10/10/2025

15-779 Lecture 13:

Parallelization Part 2
Model and Pipeline Parallelism

Tianqi Chen and Zhihao Jia
Carnegie Mellon University



Recap: Data Parallelism

<

ML Model

Training Dataset

Gradients

Aggregation

w; == w; —yVL(w;) = w; —

" . : - 3. Aggregate gradients
1. Partition training data into batches 2. Compute the gradients of
| each batch on a GPU across GPUs



Recap: An Issue with Data Parallelism

« Each GPU saves a replica of the
entire model

« Cannot train large models that
exceed GPU device memory

Gradients

Aggregation




Model Parallelism

» Split a model into multiple subgraphs and assign them to different devices

Model
Parallelism

~ Transfer

intermediate
results
between
devices



How to parallelize DNN Training?

« Data parallelism

* Model parallelism
* Tensor model parallelism
* Pipeline model parallelism



X

output input parameters

Tensor Model Parallelism

 Partition parameters/gradients within a layer

Tensor Model Parallelism (partition output) Tensor Model Parallellism z(reduce output) .
y=yl+y



Comparing Data and Tensor Model Parallelism

Cou t

Cout Cin l
b | = B | x Cin
Cin

Forward Backward Gradients
Processing Propagation Sync

0 0 O0(Cout * Cin)

Communication Cost of Data Parallelism




Comparing Data and Tensor Model Parallelism

Cout Cin Cout

O(B * Cin) O(B * Cin) 0

Communication Cost of Tensor Model Parallelism

.

/

/
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Tensor Model Parallelism (partition output)

Forward Backward Gradients
Processing Propagation Sync
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Comparing Data and Tensor Model Parallelism

Cout Cin Cout

O(B * Coyt) O(B * Coyt) 0

Communication Cost of Tensor Model Parallelism

Tensor Model Parallelism (Reduce output)
y=y1l1+1y2

Forward Backward Gradients
Processing Propagation Sync
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Comparing Data and Tensor Model Parallelism

« Data parallelism: 0(C,,; * C;)
« Tensor model parallelism (partition output): O(B * C,,)
* Tensor model parallelism (reduce output): O(B * C,;)

* The best strategy depends on the model and underlying machine
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Combine Data and Model Parallelism

Model parallelism
A

Machine 2

Data parallelism

— Workload partitioning

\ Machine 3 |

Machine 4
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Segmentation

Neural Networks
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Convolution

« Convolve the filter with the image: slide over the image spatially and
compute dot products

Source pixel
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CNNs

« A sequence of convolutional layers, interspersed by pooling, normalization,
and activation functions

: : Linearly
Low-level | | Mid-level | | High-level | | separable }—
features features features .
classifier

[Zeiler and Fergus 2013] VGG-16 Conv1_1



Parallelizing Convolutional Neural Networks

« Convolutional layers
* 90-95% of the computation
* 5% of the parameters
* Very large intermediate activations

 Fully-connected layers
* 5-10% of the computation
* 95% of the parameters
« Small intermediate activations

* Discussion: how to parallelize CNNs?

Data parallelism

Tensor model parallelism
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Parallelizing Convolutional Neural Networks

« Data parallelism for convolutional layers

« Tensor model parallelism for fully-connected layers

Fully-connected

Convolutional

Model parallelism:

all workers train on same batch;
workers communicate as frequently as
netwo

>—<

Worker 1

Data parallelism:

each worker trains the same
convolutional layers on a different
data batch.

Worker K
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Example: Parallelizing Transformers

» Transformer: attention mechanism for language understanding

Output
Probabilities
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Ashish Vaswani et. al. Attention is all you need.
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A Single Transformer Layer

Fully-Connected Layers

Self-Attention Layers

T ——————
I |
: N
b o o o o o o 1

Input Embeddings (tokens,
positions, ...) & Dropout
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Parallelizing Fully-Connected Layers in Transformers

Y = GeLU(X x A)

Z = Dropout(Y X B) reduction layer
identity layer
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Tensor model parallelism Tensor model parallelism

(partition output) (reduce output)

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.



Parallelizing Transformers

m Model Parallel ®m Model + Data Parallel

100%

100%
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Number of GPUS

Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. 29



How to parallelize DNN Training?

» Data parallelism

* Model parallelism
* Tensor model parallelism
* Pipeline model parallelism
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An Issue with Model Parallelism

» Under-utilization of compute resources

* Low overall throughput due to resource utilization
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NN Idle
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Pipeline Model Parallelism: Device Utilization

e m . micro-batches in a mini-batch
* p: number of pipeline stages
* All stages take t¢/ t;, to process a forward (backward) micro-batch

mxte (p—1)x(tr+ty) mxty

Device 1 AR AL 112 |3 |4
Device 2 12345678 2 (3|45 9 10111213141516
p Device 3 12345678 314|516 910111213141516 E
Device 4 123456788 4 |5 |6 |7 910111213141516“@
Time —— Devices idle

- Forward Pass |:] Backward Pass

(p—1) = (+t,) p-1
mxt; +mxt, m

BubbleFraction =

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
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Improving Pipeline Parallelism Efficiency

 m : number of micro-batches in a mini-batch
* |[ncrease mini-batch size or reduce micro-batch size

« Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes
reduce GPU utilization

* p: number of pipeline stages

» Decrease pipeline depth
« Caveat: increase stage size
mxty (p—1) = (r+ty) m=ty

l_‘_V_‘_\l | Pipeline flush

Device 1 ENAENCENVAE: 1123 |4 M 910111213141516
Device 2 12345678 2(3|4a]|s5 9 10111213141516
p Device 3 12345678 3|/4|51|6 910111213141516 E
Device 4 123456788 4 5|6 |7 910111213141516“@
Time —— Devices idle

- Forward Pass D Backward Pass
(p—1D=*(&+t,) p-—-1

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

BubbleFraction =
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Pipeline Model Parallelism: Memory Requirement

* An issue: we need to keep the intermediate activations of all micro-
batches before back propagation

Pipeline flush
Device 1 REPAENNINAL:! 112|134 yA R 910111213141516
Device 2 12345678 2 (3|45 9 10111213141516
Device 3 12345678 3 /4|56 9 10111213141516 a
Device 4 12345678k 45|67 910111213141516“@
Time —— Devices idle

Forward Pass [ ] Backward Pass

Can we improve the pipeline schedule to reduce
memory requirement?

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
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Pipeline Parallelism with 1F1B Schedule

Doesn’t reduce pipeline bubble

One-Forward-One-Backward in the steady state
Limit the number of in-flight micro-batches to the pipeline depth
Reduce memory footprint of pipeline parallelism

Can we reduce pipeline bubble?

# in-flight mciro-batches = §  Pipelineflush

Device 1 RNEAENNAAL: 112 |3 |4|5|68 910111213141516

Device 2 12345678 1|12 (3|4 |5 |6 |78 910111213141516

Device 3 12345678 12 |3 |4|5|6]|7 910111213141516 E

Device 4 PR 1 | 2 |3 (4|5 |6 |7 |8 910111213141516“@
Time ——— Devices idle

I rorward Pass [ | Backward Pass

Pipeline parallelism with GPipe’s schedule

Device 1
Device 2
Device 3
Device 4

# in-flight mciro-batches = 4

n 9 101112

9 101112

Pipeline parallelism with 1F1B schedule
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Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stage into v sub-stages

» The forward (backward) time of each sub-stage is i (t—b)
v %

QEE |-
Device 2 ; 55H7=3HH 1 Hz 3 H P E
Device 3 H n

Device 4 X P85 1627384 BEA0 11;12

Time ——
Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second

chunk.
-1~ (tf:;tb) 1 p-1
BubbleFraction = = — %
m x tf + m * tb v m

Reduce bubble time at the cost increased communication
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Pipeline Parallelism with Interleaved 1F1B Schedule

Pipeline parallelism with
1F1B Schedule

. p—1
BubbleFraction = ——
m

Pipeline parallelism with

interleaved 1F1B Schedule
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v m
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Time
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Summary: Comparing Data/Tensor Model/Pipeline Model
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Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism

v' Massively parallelizable v
Pros v Require no communication during v
forward/backward
% Do not work for models that cannot <«
fit on a GPU
Cons % Do not scale for models with large

numbers of parameters

Support training large models
Efficient for models with large
numbers of parameters

v' Support large-batch training
v’ Efficient for deep models

+ Limited utilization: bubbles in
forward/backward

Limited parallelizability; cannot
scale to large numbers of GPUs
Need to transfer intermediate
results in forward/backward
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Summary: Comparing Data/Tensor Model/Pipeline Model

Parallelism
% GPII1 - s A Iﬁ_’ é% [Ean Fae | oo L el e [ s | e | e | Update
w Training large models requires combining data/model/pipeline _ =
and other parallelization techniques
i~ T:a—ini;g(D:tzseti—Aivj( ON *G;:; 4"; - = = V(o= L-——]Z: Vit D e ©

Data Parallelism Model Parallelism Pipeline Parallelism

v' Massively parallelizable v
Pros v Require no communication during v
forward/backward
% Do not work for models that cannot <«
fit on a GPU
Cons

% Do not scale for models with large X2
numbers of parameters

Support training large models
Efficient for models with large
numbers of parameters

v' Support large-batch training
v’ Efficient for deep models

+ Limited utilization: bubbles in
forward/backward

Limited parallelizability; cannot
scale to large numbers of GPUs
Need to transfer intermediate
results in forward/backward
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Example: 3D parallelism in DeepSpeed

Pipeline Model Parallelism
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https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
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