10/10/2025

15-779 Lecture 13:

Parallelization Part 2
Model and Pipeline Parallelism

Tianqi Chen and Zhihao Jia
Carnegie Mellon University

Recap: Data Parallelism

<

ML Model

Training Dataset

Gradients

Aggregation

w; == w; —yVL(w;) = w; —

" . : - 3. Aggregate gradients
1. Partition training data into batches 2. Compute the gradients of
| each batch on a GPU across GPUs

Recap: An Issue with Data Parallelism

« Each GPU saves a replica of the
entire model

« Cannot train large models that
exceed GPU device memory

Gradients

Aggregation

Model Parallelism

» Split a model into multiple subgraphs and assign them to different devices

Model
Parallelism

~ Transfer

intermediate
results
between
devices

How to parallelize DNN Training?

« Data parallelism

* Model parallelism
* Tensor model parallelism
* Pipeline model parallelism

X

output input parameters

Tensor Model Parallelism

 Partition parameters/gradients within a layer

Tensor Model Parallelism (partition output) Tensor Model Parallellism z(reduce output) .
y=yl+y

Comparing Data and Tensor Model Parallelism

Cou t

Cout Cin l
b | = B | x Cin
Cin

Forward Backward Gradients
Processing Propagation Sync

0 0 O0(Cout * Cin)

Communication Cost of Data Parallelism

Comparing Data and Tensor Model Parallelism

Cout Cin Cout

O(B * Cin) O(B * Cin) 0

Communication Cost of Tensor Model Parallelism

.

/

/
'----

Tensor Model Parallelism (partition output)

Forward Backward Gradients
Processing Propagation Sync

10

Comparing Data and Tensor Model Parallelism

Cout Cin Cout

O(B * Coyt) O(B * Coyt) 0

Communication Cost of Tensor Model Parallelism

Tensor Model Parallelism (Reduce output)
y=y1l1+1y2

Forward Backward Gradients
Processing Propagation Sync

11

Comparing Data and Tensor Model Parallelism

« Data parallelism: 0(C,,; * C;)
« Tensor model parallelism (partition output): O(B * C,,)
* Tensor model parallelism (reduce output): O(B * C,;)

* The best strategy depends on the model and underlying machine

12

Combine Data and Model Parallelism

Model parallelism
A

Machine 2

Data parallelism

— Workload partitioning

\ Machine 3 |

Machine 4

13

Segmentation

Neural Networks

. “ » '.' ‘ ",&' | o ‘_:\' ;
2 i, ;, Fa . %:‘ ;.w”&' - » :‘ !"‘ R
= i v oo R S
B e
Hnil =

Self-Driving

Synthesis

14

Convolution

« Convolve the filter with the image: slide over the image spatially and
compute dot products

Source pixel
M\- (-1x3)+(0x0)+(1x1)+
= R (-2x2)+(0x6)+(2x2)+
| 2 e (1x2)+(0x4)+(1x1) =-3
ﬁ o
g
= —] = 1
2 /‘/ L
2 Z= =
= o A =]
Convolution filter b= // B
(Sobel Gx) // //
Destination pixel // //
L~ -
[. i
//
e

15

CNNs

« A sequence of convolutional layers, interspersed by pooling, normalization,
and activation functions

: : Linearly
Low-level | | Mid-level | | High-level | | separable }—
features features features .
classifier

[Zeiler and Fergus 2013] VGG-16 Conv1_1

Parallelizing Convolutional Neural Networks

« Convolutional layers
* 90-95% of the computation
* 5% of the parameters
* Very large intermediate activations

 Fully-connected layers
* 5-10% of the computation
* 95% of the parameters
« Small intermediate activations

* Discussion: how to parallelize CNNs?

Data parallelism

Tensor model parallelism

17

Parallelizing Convolutional Neural Networks

« Data parallelism for convolutional layers

« Tensor model parallelism for fully-connected layers

Fully-connected

Convolutional

Model parallelism:

all workers train on same batch;
workers communicate as frequently as
netwo

>—<

Worker 1

Data parallelism:

each worker trains the same
convolutional layers on a different
data batch.

Worker K

18

Example: Parallelizing Transformers

» Transformer: attention mechanism for language understanding

Output
Probabilities

Linear

-
Add & Norm

Feed

Forward

Add & Norm

EemEm)
[Add & Norm | -
ARl Bl Mult-Head
Feed Attention
!CI_J Forward T 7 Nx
—
-8 Nix Add & Norm
o Add & Norm Vasked
(e Multi-Head Multi-Head
Lu Attention Attention
t _t
D— J L —
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Ashish Vaswani et. al. Attention is all you need.

Decoder

am a student

s)
ENCODER > DECODER
\ &
4 2
e "
ENCODER DECODER
. J
))
s “
ENCODER DECODER
. >
& &
a N
ENCODER DECODER
. J
4 A
ENCODER DECODER
e J
4 A
{ N
ENCODER DECODER
& J
Q ¢

19

A Single Transformer Layer

Fully-Connected Layers

Self-Attention Layers

T ——————
I |
: N
b o o o o o o 1

Input Embeddings (tokens,
positions, ...) & Dropout

20

Parallelizing Fully-Connected Layers in Transformers

Y = GeLU(X x A)

Z = Dropout(Y X B) reduction layer
identity layer

l -
| Q| [
I = | X =] XA4; 2|2 =¥ Y, B;
: =
| —
| Q| |
| = | X |2 X4; 2|2 =¥ Y>B;
: =
' S
|
\\\ A= _A17 A2]
Tensor model parallelism Tensor model parallelism

(partition output) (reduce output)

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Parallelizing Transformers

m Model Parallel ®m Model + Data Parallel

100%

100%
l'éﬂ 20% 96%
= 82% 7% = s
T 60%
v
E 40%
= 20%
0%
1 2 4 8 64 128 256 512

Number of GPUS

Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. 29

How to parallelize DNN Training?

» Data parallelism

* Model parallelism
* Tensor model parallelism
* Pipeline model parallelism

30

An Issue with Model Parallelism

» Under-utilization of compute resources

* Low overall throughput due to resource utilization

Worker 1 —> op1

Worker 2 é—bé
Votar: ¢_.¢

Worker 4

mmg OP4

/

loss

Worker 1
Worker 2
Worker 3

Worker 4

N

7

N\

N

=V

N

=

o

7

-

&

N

N

Forward
.

Ti

ime

Backward
Pass

NN

Idle

31

32

NN Idle

Time

Backward Pass

= o 0
\ W.w...\\\m\\ww\
o %Q 234§
\\mw\@\ s e
\\ \\@ gas il BBE
W\\&\\\\ \\\\“ : Hl @B
&&&1 m\\\ ..”
1 \

B Forward Pass

T S 2 3 - N ™ =
g & g =8 5 5 & 5
s 5 5 5 555 %
= = = = 2 2 2 2
D
9 5
O nrua 5
— (b) o W 7p)
Q] L = O C c
2 c E c TS w
al md O o= 9
—_— S5 .nn.ut c ©
D 0 = 8 5 2
e © P ® 5 Mo..w
@) SO 1 9 ,mmn_V
o2 EE <58
(D) =27 = &
S — [N © e d.ml ”kS
(D) c e ®© = = ©-S O
Q. .Ian_ru = 2 230
.= = = N & 0o ®
al . R .

Pipeline Model Parallelism: Device Utilization

e m . micro-batches in a mini-batch
* p: number of pipeline stages
* All stages take t¢/ t;, to process a forward (backward) micro-batch

mxte (p—1)x(tr+ty) mxty

Device 1 AR AL 112 |3 |4
Device 2 12345678 2 (3|45 9 10111213141516
p Device 3 12345678 314|516 910111213141516 E
Device 4 123456788 4 |5 |6 |7 910111213141516“@
Time —— Devices idle

- Forward Pass |:] Backward Pass

(p—1) = (+t,) p-1
mxt; +mxt, m

BubbleFraction =

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

33

Improving Pipeline Parallelism Efficiency

 m : number of micro-batches in a mini-batch
* |[ncrease mini-batch size or reduce micro-batch size

« Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes
reduce GPU utilization

* p: number of pipeline stages

» Decrease pipeline depth
« Caveat: increase stage size
mxty (p—1) = (r+ty) m=ty

l_‘_V_‘_\l | Pipeline flush

Device 1 ENAENCENVAE: 1123 |4 M 910111213141516
Device 2 12345678 2(3|4a]|s5 9 10111213141516
p Device 3 12345678 3|/4|51|6 910111213141516 E
Device 4 123456788 4 5|6 |7 910111213141516“@
Time —— Devices idle

- Forward Pass D Backward Pass
(p—1D=*(&+t,) p-—-1

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

BubbleFraction =

34

Pipeline Model Parallelism: Memory Requirement

* An issue: we need to keep the intermediate activations of all micro-
batches before back propagation

Pipeline flush
Device 1 REPAENNINAL:! 112|134 yA R 910111213141516
Device 2 12345678 2 (3|45 9 10111213141516
Device 3 12345678 3 /4|56 9 10111213141516 a
Device 4 12345678k 45|67 910111213141516“@
Time —— Devices idle

Forward Pass [] Backward Pass

Can we improve the pipeline schedule to reduce
memory requirement?

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

35

Pipeline Parallelism with 1F1B Schedule

Doesn’t reduce pipeline bubble

One-Forward-One-Backward in the steady state
Limit the number of in-flight micro-batches to the pipeline depth
Reduce memory footprint of pipeline parallelism

Can we reduce pipeline bubble?

in-flight mciro-batches = § Pipelineflush

Device 1 RNEAENNAAL: 112 |3 |4|5|68 910111213141516

Device 2 12345678 1|12 (3|4 |5 |6 |78 910111213141516

Device 3 12345678 12 |3 |4|5|6]|7 910111213141516 E

Device 4 PR 1 | 2 |3 (4|5 |6 |7 |8 910111213141516“@
Time ——— Devices idle

I rorward Pass [| Backward Pass

Pipeline parallelism with GPipe’s schedule

Device 1
Device 2
Device 3
Device 4

in-flight mciro-batches = 4

n 9 101112

9 101112

Pipeline parallelism with 1F1B schedule

36

Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stage into v sub-stages

» The forward (backward) time of each sub-stage is i (t—b)
v %

QEE |-
Device 2 ; 55H7=3HH 1 Hz 3 H P E
Device 3 H n

Device 4 X P85 1627384 BEA0 11;12

Time ——
Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second

chunk.
-1~ (tf:;tb) 1 p-1
BubbleFraction = = — %
m x tf + m * tb v m

Reduce bubble time at the cost increased communication

37

Pipeline Parallelism with Interleaved 1F1B Schedule

Pipeline parallelism with
1F1B Schedule

. p—1
BubbleFraction = ——
m

Pipeline parallelism with

interleaved 1F1B Schedule
) 1 p-1
BubbleFraction = — *
v m

Device 1

Device 2

Device 3

Device 4

Time

Device 1

vevice2 (U8B LR A

Device 3

Device 4 3|34556|6

Time

Assign multiple stages

to each device

1234Ia JSEGH?‘I&ZHSHil

Forward Pass Backward Pass

38

Summary: Comparing Data/Tensor Model/Pipeline Model

=, 2
b \./ M d I A\ Q Fao | Fa1 | Faz | Fas| Bas Baz | Bsi Bao Update

ML Model ode ‘ ‘

_l Para"elism eru Fzo | Fz1 | Fzz | Fza Bz B:: Bz B
h Fao| Fia | F12 | Fia 4 ™ Bia Bi2 B Bio P

-. | | —ll ‘:/'

A\ A\ || —> ¢ : : ; ‘ Foo | Fon | F Fos BUbee =05 B B Boo | Upd
Training Dataset | J

Parallelism
=
O
ML Model - _» $ $
o
T'ra_ini;g(oitzset_“iv_(; _> %

GPU 2

i= i~ V(= i__zvj() ©

Jj=1

Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism

v' Massively parallelizable v
Pros v Require no communication during v
forward/backward
% Do not work for models that cannot <«
fit on a GPU
Cons % Do not scale for models with large

numbers of parameters

Support training large models
Efficient for models with large
numbers of parameters

v' Support large-batch training
v’ Efficient for deep models

+ Limited utilization: bubbles in
forward/backward

Limited parallelizability; cannot
scale to large numbers of GPUs
Need to transfer intermediate
results in forward/backward

39

Summary: Comparing Data/Tensor Model/Pipeline Model

Parallelism
% GPII1 - s A Iﬁ_’ é% [Ean Fae | oo L el e [s | e | e | Update
w Training large models requires combining data/model/pipeline _ =
and other parallelization techniques
i~ T:a—ini;g(D:tzseti—Aivj(ON *G;:; 4"; - = = V(o= L-——]Z: Vit D e ©

Data Parallelism Model Parallelism Pipeline Parallelism

v' Massively parallelizable v
Pros v Require no communication during v
forward/backward
% Do not work for models that cannot <«
fit on a GPU
Cons

% Do not scale for models with large X2
numbers of parameters

Support training large models
Efficient for models with large
numbers of parameters

v' Support large-batch training
v’ Efficient for deep models

+ Limited utilization: bubbles in
forward/backward

Limited parallelizability; cannot
scale to large numbers of GPUs
Need to transfer intermediate
results in forward/backward

40

Example: 3D parallelism in DeepSpeed

Pipeline Model Parallelism

| 1 2
— Data Parallel Rank 0 D
4 Pipeline Stage 0 N " Pipeline Stage 1 " Pipeline Stage 2 4 Pipeline Stage 3 A ©
et
g () f—| () & .
g 2) o — —) o)
—
% _ Network Layers 0-7 _ Network Layers 8-15 _ Network Layers 16-23 _ Network Layers 24-31 / E
—
= o
© N
o c
® @
- -
M Data Parallel Rank 1
]
(DU 4 Pipeline Stage O N e Pipe“ne Stage 1 N ' P|pe||ne Stage 2 - Pipeline Stage 3 N Scaling to a Trillion Parameters
2 () z () H) _ 1200 10848
H -) :) ; -g 1000 866
z) : =¥ (= 5 800
z () z () z (—) z £ 600
8 400
__ Network Layers 0-7 _ Network Layers 8-15 _Network Layers 16-23 _ Network Layers 24-31) 200
- -/ 3
= 0

160 320 480 640 800
Number of GPUs

BN Parameters ==8==Throughput

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

40

30

20

10

Throughput (PFLOPS)

41

	Slide 1: 15-779 Lecture 13: Parallelization Part 2 Model and Pipeline Parallelism
	Slide 2: Recap: Data Parallelism
	Slide 3: Recap: An Issue with Data Parallelism
	Slide 4: Model Parallelism
	Slide 5: How to parallelize DNN Training?
	Slide 8: Tensor Model Parallelism
	Slide 9: Comparing Data and Tensor Model Parallelism
	Slide 10
	Slide 11
	Slide 12: Comparing Data and Tensor Model Parallelism
	Slide 13: Combine Data and Model Parallelism
	Slide 14: Example: Convolutional Neural Networks
	Slide 15: Convolution
	Slide 16: CNNs
	Slide 17: Parallelizing Convolutional Neural Networks
	Slide 18: Parallelizing Convolutional Neural Networks
	Slide 19: Example: Parallelizing Transformers
	Slide 20: A Single Transformer Layer
	Slide 21: Parallelizing Fully-Connected Layers in Transformers
	Slide 29: Parallelizing Transformers
	Slide 30: How to parallelize DNN Training?
	Slide 31: An Issue with Model Parallelism
	Slide 32: Pipeline Model Parallelism
	Slide 33: Pipeline Model Parallelism: Device Utilization
	Slide 34: Improving Pipeline Parallelism Efficiency
	Slide 35: Pipeline Model Parallelism: Memory Requirement
	Slide 36: Pipeline Parallelism with 1F1B Schedule
	Slide 37: Pipeline Parallelism with Interleaved 1F1B Schedule
	Slide 38: Pipeline Parallelism with Interleaved 1F1B Schedule
	Slide 39: Summary: Comparing Data/Tensor Model/Pipeline Model Parallelism
	Slide 40: Summary: Comparing Data/Tensor Model/Pipeline Model Parallelism
	Slide 41: Example: 3D parallelism in DeepSpeed

