters (e.g., EAGLE [25]), and multi-token predic-

tion (MTP) heads (e.g., DeepSeek-R1 [17]). This flexibility

allows AdaServe to leverage a wide range of draft models

without being tied to a specific architecture.

Challenge 2: high speculation overhead. In speculative

decoding, the draft model generates output tokens in an

auto-regressive manner, introducing significant speculation

overhead. In Algorithm 1, both construction steps rely on the

GetTop operation, which selects the node with the highest

path probability from one or multiple token trees. For a sin-

gle token tree, a straightforward implementation of GetTop
maintains a global candidate set containing all nodes whose

parents have already been processed by the draft model but

which themselves have not yet been decoded. Each candidate

node is associated with an approximated path probability.

The candidate set is initialized with the root node of the

token tree, assigned a path probability of 1. Algorithm 1 then

repeatedly selects the node with the highest path probability

from the candidate set and adds it to the token tree. Once a

node is decoded by the draft model, its child nodes, along

with their approximated path probabilities, are inserted into

the candidate set. The second step of Algorithm 1 follows a

similar strategy.

However, this approach results in (𝐵 − 𝑛) draft model

decoding steps, where 𝐵 is the total token budget and 𝑛 is

the number of requests in a batch. Since each new node

6

AdaServe: Accelerating Multi-SLO LLM Serving with SLO-Customized Speculative Decoding EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

addition requires a draft model decoding, and 𝐵 ≫ 𝑛 in prac-

tical settings, the cumulative speculation overhead becomes

prohibitively large.

Solution. The inefficiency in Algorithm 1 arises from the

interleaving of top-node selection and draft model decoding,

where each decoding step processes only one token. To ad-

dress this issue, we decouple token tree construction into

two distinct phases: a speculation phase and a selection phase.
In the speculation phase, we use parallel decoding to con-

struct a candidate token tree sufficiently large to cover all

potential top nodes. In the subsequent selection phase, we

identify the highest-probability nodes from the candidate

tree to construct the final token trees for LLM verification.

Separating speculation and selection eliminates the ineffi-

ciency of interleaved decoding and selection, allowing the

draft model to operate more efficiently. The soundness of

this method is supported by the following theorem.

Theorem 4.1 (Bounding the optimal draft token tree). Let
the total token budget be 𝐵 and let𝑇𝑜𝑝𝑡 denote the optimal draft
token tree produced by Algorithm 1. Let 𝐷𝑜𝑝𝑡 = 𝐷 (𝑇𝑜𝑝𝑡) be the
maximum depth of any node in 𝑇𝑜𝑝𝑡 . 𝑇𝑜𝑝𝑡 is guaranteed to be
a subtree of a candidate tree 𝑇𝑐𝑎𝑛𝑑 constructed via a 𝐷𝑜𝑝𝑡 -step
beam search with beam width 𝐵.

Theorem 4.1 implies that in the speculation phase, a can-

didate tree containing 𝑇𝑜𝑝𝑡 can be constructed with only

𝐷𝑜𝑝𝑡 draft-model decoding steps via beam search. Generaliz-

ing this result, the optimal token trees for all requests can

be covered using at most 𝐷𝑜𝑝𝑡 = max(𝐷 (𝑇𝑜𝑝𝑡 (𝑟𝑖)), where
𝑖 = 1, . . . , 𝑛 denotes the required decoding steps.

Furthermore, if argmax
𝑛
𝑖=1 (𝐷 (𝑇𝑜𝑝𝑡 (𝑟𝑖)) = 𝑗 , we can derive:

𝐷𝑜𝑝𝑡 = 𝐷 (𝑇𝑜𝑝𝑡 (𝑟 𝑗)) ≤ |𝑇𝑜𝑝𝑡 (𝑟 𝑗) − 1| ≤
∑𝑛

𝑖=1 |𝑇𝑜𝑝𝑡 (𝑟𝑖) − 1| =∑𝑛
𝑖=1 |𝑇𝑜𝑝𝑡 (𝑟𝑖) | − 𝑛 = 𝐵 − 𝑛. Equality holds only in rare cases

where all but one optimal token tree consist solely of root

nodes, while the remaining tree forms a long sequence. In

practice, such extreme imbalance is unlikely to occur, and

empirically, we observe that 𝐷𝑜𝑝𝑡 ≪ 𝐵 − 𝑛.
Importantly, it is not necessary to include all tokens from

𝑇𝑜𝑝𝑡 , particularly when doing so would incur high decod-

ing costs. By tuning the beam search depth 𝑑 and beam

width𝑤 , AdaServe allows a flexible trade-off between spec-

ulation accuracy and decoding overhead. This separation

of speculation and selection phases significantly improves

the efficiency of speculator decoding by leveraging paral-

lelism. Based on these insights, we propose SLO-customized
speculative decoding as the core technique of AdaServe.

4.3 SLO-Customized Speculative Decoding
Each decoding iteration in SLO-customized speculative de-

coding consists of four steps: speculation, SLO-customized

selection, throughput-optimized selection, and verification.

This section introduces the design and purpose of each stage.

The pseudocode for these steps is presented in Algorithm 2.

Step 1: speculation. In the speculation step, a beam search

algorithm is used to construct candidate token trees for

each request, as illustrated in Figure 5. Initially, each re-

quest’s candidate token tree consists solely of a root node,

which represents the last generated token or the prompt if

no text has yet been generated. The 𝑛 root tokens for all

requests are processed in parallel. In the first decoding step,

the draft model processes all root nodes and produces |𝑉 |
potential child nodes for each node. For each request, the

𝑤 child nodes with the highest approximated path probabil-

ities 𝑀𝑞 (𝑣 |𝑋, 𝑃𝑎𝑡ℎ(𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡)) are selected and added to its

candidate token tree.

Starting from the second decoding step, the draft model

processes all tokens selected in the previous step—𝑛 × 𝑤

tokens in total—in parallel. For each request, the draft model

generates𝑤×|𝑉 | potential tokens, and the𝑤 with the highest

approximated path probabilities are chosen to expand the

candidate token tree further. After completing 𝑑 speculation

steps, each request 𝑟𝑖 has an associated candidate token tree

𝑇𝑐𝑎𝑛𝑑 (𝑟𝑖) with a depth of 𝑑 , where all layers except the first

contain exactly𝑤 nodes.

An example is shown in Figure 5, where the draft model

performs three decoding steps to construct candidate token

trees with a depth of 3 and a beamwidth of 2. The parameters

𝑑 and 𝑤 are dynamically determined based on the system

load (see Section 5). Note that sequence-based speculation

is a special case of this framework, corresponding to a fixed

beam width of𝑤 = 1, and is thus naturally supported.

The speculation phase is followed by two selection phases:

the SLO-customized token selection and the throughput-

optimized token selection.

Step 2: SLO-customized token selection. In this phase,

each request selects tokens from its candidate token tree

to construct a draft token tree that satisfies its TPOT re-

quirement. According to the TPOT constraint (Equation (5)),

the total approximated path probabilities of all nodes in a

request’s draft token tree must exceed 𝐴(𝑟), the minimum

number of tokens that must be accepted to attain the SLO.

However, this requirementmay not always be feasible. The

number of verifiable tokens per request is upper bounded by

𝑑 +1. If𝐴(𝑟) > 𝑑 +1, the SLO cannot be fully satisfied within

the current iteration. In this case, AdaServe caps the target

threshold using 𝐴𝑐𝑎𝑝 (𝑟) = min(𝐴(𝑟), 𝑑 + 1), indicating the

maximum attainable progress toward the SLO for require 𝑟 .

For each request 𝑟 , AdaServe iteratively selects nodes from

𝑇𝑐𝑎𝑛𝑑 (𝑟𝑖) with the highest approximated path probabilities

and adds them to the draft token tree𝑇𝑖 until the cumulative

approximated path probabilities of all tokens in 𝑇𝑖 reach or

exceed 𝐴𝑐𝑎𝑝 (𝑟𝑖).
As shown in the SLO-customized selection step of Figure 5,

request 𝑟0 requires 𝐴𝑐𝑎𝑝 (𝑟0) = 0.6, so only node 𝑡
(0)
1

is added

to 𝑇0. For request 𝑟1, 𝑡
(1)
1

alone is insufficient, so 𝑡
(1)
2

is also

added to satisfy 𝐴𝑐𝑎𝑝 (𝑟1) = 0.8.

7

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Zikun Li, Zhuofu Chen, et al.

When the budget is insufficient to meet all SLOs, AdaServe

prioritizes slower requests—those with larger 𝐴(𝑟𝑖)—by pro-

cessing them in descending order of their SLO requirement.

However, challenges arise when satisfying 𝐴𝑐𝑎𝑝 (𝑟𝑖) for re-
quest 𝑟𝑖 requires many low-probability nodes, yielding dimin-

ishing returns andmay deplete the budget disproportionately.

In extreme cases, all nodes in 𝑇𝑐𝑎𝑛𝑑 (𝑟𝑖) may be added to 𝑇𝑖
without meeting the threshold, monopolizing the budget and

degrading system-wide performance.

To address this issue, AdaServe enforces a per-request

token limit 𝑛𝑚𝑎𝑥 during the SLO-customized selection phase.

This constraint prevents excessive allocation to low-probability

nodes and ensures more balanced and efficient use of re-

courses across all requests.

Step 3: throughput-optimized selection. While the first

two phases focus on satisfying the SLOs of individual re-

quests, this phase aims to maximize overall system through-

put. AdaServe selects the remaining tokens by globally rank-

ing all candidate nodes across requests based on their approx-

imated path probabilities and greedily adding the top-scoring

nodes to the draft token trees. This process continues until

the overall token budget is exhausted.

As illustrated in the throughput-optimized token selection

step of Figure 5, suppose the remaining budget is 3. AdaServe

selects the top three nodes—𝑡
(0)
3

, 𝑡
(1)
3

, and 𝑡
(0)
5

—as they have

the highest approximated path probabilities among all re-

maining candidate nodes, and sequentially adds them to the

corresponding draft token trees.

Step 4: verification. In the final step, AdaServe submits

the draft token trees for all requests to the LLM, which

verifies the correctness of all speculated tokens in parallel.

AdaServe adopts a tree-based verification strategy, as intro-

duced in prior work [9, 23, 33, 50], which efficiently verifies

multiple speculative paths by leveraging shared prefixes and

minimizing redundant computation. This parallel verifica-

tion step determines which tokens are accepted and enables

the system to advance the decoding process accordingly.

5 System Design and Optimizations
5.1 Overview of AdaServe
Figure 6 presents an overview of AdaServe, which consists

of two main components: the request manager and the ex-
ecution engine. The request manager maintains a pool of

active requests and includes an SLO-customized scheduler

that implements SLO-customized speculative decoding. The

execution engine is responsible for executing both the draft

and target models on GPUs. At the beginning of each specu-

lation iteration, the SLO-customized scheduler retrieves all

active requests from the request pool and initiates the spec-

ulation phase of SLO-customized speculative decoding by

instructing the execution engine to run the draft model for

𝑑 decoding steps. Once the speculation phase completes, the

Algorithm2 SLO-customized speculative decoding: an adap-

tion of Algorithm 1 that addresses real-system challenges.

1: Inputs: a small model 𝑀𝑞 , requests {𝑟1, . . . , 𝑟𝑛}, a budget 𝐵,

depth 𝑑 , beam width 𝑤 and 𝑛𝑚𝑎𝑥 ,the upper limit of tokens

added to a request’s draft token tree during SLO-customized

selection.

2: Output: The token tree for each request.

⊲ Initialization.

3: 𝑆𝑎𝑑𝑑𝑒𝑑 ← ∅ ⊲ The set of added nodes.

4: for 𝑖 = 1, . . . 𝑛 do
5: Initialize the root of 𝑇 (𝑟𝑖).
6: 𝑛𝑎𝑐𝑐 [𝑖] ← 1.0

7: 𝐵 ← 𝐵 − 1.
⊲ The speculation phase.

8: {𝑇𝑐𝑎𝑛𝑑 (𝑟1), . . . ,𝑇𝑐𝑎𝑛𝑑 (𝑟𝑛)} ← Spec(𝑀𝑞, {𝑟1, . . . , 𝑟𝑛}, 𝑑,𝑤)
⊲ SLO-customized selection.

9: {𝑟 ′
1
, . . . , 𝑟 ′𝑛} = Sort({𝑟1, . . . , 𝑟𝑛}, key = 𝐴(𝑟))

10: 𝑛′𝑎𝑐𝑐 = Sort(𝑛𝑎𝑐𝑐 , key = 𝐴(𝑟))
11: for 𝑖 = 1, . . . 𝑛 do
12: while 𝑛′𝑎𝑐𝑐 [𝑖] < 𝐴𝑐𝑎𝑝 (𝑟 ′𝑖) ∧ |𝑇 (𝑟

′
𝑖
) | < 𝑛𝑚𝑎𝑥 ∧ 𝐵 ≥ 0 do

13: 𝑣 ← GetTop(𝑇𝑐𝑎𝑛𝑑 (𝑟 ′𝑖) − 𝑆𝑎𝑑𝑑𝑒𝑑)
14: 𝑇 (𝑟 ′

𝑖
) .Add(𝑣)

15: 𝑛′𝑎𝑐𝑐 [𝑖] ← 𝑛′𝑎𝑐𝑐 [𝑖] +𝑀𝑞 (𝑣 |𝑋 (𝑟 ′𝑖), 𝑃𝑎𝑡ℎ(𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡))
16: 𝑆𝑎𝑑𝑑𝑒𝑑 .Add(𝑣)
17: 𝐵 ← 𝐵 − 1.

⊲ Throughput-optimized selection.

18: while 𝐵 ≥ 0 do
19: 𝑣 ← GetTop(⋃𝑛

𝑖=1𝑇𝑐𝑎𝑛𝑑 (𝑟𝑖) − 𝑆𝑎𝑑𝑑𝑒𝑑)
20: 𝑟 ← GetReq(𝑣)
21: 𝑟 .𝑇 .Add(𝑣)
22: 𝑆𝑎𝑑𝑑𝑒𝑑 .Add(𝑣)
23: 𝐵 ← 𝐵 − 1.
24: Return {𝑇 (𝑟1), . . . ,𝑇 (𝑟𝑛)}.

selection phases are executed to construct draft token trees

for all requests. These draft token trees are then submitted

to the large language model for verification. After verifica-

tion, the logits of the nodes in each tree are returned to the

SLO-customized scheduler. The scheduler uses these logits

to identify the verified tokens for each request, which are

then stored back into the request pool for the next iteration

or final output assembly.

5.2 System Optimizations
Adaptive control. The depth (𝑑) and beam width (𝑤) of

the speculation tree directly affect the decoding overhead of

the draft model. Larger values of 𝑑 and𝑤 can significantly

increase speculation cost, especially under high system load.

In practice, the number of active requests 𝑛 varies over time,

and using fixed values for 𝑑 and 𝑤 fails to adapt to this

dynamic workload.

When many requests are active, the average token budget

per request decreases, limiting the viable depth and width of

each token tree. In such cases, large 𝑑 and𝑤 values generate

excessive speculative tokens that are likely to be discarded,

8

AdaServe: Accelerating Multi-SLO LLM Serving with SLO-Customized Speculative Decoding EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

AdaServe

Requests

Endpoint

Responses

Execution
Engine

Speculator

Large
Language

Model

Request Manager

Request
Pool

SLO-Customized Scheduler

Requests’ Metadata

Candidate Token Trees

Draft Token Trees

Verified Tokens
Verification

Speculation

Selection

Figure 6. Overview of AdaServe.

leading to wasted computation. Conversely, when the sys-

tem load is low, each request can be allocated more tokens.

Using small fixed values in these cases limits the potential

performance gains from deeper and wider trees.

To address this issue, AdaServe dynamically adjusts 𝑑 and

𝑤 based on the current number of active requests 𝑛 using

the following policy at the beginning of each iteration:

𝑑 = clip(𝐷𝑚𝑎𝑥 , 𝐷𝑚𝑖𝑛, ⌊
𝐵1

𝑛 + 𝑐1
⌋ − 1) (8)

𝑤 = clip(𝑊𝑚𝑎𝑥 , 1, ⌊
𝐵2

𝑛
⌋ + 𝑐2) (9)

Here, 𝐷𝑚𝑎𝑥 , 𝐷𝑚𝑖𝑛 , and𝑊𝑚𝑎𝑥 are predefined bounds for tree

depth andwidth. 𝐵1 and 𝐵2 denote the total number of tokens

allocated per decoding step for the verifier and the speculator,

respectively. 𝑐1 and 𝑐2 are tunable constants, selected via grid

search. The clip function constrains its third argumentwithin

the specified upper and lower bounds.

Speculation depth has the most significant impact on over-

head. The formula for𝑑 is designed to ensure that the number

of speculative tokens remains within the average verification

budget per request, minimizing the likelihood of excessive

speculative computation being wasted.

GPU optimizations. Enabling efficient multi-SLO serv-

ing on GPUs introduces additional challenges. One such

challenge involves leveraging CUDA graphs [16], which re-

duce kernel launch overhead by capturing a sequence of

GPU kernel executions and their dependencies into a com-

putation graph. This graph can then be replayed efficiently

in subsequent iterations. However, reusing a CUDA graph

requires that kernel shapes and input dimensions remain

identical to those used during the initial capture. AdaServe

utilizes CUDA graphs to accelerate draft model decoding. In

the speculation phase, decoding steps from the second to the

𝑑-th step perform the same operations: each of the 𝑛 requests

generates𝑤 tokens, resulting in consistent computation pat-

terns. Furthermore, across iterations with the same number

of active requests 𝑛, the decoding shapes and workloads re-

main unchanged. This structural regularity allows AdaServe

Model Parallelism GPUs
Llama3.1-70B-Instruct 4-way TP 4 × A100 80G

Qwen2.5-32B-Instruct 2-way TP 2 × A100 80G

Table 1. Evaluation setups for different models. "TP" stands

for tensor parallelism.

to reuse pre-captured CUDA graphs across multiple steps

and iterations, significantly reducing GPU launch overhead.

6 Evaluation
6.1 Experimental Setup
Implementation and device. We implement AdaServe

on top of FlexFlow Serve [21], a low-latency, high-throughput

LLM serving framework. To further optimize performance,

we integrate the batched prefill kernel from FlashInfer [57],

a high-performance kernel library for LLM serving. This

kernel is adapted for both speculation steps and LLM verifi-

cation. During the implementation of AdaServe, frameworks

like vLLM [22] and SGLang [59] lacked tree attention, but

with recent support added, the optimizations in AdaServe

can be readily integrated into mainstream systems. All eval-

uations are performed on a compute node equipped with

four NVIDIA A100 80GB GPUs, interconnected via NVLink.

The node is powered by an AMD EPYC 7763 CPU with 64

cores (128 threads) and 256 GB of DRAM.

Models. Table 1 summarizes themodels, parallelism strate-

gies, and GPU configurations used in our evaluation. This

setup is applied consistently across AdaServe and all base-

line systems. For speculative decoding experiments, the draft

model is collocated with the base model on one of the GPUs.

We use Llama3 [13] and Qwen2.5 [56] models, as their ar-

chitectures are representative of modern LLMs. The draft

model is the smallest off-the-shelf model from the same fam-

ily as the base: LLaMA-3.2-1B-Instruct is used for LLaMA

3, and Qwen2.5-0.5B-Instruct for Qwen2.5. No task-specific

customization is applied.

Baselines. We compare AdaServe against state-of-the-art

LLM serving systems, including vLLM [22], Sarathi-Serve [1],

vLLM augmented with speculative decoding and SpecIn-

fer [33]. vLLM introduces PagedAttention [22], a memory

management technique that improves throughput by miti-

gating fragmentation. Sarathi-Serve [1] leverages chunked

prefill to jointly batch the prefill and decoding stages across

multiple requests, enhancing hardware utilization and reduc-

ing per-token latency. We also evaluate speculative decoding

baselines built on top of vLLM, which implement efficient

sequence-based speculative decoding. We include variants

with different speculation lengths, denoted as vLLM-Spec(𝑛),

where 𝑛 represents the number of speculated tokens. All

evaluations use the latest version of vLLM available at the

time of submission (v0.8.4). While the above baselines are

9

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Zikun Li, Zhuofu Chen, et al.

Category Cat. 1 Cat. 2 Cat. 3
App Coding copilot Chatbot Summarization

SLO 1.2 × Baseline latency 50ms 150ms

Table 2. Request categories and their SLOs.

0.0m 2.5m 5.0m 7.5m 10.0m 12.5m 15.0m 17.5m 20.0m
Time Elapsed (minutes)

0

50

100

Fr
eq

ue
nc

y

Request Frequency Over Time

Figure 7. Request frequency of the real-world trace.

built on general-purpose LLM serving systems (e.g., vLLM),

we also compare AdaServe with SpecInfer [33], a state-of-

the-art inference engine that natively integrates speculative

decoding for low-latency LLM serving.

Workloads. We evaluate AdaServe using a mixture of

requests from different applications, each with distinct SLO

requirements, following prior work [60]. We consider re-

quests from three categories, as summarized in Table 2. For

each model, we measure a baseline latency when the sys-

tem load is close to zero, which serves as a reference point

for setting TPOT SLOs across different request categories

following prior work [28, 60].

For this category, we simulate code completion tasks using

prompts from the HumanEval dataset [7], which contains

164 programming problems. The SLO for this category is set

to 1.2× the baseline latency, a stringent target that permits a

20% slowdown to support high-throughput serving. This SLO

setting aligns with the SLO for latency-sensitive interactive

applications in MLPerf v5.0 [45], which specifies 40ms per

token for Llama 70B models [35, 36].

The second category includes chatbot requests. To main-

tain a responsive user experience, chatbots must stream to-

kens faster than users can consume them. While normal

human reading speed is 200-300 words per minute, skim-

ming can occur at 2-4× that rate, translating to a per-token

latency requirement of slightly under 50ms [44]. Thus, we

adopt 50ms per token as the SLO for this category.We use the

Alpaca dataset [52] which contains 52k instruction-following

examples to simulate chatbot interactions.

The third category includes tasks with relaxed latency

requirements, such as LLM-based summarization, where

higher TPOT SLOs are acceptable. We set the SLO to 150ms

per token, consistent with prior work and benchmark set-

tings [35, 36, 60]. For this category, we use summarization

tasks from the CNN/DailyMail dataset [3], which contains

news articles paired with human-written summaries.

We use the timestamps from a real-world trace from pre-

vious work, visualized in Figure 7, to generate traces in our

evaluation [42]. We truncate and rescale the trace to obtain

traces with different averaged request per second (RPS). For

each arriving request, we first sample its category accord-

ing to a specified probability distribution and then sample a

request from the dataset uniformly.

Metrics. We use SLO attainment and goodput as our pri-
mary metrics. SLO attainment is the percentage of requests

in a workload that meet their SLO. Specifically, a request

is considered to fulfill its SLO if its average per-token la-

tency is no greater than the specified TPOT SLO threshold.

Goodput is measured as the number of tokens generated

per second for requests that successfully attain their SLO.

Since AdaServe targets decoding speed SLOs and not prefill

latency, we exclude TTFT from our metrics.

6.2 End-to-End Comparison
Changing request arrival rate. We first evaluate the

end-to-end performance of AdaServe under increasing re-

quest arrival rates by comparing AdaServe’s SLO attainment

and goodput against those of vLLM, Sarathi-Serve, and vLLM-

Spec. The workload consists of 60% category 1 requests, 20%

category 2 requests, and 20% category 3 requests. This mix

represents a peak load scenario for latency-critical tasks (cat-

egory 1), while workloads for categories 2 and 3 are lighter,

allowing us to assess system performance under stringent

task conditions.

As shown in Figure 8 and Figure 9, AdaServe consistently

achieves higher SLO attainment and goodput across all mod-

els and request rates compared to the baselines, with the per-

formance gap widening as the request rate (RPS) increases.

AdaServe improves the SLO attainment by 2.1× and 1.6×
over the best baseline on the two models, respectively. At

the highest RPS, AdaServe reduces the number of unattained

requests by 4.3× and 3.2×, respectively. In terms of goodput,

AdaServe delivers 1.9× and 1.7× higher goodput than the

best baseline under the two settings.

vLLM and Sarathi-Serve both struggle to meet stringent

SLOs. This is primarily due to their reliance on continuous

batching, which enforces a uniform TPOT SLO across all re-

quests in a batch. As the request rate increases, the running

batch size also increases, leading to higher per-token latency

and lower SLO attainment. In contrast, SLO-customized spec-

ulative decoding enables AdaServe to dynamically allocate

hardware resources based on individual request SLOs, allow-

ing it to prioritize latency-critical requests. This selective

prioritization leads to significantly improved SLO attainment

and goodput, even with high request arrival rates.

vLLM-Spec outperforms other baselines; however, its per-

formance degrades significantly as the request arrival rate

increases. These results highlight the limitations of static

speculation methods, which fail to account for diverse SLO

requirements and dynamic workload variations. Specifically,

vLLM-Spec adopts a fixed speculation strategy that cannot

adapt to the applications’ latency needs or the system’s

10

AdaServe: Accelerating Multi-SLO LLM Serving with SLO-Customized Speculative Decoding EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8
RPS (requests/s)

20
40
60
80

100

SL
O

At
ta

in
m

en
t (

%
) Llama-3.1-70B-Instruct

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
RPS (requests/s)

20
40
60
80

100
Qwen2.5-32B-Instruct

AdaServe
Sarathi-serve

vLLM
vLLM-spec (4)

vLLM-spec (6)
vLLM-spec (8)

SpecInfer

Figure 8. SLO attainment w.r.t. RPS.

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8
RPS (requests/s)

200
400
600
800

Go
od

pu
t (

to
ke

ns
/s

) Llama-3.1-70B-Instruct

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
RPS (requests/s)

200
400
600
800

Qwen2.5-32B-Instruct

Figure 9. Goodput w.r.t. RPS.

30 50 70 90
Urgent Requests (%)

20
40
60
80

100

SL
O

At
ta

in
m

en
t (

%
) Llama-3.1-70B-Instruct

30 50 70 90
Urgent Requests (%)

200
400
600
800

Go
od

pu
t (

to
ke

ns
/s

) Llama-3.1-70B-Instruct

30 50 70 90
Urgent Requests (%)

20
40
60
80

100

SL
O

At
ta

in
m

en
t (

%
) Qwen2.5-32B-Instruct

30 50 70 90
Urgent Requests (%)

200
400
600
800

Go
od

pu
t (

to
ke

ns
/s

) Qwen2.5-32B-Instruct

Figure 10. SLO attainment and goodput w.r.t. urgent request proportion.

1.6 1.4 1.2 1.0 0.8 0.6
SLO Scale

20
40
60
80

100

SL
O

At
ta

in
m

en
t (

%
) Llama-3.1-70B-Instruct

1.6 1.4 1.2 1.0 0.8 0.6
SLO Scale

200
400
600
800

Go
od

pu
t (

to
ke

ns
/s

) Llama-3.1-70B-Instruct

1.6 1.4 1.2 1.0 0.8 0.6
SLO Scale

20
40
60
80

100

SL
O

At
ta

in
m

en
t (

%
) Qwen2.5-32B-Instruct

1.6 1.4 1.2 1.0 0.8 0.6
SLO Scale

200
400
600
800

Go
od

pu
t (

to
ke

ns
/s

) Qwen2.5-32B-Instruct

Figure 11. SLO attainment and goodput w.r.t. SLO scale.

current workload. When the workload is low, allocating

only a small number of speculative tokens results in under-

utilization of hardware and limited performance gains. Con-

versely, under high-load conditions with large batch sizes,

the static strategy generates too many speculated tokens,

leading to high verification overhead and degraded efficiency.

In contrast, AdaServe enables fine-grained distribution of

hardware resources based on per-request SLOs and dynam-

ically adjusts both the depth and width of the candidate

token tree to adapt to workload changes. This adaptivity

allows AdaServe to maximally utilize hardware resources,

maintaining high efficiency even with large batch sizes.

SpecInfer shows consistently low performance acrossmod-

els and traces. This stems from its use of a static draft tree

structure, which shares the same limitations as vLLM-Spec’s

static sequence-based speculation. In addition, SpecInfer

adopts an unlimited token budget without accounting for

hardware capacity: each draft token tree contains 23 tokens

with no upper limit on the total number of tokens. Most of

11

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Zikun Li, Zhuofu Chen, et al.

these tokens are discarded. This wastes processing power for

minimal gain, substantially reducing verification efficiency.

As shown in Figure 8 and Figure 9, AdaServe’s SLO at-

tainment also decreases as the request rate increases. This

degradation is primarily due to larger batch sizes reducing

the average token budget available per request, which lim-

its the effectiveness of speculative decoding. Additionally,

higher request arrival rates introduce higher prefilling over-

head, making it increasingly challenging to meet SLOs.

Changing application distribution. In this evaluation,

we fix the request arrival rate at 4.0 requests per second and

vary the proportion of latency-stringent requests. This setup

allows us to evaluate how AdaServe performs compared to

baseline systems in terms of SLO attainment and goodput

under different levels of workload stringency.

As shown in Figure 10, AdaServe consistently outperforms

all baselines across varying proportions of latency-stringent

requests. AdaServe maintains stable SLO attainment in all

scenarios, while the performance of the baseline systems

fluctuates significantly with workload distribution. AdaServe

reduces the number of SLO violations by up to 4.3× and 3.7×
compared to the best-performing baseline under the two

model settings, respectively. It also achieves up to 30% and

64% higher goodput over the best baseline.

The SLO attainment and goodput of vLLM and Sarathi-

Serve drop sharply as the fraction of urgent requests grows.

This is because continuous batching systems can only satisfy

stringent SLOs with small batch sizes. As the system accumu-

lates more requests, batch sizes grow, increasing latency and

causing SLO violations for time-sensitive requests. In con-

trast, vLLM-Spec and AdaServe exhibit the opposite trend.

SD accelerates request processing, helping satisfy tighter

SLOs even as the share of urgent requests increases. As a re-

sult, their SLO attainment remains steady or even improves

under higher stringency. Although built on SD, SpecInfer ex-

hibits the same trend as continuous batching systems due to

high speculation overhead and the lack of optimized CUDA

kernels and CUDAGraph, preventing it from meeting the

SLOs of urgent requests.

Interestingly, both the SLO attainment and goodput of

AdaServe and vLLM-Spec increase as the proportion of ur-

gent requests rises. This is because a lower share of urgent

requests corresponds to a higher share of category-3 requests

(e.g., summarization) with longer contexts, which increases

the prefilling overhead. vLLM-Spec, which lacks awareness

of individual decoding speeds, cannot effectively mitigate

this overhead. In contrast, AdaServe dynamically adapts

based on each request’s decoding progress and SLO, enabling

smarter compute allocation and improved performance in

both SLO attainment and throughput.

Changing SLO-Scale. In this evaluation, we fix the re-

quest rate at 4.0 RPS and set the proportion of urgent requests

to 0.6. We then vary the SLO scale of the most urgent request

2.6 3.0 3.4 3.8 4.2 4.6
RPS (requests/s)

2

4

6

M
ea

n
ac

c.
 to

ke
ns Llama-3.1-70B-Instruct

2.4 2.8 3.2 3.6 4.0
RPS (requests/s)

2

4

6
Qwen2.5-32B-Instruct

AdaServe vLLM-spec (4) vLLM-spec (6) vLLM-spec (8)

Figure 12.Mean accepted tokens per request per verification

in speculative decoding.

0 1 2 3 4 5 6
Time (min)

0

2

4

Re
q

Ra
te Chat

Coding
Summarization

Figure 13. Request arrival pattern of the synthetic trace.

relative to the baseline latency to assess each system’s ability

to meet increasingly strict latency requirements. As shown

in Figure 11, all systems experience reduced SLO attainment

and goodput as the SLO scale becomes more stringent. How-

ever, AdaServe consistently maintains the highest perfor-

mance across all settings. It achieves up to 4.61× and 3.05×
lower violation rates, and up to 1.38× higher goodput than
the best baseline across the two evaluated models. Continu-

ous batching-based systems fail to meet SLOs when the scale

drops below 1.0, causing their SLO attainment to fall below

40%.While vLLM-Spec supports SLO scales below 1.0, it lacks

the ability to prioritize urgent requests, leading to lower SLO

attainment compared to AdaServe. SpecInfer struggles with

stringent SLOs due to high speculation overhead and the

absence of optimized CUDA kernels and CUDAGraph.

6.3 Ablation and Sensitivity Study
Speculation Accuracy. We evaluate the speculation ac-

curacy of AdaServe by measuring the average number of

tokens accepted by the LLM per verification step per request.

As shown in Figure 12, AdaServe achieves high acceptance

rates at low RPS levels, which gradually decrease as RPS in-

creases. This behavior aligns with our adaptive strategy for

adjusting the depth and width of the candidate tree: when

the workload is light, AdaServe speculates more aggressively

to maximize speedup; under heavy load, it adopts a more

conservative approach to reduce verification overhead. In

contrast, vLLM-Spec employs a static speculation strategy,

resulting in a constant average acceptance rate regardless of

RPS. However, as shown in Figure 8 and Figure 9, this static

approach underperforms, particularly at high RPS, demon-

strating the effectiveness of AdaServe ’s dynamic adaptation.

12

AdaServe: Accelerating Multi-SLO LLM Serving with SLO-Customized Speculative Decoding EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

Ad
aS

erv
e

Sa
rat

hi-
ser

ve
vLL

M

vLL
M-sp

ec
(4)

vLL
M-sp

ec
(6)

vLL
M-sp

ec
(8)

0

20

40

60

80

100

SL
O

At
ta

in
m

en
t (

%
) 83.6

65.6
52.6 51.6 47.8

38.4

Llama3-70B

Ad
aS

erv
e

Sa
rat

hi-
Se

rve vLL
M

vLL
M-Sp

ec
(4)

vLL
M-Sp

ec
(6)

vLL
M-Sp

ec
(8)

0

20

40

60

80

100
83.0

73.8
64.3

39.2
24.1

12.5

Qwen2.5-32B

Figure 14. SLO attainment under the synthetic trace.

0 20 40 60 80 100
Percentage (%)

Llama-3.1

Qwen-2.5

0.31%

0.41%

Scheduling Speculation Verification

Figure 15. Latency breakdown of AdaServe.

0 20 40 60 80 100
SLO Attainment (%)

Llama-3.1

Qwen-2.5

65.4

27.3

+9.9

+49.7

+14.7
+5.1

+4.1
+8.7

Equal Scheduling
CUDA Graph Reuse

SLO-customized Token Selection
Throughput-optimized Token Selection

Figure 16. SLO attainment variation as key system compo-

nents are incrementally added into AdaServe.

Sensitivity to Workload Fluctuations. We evaluate sys-

tem performance under workload fluctuations using a syn-

thetic trace where different request categories peak at differ-

ent times. The request arrival patterns are visualized in Fig-

ure 13. The SLO attainment is shown in Figure 14. The results

highlight the strength of AdaServe in handling bursty traffic

from individual applications, consistently achieving higher

SLO attainment compared to baseline systems.

Latency Breakdown of SLO-customized speculative de-
coding. Weevaluate the runtime overhead of SLO-customized

speculative decoding by measuring the time spent in its

three main components: speculation, selection, and verifica-

tion. Speculation and verification are GPU-intensive, while

selection runs on the CPU. Our primary goal is to assess

the CPU overhead. As shown in Figure 15, the CPU over-

head is minimal—only 0.41% and 0.31% on the two evaluated

models—compared to the overall serving time. These results

demonstrate that SLO-customized speculative decoding im-

poses negligible overhead and is well-suited for integration

into speculative decoding-based serving systems.

Breakdown of Performance Gain. We evaluate the con-

tribution of each component in AdaServe. The baseline,

Equal Scheduling, distributes the token budget evenly across

all requests in the batch without accounting for heteroge-

neous SLOs. Within each request, the token tree is con-

structed greedily. As shown in Figure 16, Equal Schedul-

ing yields low SLO attainment. Incorporating SLO aware-

ness through SLO-customized token selection raises SLO

attainment to around 80%. Since SLO-customized selection

does not fully utilize the token budget, combining it with

throughput-optimized token selection further improves at-

tainment. Finally, enabling CUDAGraph reduces kernel launch

overhead, better utilizing hardware resources and pushing

SLO attainment above 90%. These results demonstrate the ef-

fectiveness of the individual components and optimizations

in AdaServe.

Overhead of Small Models. The speculation phase takes

∼ 5ms per step for Llama-3.2-1B and ∼ 4ms per step for

Qwen2.5-0.5B. These small models are lightweight—Llama-

3.2-1B uses 2GB of VRAM vs. 140GB for Llama-3.1-70B, and

Qwen2.5-0.5B uses 1GB vs. 64GB for Qwen2.5-32B.

7 Related Work
LLM serving systems. A wide range of systems have

been proposed to enhance the efficiency and scalability of

LLM serving [1, 18, 22, 31, 32, 34, 38, 40, 42, 43, 48, 58–60].

Orca [58] introduces continuous batching, allowing new

requests to join an ongoing batch without waiting for its

completion—a technique now standard in modern serving

systems. vLLM [22] identifies GPU memory fragmentation

as a key throughput bottleneck and addresses it with Page-

dAttention, which organizes memory in pages to reduce frag-

mentation. Several systems optimize the scheduling of the

prefill and decode stages [1, 42, 60]. Splitwise [42] and Dist-

Serve [60] observe distinct hardware utilization patterns in

these stages and propose executing them on separate nodes

to better utilize resources. Sarathi-Serve [1], by contrast,

notes that prefill is compute-intensive while decode often

underutilizes compute resource, and improves efficiency by

co-batching requests from both stages. Another optimization

is prefix caching, motivated by prompt repetition in multi-

turn interactions [43, 59]. This technique caches KV states of

frequently reused prefixes in GPU memory to reduce latency.

These approaches are largely orthogonal and complementary

to AdaServe, which focuses on multi-SLO LLM serving—an

area that remains underexplored in existing systems.

Speculative decoding (SD). A variety of algorithms have

been proposed to determine the topology of the token tree

in SD. Early approaches [5, 25, 33] use a fixed tree structure

13

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Zikun Li, Zhuofu Chen, et al.

for each iteration. More recent methods [26, 39] enable adap-

tive tree construction. Sequoia [9] adjusts tree size based on

hardware specifications and applies dynamic programming

to determine a global tree structure. In contrast, Eagle-2 [24]

constructs the tree based on input context: the draft model

performs beam search to propose a candidate tree and selects

the top-𝑚 tokens with the highest global acceptance rates.

Unlike prior work, AdaServe addresses both tree construc-

tion and the fine-grained allocation of hardware resources

across requests with diverse needs. It also dynamically ad-

justs the speculative configuration under varying workloads.

Recent efforts have explored SD in dynamic online serv-

ing settings. SmartSpec [30] adaptively tunes draft sequence

lengths based on workload and acceptance rates. SpecServe

[19] incorporates service-level objectives (SLOs) into the

scheduling process. However, neither supports tree-based

decoding or accounts for heterogeneous request demands.

A concurrent work [8] addresses the multi-SLO challenge

using dynamic programming to schedule SD. In contrast,

SLO-customized speculative decoding in AdaServe employs

a lower-complexity, tree-based approach that improves per-

formance. To our knowledge, AdaServe is the first to address

multi-SLO serving using batched, tree-based SD to intelli-

gently allocate compute resources across diverse requests.

8 Conclusion
To address the growing demand for serving LLM requests

with diverse service-level objectives (SLOs), this paper presents

AdaServe, the first LLM serving system explicitly designed

for multi-SLO serving. We formalize the multi-SLO serving

problem and identify key limitations in existing approaches

based on continuous batching and conventional speculative

decoding. To overcome these challenges, we propose a theo-

retically optimal algorithm for constructing token trees that

balance SLO attainment and system throughput. Building

on this foundation, we develop SLO-customized specula-

tive decoding, a practical and efficient solution that incor-

porates four stages: speculation, SLO-customized selection,

throughput-optimized selection, and verification. We imple-

ment SLO-customized speculative decoding within AdaServe

and evaluate its performance across a range of multi-SLO

workloads. Our results show that AdaServe significantly out-

performs state-of-the-art LLM serving systems, achieving

higher SLO satisfaction and better goodput across diverse

application scenarios.

Acknowledgment
We thank the anonymous reviewers and our shepherd, Cheng

Tan, for their valuable feedback and constructive suggestions,

which helped improve the paper. This research is supported

by NSF awards CNS-2211882 and CNS-2239351, and research

awards from Amazon, Cisco, Google, Meta, NVIDIA, Oracle,

Qualcomm, and Samsung. The views and conclusions con-

tained in this document are those of the authors and should

not be interpreted as representing the official policies, either

expressed or implied, of any sponsoring institution, the U.S.

government or any other entity.

References
[1] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun

Kwatra, Bhargav S Gulavani, Alexey Tumanov, and Ramachandran

Ramjee. Taming throughput-latency tradeoff in llm inference with

sarathi-serve. arXiv preprint arXiv:2403.02310, 2024.
[2] Anthropic. Claude 3.5. https://www.anthropic.com/news/claude-3-5-

sonnet. (Accessed on 10/11/2024).

[3] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian

Huang, Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, et al. Long-

bench: A bilingual, multitask benchmark for long context understand-

ing. arXiv preprint arXiv:2308.14508, 2023.
[4] Marc Brysbaert. How many words do we read per minute? a review

and meta-analysis of reading rate. Journal of memory and language,
109:104047, 2019.

[5] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D

Lee, Deming Chen, and Tri Dao. Medusa: Simple llm inference ac-

celeration framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

[6] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste

Lespiau, Laurent Sifre, and John Jumper. Accelerating large lan-

guage model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas

Joseph, Greg Brockman, et al. Evaluating large language models

trained on code. arXiv preprint arXiv:2107.03374, 2021.
[8] Siyuan Chen, Zhipeng Jia, Samira Khan, Arvind Krishnamurthy, and

Phillip B Gibbons. Slos-serve: Optimized serving of multi-slo llms.

arXiv preprint arXiv:2504.08784, 2025.
[9] Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max

Ryabinin, Zhihao Jia, and Beidi Chen. Sequoia: Scalable, robust, and

hardware-aware speculative decoding. arXiv preprint arXiv:2402.12374,
2024.

[10] David Cheney. How github copilot serves 400 million completion

requests a day, 2025.

[11] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao

Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E.

Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot

impressing gpt-4 with 90%* chatgpt quality, March 2023.

[12] Xin Luna Dong, Seungwhan Moon, Yifan Ethan Xu, Kshitiz Malik, and

Zhou Yu. Towards next-generation intelligent assistants leveraging

llm techniques. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 5792–5793, 2023.

[13] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-

dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,

Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

[14] Yichao Fu, Peter Bailis, Ion Stoica, andHao Zhang. Break the sequential

dependency of llm inference using lookahead decoding. In Forty-first
International Conference on Machine Learning.

[15] Google DeepMind. Gemini pro. https://deepmind.google/technologies/
gemini/pro/. (Accessed on 10/11/2024).

[16] Alan Gray. Getting started with cuda graphs, September 2019.

[17] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang,

Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al.

Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-

ment learning. arXiv preprint arXiv:2501.12948, 2025.
14

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/

AdaServe: Accelerating Multi-SLO LLM Serving with SLO-Customized Speculative Decoding EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

[18] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad

Awan, Jeff Rasley, Samyam Rajbhandari, Reza Yazdani Aminabadi,

Heyang Qin, Arash Bakhtiari, Lev Kurilenko, et al. Deepspeed-fastgen:

High-throughput text generation for llms via mii and deepspeed-

inference. arXiv preprint arXiv:2401.08671, 2024.
[19] Kaiyu Huang, Hao Wu, Zhubo Shi, Han Zou, Minchen Yu, and

Qingjiang Shi. Specserve: Efficient and slo-aware large language

model serving with adaptive speculative decoding. arXiv preprint
arXiv:2503.05096, 2025.

[20] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-

Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex

Carney, et al. Openai o1 system card. arXiv preprint arXiv:2412.16720,
2024.

[21] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model par-

allelism for deep neural networks. In Proceedings of the 2nd Conference
on Systems and Machine Learning, SysML’19, 2019.

[22] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin

Zheng, Cody Yu, Joseph E Gonzalez, Hao Zhang, and Ion Stoica.

vllm: Easy, fast, and cheap llm serving with pagedattention. See
https://vllm.ai/ (accessed 9 August 2023), 2023.

[23] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from

transformers via speculative decoding. arXiv preprint arXiv:2211.17192,
2022.

[24] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2:

Faster inference of language models with dynamic draft trees. arXiv
preprint arXiv:2406.16858, 2024.

[25] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle:

Speculative sampling requires rethinking feature uncertainty, 2024.

[26] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3:

Scaling up inference acceleration of large languagemodels via training-

time test, 2025.

[27] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrit-

twieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno,

Agustin Dal Lago, et al. Competition-level code generation with

alphacode. Science, 378(6624):1092–1097, 2022.
[28] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,

Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez,

et al. {AlpaServe}: Statistical multiplexing with model parallelism

for deep learning serving. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), pages 663–679, 2023.

[29] Jiachen Liu, Zhiyu Wu, Jae-Won Chung, Fan Lai, Myungjin Lee,

and Mosharaf Chowdhury. Andes: Defining and enhancing quality-

of-experience in llm-based text streaming services. arXiv preprint
arXiv:2404.16283, 2024.

[30] Xiaoxuan Liu, Cade Daniel, Langxiang Hu, Woosuk Kwon, Zhuohan

Li, Xiangxi Mo, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.

Optimizing speculative decoding for serving large language models

using goodput, 2024.

[31] Yixuan Mei, Yonghao Zhuang, Xupeng Miao, Juncheng Yang, Zhi-

hao Jia, and Rashmi Vinayak. Helix: Serving large language models

over heterogeneous gpus and network via max-flow. arXiv preprint
arXiv:2406.01566, 2024.

[32] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi

Jin, Tianqi Chen, and Zhihao Jia. Towards efficient generative large

language model serving: A survey from algorithms to systems. arXiv
preprint arXiv:2312.15234, 2023.

[33] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu

Wang, Zhengxin Zhang, Rae Ying Yee Wong, Alan Zhu, Lijie Yang,

Xiaoxiang Shi, et al. Specinfer: Accelerating large language model

serving with tree-based speculative inference and verification. In

Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
pages 932–949, 2024.

[34] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin

Cui, and Zhihao Jia. Spotserve: Serving generative large language

models on preemptible instances. arXiv preprint arXiv:2311.15566,
2023.

[35] MLCommons. Mlperf inference: Datacenter, 2025.

[36] MLCommons. Mlperf inference v5.0 advances language model capa-

bilities for genai, 2025.

[37] Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christo-

pher Ré. Can foundation models wrangle your data? arXiv preprint
arXiv:2205.09911, 2022.

[38] NVIDIA. Tensorrt-llm. https://nvidia.github.io/TensorRT-LLM/index.
html. (Accessed on 10/11/2024).

[39] Gabriele Oliaro, Zhihao Jia, Daniel Campos, and Aurick Qiao. Suffixde-

coding: A model-free approach to speeding up large language model

inference, 2024.

[40] Gabriele Oliaro, Xupeng Miao, Xinhao Cheng, Vineeth Kada, Ruohan

Gao, Yingyi Huang, Remi Delacourt, April Yang, Yingcheng Wang,

Mengdi Wu, et al. Flexllm: A system for co-serving large language

model inference and parameter-efficient finetuning. arXiv preprint
arXiv:2402.18789, 2024.

[41] OpenAI. Gpt-4o. https://openai.com/index/hello-gpt-4o/. (Accessed
on 10/11/2024).

[42] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo

Goiri, Saeed Maleki, and Ricardo Bianchini. Splitwise: Efficient genera-

tive llm inference using phase splitting. In 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA), pages 118–
132. IEEE, 2024.

[43] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu,

Weimin Zheng, and Xinran Xu. Mooncake: Kimi’s kvcache-centric

architecture for llm serving. arXiv preprint arXiv:2407.00079, 2024.
[44] Keith Rayner, Elizabeth R Schotter, Michael EJ Masson, Mary C Potter,

and Rebecca Treiman. So much to read, so little time: How do we read,

and can speed reading help? Psychological Science in the Public Interest,
17(1):4–34, 2016.

[45] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,

Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien

Breughe, Mark Charlebois, William Chou, et al. Mlperf inference

benchmark. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pages 446–459. IEEE, 2020.

[46] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai

Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal

Remez, et al. Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

[47] Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li,

Danyang Zhuo, Joseph E Gonzalez, and Ion Stoica. Fairness in serv-

ing large language models. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24), pages 965–988, 2024.

[48] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,

Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E. Gon-

zalez, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen:

High-throughput generative inference of large language models with

a single gpu, 2023.

[49] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha

Choukse. Dynamollm: Designing llm inference clusters for perfor-

mance and energy efficiency. arXiv preprint arXiv:2408.00741, 2024.
[50] Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami,

Himanshu Jain, and Felix Yu. Spectr: Fast speculative decoding via

optimal transport. Advances in Neural Information Processing Systems,
36, 2024.

[51] Maxim Tabachnyk and Stoyan Nikolov. Ml-enhanced code completion

improves developer productivity, 2022.

[52] Rohan Taori, IshaanGulrajani, Tianyi Zhang, YannDubois, Xuechen Li,

Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford

alpaca: An instruction-following llama model. https://github.com/

15

https://nvidia.github.io/TensorRT-LLM/index.html
https://nvidia.github.io/TensorRT-LLM/index.html
https://openai.com/index/hello-gpt-4o/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Zikun Li, Zhuofu Chen, et al.

tatsu-lab/stanford_alpaca, 2023.
[53] Minh Duc Vu, Han Wang, Zhuang Li, Jieshan Chen, Shengdong Zhao,

Zhenchang Xing, and Chunyang Chen. Gptvoicetasker: Llm-powered

virtual assistant for smartphone. arXiv preprint arXiv:2401.14268, 2024.
[54] Bingyang Wu, Yinmin Zhong, Zili Zhang, Shengyu Liu, Fangyue Liu,

Yuanhang Sun, Gang Huang, Xuanzhe Liu, and Xin Jin. Fast dis-

tributed inference serving for large language models. arXiv preprint
arXiv:2305.05920, 2023.

[55] Heming Xia, Tao Ge, Si-Qing Chen, Furu Wei, and Zhifang Sui. Specu-

lative decoding: Lossless speedup of autoregressive translation.

[56] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,

Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al.

Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.
[57] Zihao Ye, Lequn Chen, Ruihang Lai, Yilong Zhao, Size Zheng, Junru

Shao, Bohan Hou, Hongyi Jin, Yifei Zuo, Liangsheng Yin, Tianqi Chen,

and Luis Ceze. Accelerating self-attentions for llm serving with flash-

infer, February 2024.

[58] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and

Byung-Gon Chun. Orca: A distributed serving system for Transformer-

Based generative models. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages 521–538, Carlsbad,
CA, July 2022. USENIX Association.

[59] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue

Sun, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E

Gonzalez, et al. Efficiently programming large language models using

sglang. arXiv preprint arXiv:2312.07104, 2023.
[60] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-

anzhe Liu, Xin Jin, and Hao Zhang. Distserve: Disaggregating prefill

and decoding for goodput-optimized large language model serving.

arXiv preprint arXiv:2401.09670, 2024.
[61] Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna

Menon, Afshin Rostamizadeh, Sanjiv Kumar, Jean-François Kagy, and

Rishabh Agarwal. Distillspec: Improving speculative decoding via

knowledge distillation. arXiv preprint arXiv:2310.08461, 2023.

16

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

AdaServe: Accelerating Multi-SLO LLM Serving with SLO-Customized Speculative Decoding EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

A Expected Number of Accepted Tokens
Let 𝑛𝑎𝑐𝑐 denote the number of accepted tokens in a verifi-

cation process. Define 𝑝𝑖 as the probability of token 𝑖 being

accepted. The average acceptance rate across the 𝑛 tokens in

the verification batch is given by 𝑝 =
∑𝑛

𝑖=1 𝑝𝑖
𝑛

. We can compute

the expected number of accepted tokens as follows:

𝐸 [𝑛𝑎𝑐𝑐] = 𝐸 [
𝑛∑︁
𝑖=1

1(token i is accepted)] (10)

=

𝑛∑︁
𝑖=1

𝐸 [1(token i is accepted)] (11)

=

𝑛∑︁
𝑖=1

𝑝𝑖 (12)

= 𝑛𝑝 (13)

The acceptance probability 𝑝𝑖 decreases exponentially

with the depth of token 𝑖 in the speculation tree. Moreover,

for tokens sharing the same parent node in the token tree,

their acceptance probabilities sum to 1. Consequently, given

a fixed number of requests in the batch, increasing the num-

ber of tokens 𝑛 in the verification process leads to a lower

average acceptance rate 𝑝 .

B Proof for Connectivity
Proof. In this proof, we demonstrate that the output nodes

of an iterative greedy algorithm selecting nodes with the

highest values on a token tree form a valid tree.

Language models assign a probability less than 1 to each

token given an input token sequence. Therefore, for any

node 𝑣 in the token tree (except for the root node), we have:

𝑓 (𝑣) < 𝑓 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣))

where 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣) denotes the parent of node 𝑣 in the token

tree.

The iterative greedy algorithm ensures that when a node 𝑣

is selected, all nodes 𝑣 ′ with 𝑓 (𝑣 ′) > 𝑓 (𝑣) have already been

selected, including 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣). Consequently, when a node

is selected, its parent is guaranteed to have been selected

beforehand.

We prove that the selected nodes are connected using

induction:

1. Base Case: The root node is selected first because it

has the highest value (𝑓 (𝑟𝑜𝑜𝑡) = 1 > 𝑓 (𝑣) for all other
nodes 𝑣).

2. Inductive Step: Assume that at step 𝑛 − 1, the selected
nodes are connected. For a node 𝑣 at step 𝑛, the al-

gorithm ensures that 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣) is selected before 𝑣 ,

𝑓 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣)) > 𝑓 (𝑣). Thus, 𝑣 is connected to the se-

lected nodes.

By induction, all selected nodes collectively form a valid,

connected tree.

□

C Optimality Proof for Algorithm 1
Proof. The proof is divided into two main parts:

1. If Algorithm 1 returns INVALID, no feasible solution

exists.

2. If a feasible solution exists, the solution returned by

Algorithm 1 is optimal.

Preliminaries and Notation:

• For each request 𝑟𝑖 , we have a token tree 𝑇𝑖𝑛𝑓 (𝑟𝑖).
• Each node 𝑣 in 𝑇𝑖𝑛𝑓 (𝑟𝑖) is associated with a path prob-

ability 𝑓 (𝑣).
• The goal for each request 𝑟𝑖 is to achieve a target path

probability 𝐴(𝑟𝑖) (the SLO).
• We have a total budget 𝐵, which is the maximum num-

ber of tokens (nodes) that can be selected across all

requests.

• We define 𝑁𝑖 as the minimal number of tokens needed

to be selected from 𝑇𝑖𝑛𝑓 (𝑟𝑖) to achieve 𝐴(𝑟𝑖).

Lemma C.1 (Minimality in Threshold Attainment). Given a
token tree and a threshold 𝜏 , consider a greedy algorithm that
repeatedly selects the node with the highest 𝑓 (𝑣) not yet chosen,
until the sum of 𝑓 (𝑣) of the chosen nodes meets or exceeds 𝜏 .
Suppose this process stops after selecting 𝑛 nodes. Then there
is no subset of fewer than 𝑛 nodes from the tree whose sum of
𝑓 (𝑣) is at least 𝜏 .

Proof of Lemma C.1: By construction, after selecting 𝑛 − 1
nodes, the greedy algorithm did not meet the threshold 𝜏 .

Therefore, any subset of size less than 𝑛 cannot meet or

exceed 𝜏 , since the greedy set of 𝑛−1 nodes is by definition a

best possible subset of that size in terms of cumulative 𝑓 (𝑣)
(no other subset of 𝑛 − 1 nodes can have a greater sum than

the greedily chosen 𝑛 − 1). Thus, 𝑛 is the minimal number of

nodes required to surpass the threshold.

Part 1: If Algorithm 1 returns INVALID, no feasible
solution exists. Consider running Algorithm 1. For each

request 𝑟𝑖 :

1. The algorithm attempts to meet 𝐴(𝑟𝑖) by repeatedly

choosing the highest 𝑓 (𝑣) node from 𝑇𝑖𝑛𝑓 (𝑟𝑖) not yet
chosen by any request, until 𝐴(𝑟𝑖) is reached or the

budget 𝐵 is exhausted.

2. If at some step 𝑖 , the algorithm cannot find enough to-

kens to achieve 𝐴(𝑟𝑖) (i.e., it runs out of budget before
𝐴(𝑟𝑖) is met), it returns INVALID.

By Lemma C.1, the minimal tokens needed to achieve

𝐴(𝑟𝑖) is 𝑁𝑖 . If the algorithm fails at request 𝑖 , it means it

has already allocated tokens to previous requests 𝑟1, . . . , 𝑟𝑖−1
optimally (since it picks the highest probability nodes first).

Thus, by the time it considers 𝑟𝑖 , it has spent at least 𝑁1 +
𝑁2 + · · · + 𝑁𝑖−1 tokens. If it cannot fulfill 𝐴(𝑟𝑖), it implies

𝑁1 + · · · + 𝑁𝑖 > 𝐵. Therefore, there is no way to allocate 𝐵

17

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Zikun Li, Zhuofu Chen, et al.

tokens to meet all𝐴(𝑟1), . . . , 𝐴(𝑟𝑖) simultaneously. Since this

reasoning applies for the request where the algorithm fails,

if Algorithm 1 returns INVALID, no feasible solution exists.

Part 2: If a feasible solution exists, the returned so-
lution is optimal. Now suppose Algorithm 1 completes

successfully. It produces a solution 𝑆 that satisfies 𝐴(𝑟𝑖) for
all 𝑖 within the budget 𝐵. We need to show that if there is

any other feasible solution 𝑆 ′ that also meets all SLOs, then

𝑆 is at least as good as 𝑆 ′ (i.e., 𝑆 is optimal).

To prove this, we rely on another lemma about the greedy

selection of nodes under a fixed budget.

Lemma C.2 (Maximality Under a Fixed Budget). Given a
token tree and a budget𝑏, let a greedy algorithm select the top𝑏
nodes in terms of 𝑓 (𝑣) from that tree. This selection maximizes
the sum of 𝑓 (𝑣) over all subsets of size 𝑏.

Proof of Lemma C.2: Suppose for contradiction that there

is a subset 𝑉 ′ of size 𝑏 whose total sum of 𝑓 (𝑣) is greater
than that of the subset 𝑉 chosen by the greedy algorithm.

Since the greedy algorithm picks the top 𝑏 nodes, every node

in𝑉 \𝑉 ′ must have 𝑓 (𝑣) greater than or equal to that of any

node in 𝑉 ′ \𝑉 . By swapping the lower-probability nodes in

𝑉 ′ with the higher-probability nodes from𝑉 , we form a new

subset that has a sum at least as large as 𝑉 ′. But this new
subset is precisely 𝑉 , contradicting the assumption that 𝑉 ′

has a strictly greater sum. Thus, 𝑉 is optimal.

Establishing optimality of the returned solution 𝑆 :

1. Define 𝑁𝑖 as the minimal tokens required to achieve

𝐴(𝑟𝑖) for each request 𝑟𝑖 . Note that𝑀𝑖 (𝑆) ≥ 𝑁𝑖 for the

solution 𝑆 returned by the algorithm, where𝑀𝑖 (𝑆) is
the number of tokens allocated to 𝑟𝑖 in 𝑆 . The same

holds for any other feasible solution 𝑆 ′:𝑀𝑖 (𝑆 ′) ≥ 𝑁𝑖 .

2. Suppose there exists a valid solution 𝑆 ′ that is better
than 𝑆 . Being “better” might mean it uses fewer tokens

or achieves a higher sum of 𝑓 (𝑣) for the given budget.

Consider how 𝑆 ′ distributes tokens among requests:

there must be some difference in the number of tokens

allocated to at least one request, otherwise they are

identical solutions.

3. Fix a particular distribution of the budget across the

requests. For any single token tree 𝑇𝑖𝑛𝑓 (𝑟𝑖) and a to-

ken count 𝑀𝑖 , by Lemma C.2, the greedy choice of

𝑀𝑖 nodes yields the maximum possible sum of 𝑓 (𝑣)
for that budget on 𝑟𝑖 . Thus, if 𝑆

′
differs from 𝑆 , but

assigns the same number of tokens𝑀𝑖 (𝑆 ′) to request

𝑟𝑖 as 𝑆 does, then to improve upon 𝑆 ‘s solution, 𝑆 ′ must

choose nodes with a strictly greater total sum of 𝑓 (𝑣)
than 𝑆 under the same budget 𝑀𝑖 (𝑆). This is impos-

sible due to Lemma C.2, since 𝑆 is constructed by a

greedy procedure.

4. Hence, any improvement in one request’s allocation

in 𝑆 ′ would require changing the budget distribution

among requests. However, after ensuring the mini-

mal quotas 𝑁𝑖 for each request (which both 𝑆 and any

feasible 𝑆 ′ must respect), the second step of the algo-

rithm in 𝑆 distributes the remaining tokens globally in

a greedy manner. This global greedy step ensures that

no other distribution of these “extra” tokens can yield

a strictly better sum, since that would contradict the

global maximality of the greedy choice.

In other words, if 𝑆 ′ tries to reallocate tokens among re-

quests (while still meeting all SLOs), any purported improve-

ment can be dismantled by applying Lemma C.2 within each

token tree. Ultimately, this shows that no 𝑆 ′ better than 𝑆

can exist.

Conclusion:

1. If Algorithm 1 returns INVALID, no feasible solution

can exist, since the minimal required tokens to meet

the SLOs of the first 𝑖 requests already exceed 𝐵.

2. If a feasible solution exists, the solution returned by

Algorithm 1 must be optimal. Any other solution that

meets all SLOs cannot be strictly better, due to the

maximality properties of the greedy selections both

per-request and globally.

Thus, Algorithm 1 is correct and optimal. □

D Artifact Appendix
D.1 Abstract
This appendix accompanies the paper AdaServe: Accelerating
Multi-SLO LLM Serving with SLO-Customized Speculative
Decoding. It describes the software artifact submitted for

evaluation. The artifact enables reviewers to reproduce the

key experimental results presented in the paper (Figure 8-

Figure 15). While the precise hardware configuration used

in the original evaluation is not always available, the artifact

is designed to produce results that demonstrate the same

qualitative trends and support the claims of the paper.

D.2 Getting Started
D.2.1 How to Access. The artifact is available on GitHub

at https://github.com/zikun-li/AdaServe-Artifact-Evaluation
and archived on Zenodo at DOI 10.5281/zenodo.17052619.

D.2.2 Hardware dependencies. The experiments require

access to modern GPUs with adequate memory capacity. We

recommend using either the provided machine (8 × NVIDIA

A100-SXM4-40GB GPUs with at least 512 GB RAM) or an

equivalent cloud instance (e.g., AWS p4de.24xlarge). All
experiments should be executed on x86-64 machines with

CUDA 12.4 and Docker configured with the NVIDIA con-

tainer runtime. The original paper’s experiments were con-

ducted on a platformwith 4×A100-SXM4-80GBGPUs, which

may not always be available. While absolute throughput

values differ across hardware, the reproduced experiments

follow the same trends.

18

https://github.com/zikun-li/AdaServe-Artifact-Evaluation
10.5281/zenodo.17052619

AdaServe: Accelerating Multi-SLO LLM Serving with SLO-Customized Speculative Decoding EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

D.2.3 Set-Up. To set up the evaluation environment, re-

viewers should first clone the artifact repository using:

$ git clone –recursive
https://github.com/zikun-li \
/AdaServe-Artifact-Evaluation.git

↩→

↩→

Next, the Docker container must be built by running the

following command:

$./docker/build_container.sh

Then, the docker container can be started with the follow-

ing command:

$./docker/start_container.sh

After the container is running, reviewers should install

the required dependencies and download the Hugging Face

models by executing the following command:

$./docker/setup_adaserve.sh

Please note that the above step requires a valid Hugging-

Face token for authentication.

Finally, a new terminal can be attached to the running

container with

$./docker/attach_to_container.sh

Multiple concurrent terminals may be opened if desired.

D.2.4 Teardown. After completing the evaluation, review-

ers are requested to clean up the environment by first termi-

nating and removing all containers and associated Docker

data using:

$./docker/cleanup_containers.sh

They should then delete the cloned repository and any gen-

erated files. These steps ensure that subsequent reviewers

have access to a clean evaluation environment.

D.3 Evaluation and Expected Results
The artifact reproduces the paper’s main evaluation figures.

Each script runs a sequence of experiments covering a range

of configurations; one configuration typically requires ∼15
minutes. Results are stored under the results/ directory.

Due to the hardware differences described above, exact nu-

merical values may vary, but qualitative trends are preserved.

D.3.1 Figures 8 and 9 (SLO attainment and goodput
vs. RPS). To reproduce the results on the Llama models:

$ ADASERVE=ON RPS_MIN=2.6 RPS_MAX=4.8

./exps/fig8,9/run_llama_rps.sh↩→

To reproduce the results on the Qwen models:

$ ADASERVE=ON RPS_MIN=2.4 RPS_MAX=4.2

./exps/fig8,9/run_qwen_rps.sh↩→

The parameters RPS_MIN and RPS_MAX can be adjusted to

cover different ranges of requests per second (RPS). In our

evaluation, the minimal RPS is 2.6 and the maximal RPS is 4.8

for LLaMA-3.1-70B-Instruct, while the minimal RPS is 2.4

and the maximal RPS is 4.2 for Qwen2.5-32B-Instruct. The
minimal step size is set to 0.2. The results are stored in the di-

rectory results/fig8,9/llama/adaserve/and results/
fig8,9/qwen/adaserve/.

D.3.2 Figure 10 (SLO attainment and goodput vs. ur-
gent request proportion). To reproduce the results on the

LLaMA models:

$ ADASERVE=ON PROP_MIN=0.1 PROP_MAX=0.9

./exps/fig10/run_llama_prop.sh↩→

To reproduce the results on the Qwen models:

$ ADASERVE=ON PROP_MIN=0.1 PROP_MAX=0.9

./exps/fig10/run_qwen_prop.sh↩→

The parameters PROP_MIN and PROP_MAX can be adjusted

to cover different ranges of urgent request proportions. In our

evaluation, the minimal proportion is 0.1 and the maximal

proportion is 0.9 for both LLaMA-3.1-70B-Instruct and

Qwen2.5-32B-Instruct. The minimal step size is set to 0.1.

The results are stored in the directories results/fig10/
llama/adaserve/ and results/fig10/qwen/adaserve/.

D.3.3 Figure 11 (SLO attainment and goodput vs. SLO
scale). To reproduce the results on the LLaMA models:

$ ADASERVE=ON SLO_SCALE_MIN=0.6
SLO_SCALE_MAX=1.6 OUTPUT_LENGTH=256
./exps/fig11/run_llama_slo.sh

↩→

↩→

To reproduce the results on the Qwen models:

$ ADASERVE=ON SLO_SCALE_MIN=0.6
SLO_SCALE_MAX=1.6 OUTPUT_LENGTH=256
./exps/fig11/run_qwen_slo.sh

↩→

↩→

The parameters SLO_SCALE_MIN and SLO_SCALE_MAX can

be adjusted to cover different ranges of SLO scales. In our

evaluation, the minimal SLO scale is 0.6 and the maximal

19

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Zikun Li, Zhuofu Chen, et al.

SLO scale is 1.6 for both LLaMA-3.1-70B-Instruct and

Qwen2.5-32B-Instruct. The minimal step size is set to 0.2.

The results are stored in the directories results/fig11/
llama/adaserve/ and results/fig11/qwen/adaserve/.

D.3.4 Figure 12 (Speculative accuracy). The data for

Figure 12 is collected during the experiments for Figure 8 and

Figure 9 and can be found in their corresponding directories.

The reported numbers correspond to the line starting with

mean_generated_tokens_per_step at the end of the files.

D.3.5 Figure 14 (Sensitivity to workload fluctuations).
To reproduce the results on the LLaMA models:

$ ADASERVE=ON ./exps/fig14/run_llama_fluc.sh

To reproduce the results on the Qwen models:

$ ADASERVE=ON ./exps/fig14/run_qwen_fluc.sh

The results are stored in the directories results/fig14/
llama/adaserve/ and results/fig14/qwen/adaserve/.

D.3.6 Figure 15 (Latency breakdown). To reproduce the
results on the LLaMA models:

$ LLAMA_OVERHEAD=ON

./exps/fig15/run_overhead_breakdown.sh↩→

To reproduce the results on the Qwen models:

$ QWEN_OVERHEAD=ON

./exps/fig15/run_overhead_breakdown.sh↩→

The results are stored in the directories results/fig15/
llama/ and results/fig15/qwen/.

20

	Abstract
	1 Introduction
	2 Background
	3 Problem Formulation
	4 SLO-Customized Serving
	4.1 Optimal Token Tree Construction
	4.2 Challenges
	4.3 SLO-Customized Speculative Decoding

	5 System Design and Optimizations
	5.1 Overview of AdaServe
	5.2 System Optimizations

	6 Evaluation
	6.1 Experimental Setup
	6.2 End-to-End Comparison
	6.3 Ablation and Sensitivity Study

	7 Related Work
	8 Conclusion
	References
	A Expected Number of Accepted Tokens
	B Proof for Connectivity
	C Optimality Proof for alg:treeconstructoptimal
	D Artifact Appendix
	D.1 Abstract
	D.2 Getting Started
	D.3 Evaluation and Expected Results

