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Recap: Data Parallelism
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1. Partition training data into batches 2. Compute the gradients of 

each batch on a GPU 
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Aggregation

3. Aggregate gradients 

across GPUs
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Recap: An Issue with Data Parallelism

• Each GPU saves a replica of the 
entire model

• Cannot train large models that 
exceed GPU device memory
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GPU 1

Model Parallelism

• Split a model into multiple subgraphs and assign them to different devices
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How to parallelize DNN Training?

• Data parallelism

• Model parallelism

• Tensor model parallelism

• Pipeline model parallelism

5
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Tensor Model Parallelism

• Partition parameters/gradients within a layer
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GPU 1

Comparing Data and Tensor Model Parallelism
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Comparing Data and Tensor Model Parallelism

• Data parallelism: 𝑂(𝐶𝑜𝑢𝑡 ∗ 𝐶𝑖𝑛)

• Tensor model parallelism (partition output): 𝑂(𝐵 ∗ 𝐶𝑖𝑛)

• Tensor model parallelism (reduce output): 𝑂(𝐵 ∗ 𝐶𝑜𝑢𝑡)

• The best strategy depends on the model and underlying machine
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Combine Data and Model Parallelism
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Example: Convolutional Neural Networks
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Classification Retrieval Detection

Segmentation Self-Driving Synthesis
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Convolution

15

• Convolve the filter with the image: slide over the image spatially and 
compute dot products



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CNNs

• A sequence of convolutional layers, interspersed by pooling, normalization, 
and activation functions

16[Zeiler and Fergus 2013]
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Parallelizing Convolutional Neural Networks

• Convolutional layers

• 90-95% of the computation
• 5% of the parameters

• Very large intermediate activations

• Fully-connected layers
• 5-10% of the computation

• 95% of the parameters
• Small intermediate activations

• Discussion: how to parallelize CNNs?
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Data parallelism

Tensor model parallelism
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Parallelizing Convolutional Neural Networks

• Data parallelism for convolutional layers

• Tensor model parallelism for fully-connected layers

18



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example: Parallelizing Transformers

• Transformer: attention mechanism for language understanding
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Ashish Vaswani et. al. Attention is all you need.
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A Single Transformer Layer
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Fully-Connected Layers

Self-Attention Layers
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Parallelizing Fully-Connected Layers in Transformers
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𝒀 = 𝑮𝒆𝑳𝑼 𝑿 × 𝑨
𝒁 = 𝑫𝒓𝒐𝒑𝒐𝒖𝒕 𝒀 × 𝑩

Tensor model parallelism 

(partition output)

Tensor model parallelism 

(reduce output)

identity layer
reduction layer

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.
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Parallelizing Transformers

29Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Scale to 512 GPUs by combining data and model parallelism
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How to parallelize DNN Training?

• Data parallelism

• Model parallelism

• Tensor model parallelism

• Pipeline model parallelism
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An Issue with Model Parallelism

• Under-utilization of compute resources

• Low overall throughput due to resource utilization
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Pipeline Model Parallelism

• Mini-batch: the number of 
samples processed in each 
iteration

• Divide a mini-batch into 
multiple micro-batches

• Pipeline the forward and 
backward computations 
across micro-batches

32

Model Parallelism

Pipeline Model Parallelism
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Pipeline Model Parallelism: Device Utilization

• 𝑚 : micro-batches in a mini-batch

• 𝑝: number of pipeline stages

• All stages take 𝑡𝑓/ 𝑡𝑏 to process a forward (backward) micro-batch

33GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

𝑚 ∗ 𝑡𝑓

𝑝

𝑚 ∗ 𝑡𝑏𝑝 − 1 ∗ (𝑡𝑓+𝑡𝑏)

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗ (𝒕𝒇+𝒕𝒃) 

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=

𝒑 − 𝟏

𝒎



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Improving Pipeline Parallelism Efficiency

• 𝑚 : number of micro-batches in a mini-batch 
• Increase mini-batch size or reduce micro-batch size

• Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes 
reduce GPU utilization

• 𝑝: number of pipeline stages 
• Decrease pipeline depth

• Caveat: increase stage size

34GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
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Pipeline Model Parallelism: Memory Requirement

• An issue: we need to keep the intermediate activations of all micro-
batches before back propagation

35GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Can we improve the pipeline schedule to reduce 

memory requirement?
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Pipeline Parallelism with 1F1B Schedule

• One-Forward-One-Backward in the steady state

• Limit the number of in-flight micro-batches to the pipeline depth

• Reduce memory footprint of pipeline parallelism

• Doesn’t reduce pipeline bubble

36

Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

# in-flight mciro-batches = 4# in-flight mciro-batches = 8

Can we reduce pipeline bubble?
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Pipeline Parallelism with Interleaved 1F1B Schedule

• Further divide each stage into 𝑣 sub-stages

• The forward (backward) time of each sub-stage is 
𝑡𝑓

𝑣
 (

𝑡𝑏

𝑣
)
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Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second 

chunk.

Reduce bubble time at the cost increased communication
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Pipeline Parallelism with Interleaved 1F1B Schedule
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Pipeline parallelism with 

1F1B Schedule

Pipeline parallelism with 

interleaved 1F1B Schedule
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Summary: Comparing Data/Tensor Model/Pipeline Model 
Parallelism

39

Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism

✓ Massively parallelizable

✓ Require no communication during 

forward/backward

✓ Support training large models

✓ Efficient for models with large 

numbers of parameters

✓ Support large-batch training

✓ Efficient for deep models

❖ Do not work for models that cannot 

fit on a GPU

❖ Do not scale for models with large 

numbers of parameters

❖ Limited parallelizability; cannot 

scale to large numbers of GPUs

❖ Need to transfer intermediate 

results in forward/backward

❖ Limited utilization: bubbles in 

forward/backward

Pros
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Summary: Comparing Data/Tensor Model/Pipeline Model 
Parallelism
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Data Parallelism Model Parallelism Pipeline Parallelism
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Training large models requires combining data/model/pipeline 

and other parallelization techniques
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Example: 3D parallelism in DeepSpeed

41https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
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