
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-779 Lecture 12:

Parallelization Part 1:
Data Parallelism and Zero Redundancy

Zhihao Jia

Carnegie Mellon University

1
10/10/2025

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: DNN Training Overview

2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

DNN Training Process

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

3

Forward propagation

Model inputs Model prediction

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

DNN Training Process

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce a gradient
for each trainable weight

3. Weight update: use the loss value to update model weights

4

Backward propagation

Model inputs Model prediction

𝜕𝐿(𝑤)

𝜕𝑤𝑖

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

DNN Training Process

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce a gradient
for each trainable weight

3. Weight update: use the gradients to update model weights

5

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾
𝜕𝐿(𝑤)

𝜕𝑤𝑖
= 𝑤𝑖 −

𝛾

𝑛
෍

𝑗=1

𝑛
𝜕𝑙𝑖(𝑤)

𝜕𝑤𝑖

Gradients of

individual samples

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How can we parallelize DNN training?

6

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Data Parallelism

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

7

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

1. Partition training data into batches 2. Compute the gradients of

each batch on a GPU

Gradients

Aggregation

3. Aggregate gradients

across GPUs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Data Parallelism: Parameter Server

8

Workers push gradients to

parameter servers and pull

updated parameters back

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Inefficiency of Parameter Server

• Centralized communication: all workers communicate with parameter
servers for weights update; cannot scale to large numbers of workers

• How can we decentralize communication in DNN training?

9

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Inefficiency of Parameter Server

• Centralized communication: all workers communicate with parameter
servers for weights update; cannot scale to large numbers of workers

• How can we decentralize communication in DNN training?

• AllReduce: perform element-wise reduction across multiple devices

10

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Different Ways to Perform AllReduce

• Naïve AllReduce

• Ring AllReduce

• Tree AllReduce

• Butterfly AllReduce

11

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Naïve AllReduce

12

• Each worker can send its local gradients to all other workers

• If we have N workers and each worker contains M parameters

• Overall communication: N * (N-1) * M parameters

• Issue: each worker communicates with all other workers; same scalability
issue as parameter server

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

13

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

14

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

15

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

16

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

• After step 1, each worker has the aggregated version of M/N parameters

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Ring AllReduce

17

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters
to the next worker; repeat N times

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

18

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters
to the next worker; repeat N times

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

19

Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the
next worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters
to the next worker; repeat N times

• Overall communication: 2 * M * N parameters

• Aggregation: M * N parameters

• Broadcast: M * N parameters

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tree AllReduce

• Construct a tree of N workers;

• Step 1 (Aggregation): each worker sends M parameters to its parent;
repeat log(N) times

• Step 2 (Broadcast): each worker sends M parameters to its children;
repeat log(N) times

20
Worker 0 Worker 1 Worker 2 Worker 3

Worker 4 Worker 5

Worker 6

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tree AllReduce

• Construct a tree of N workers;

• Step 1 (Aggregation): each worker sends M parameters to its parent;
repeat log(N) times

• Step 2 (Broadcast): each worker sends M parameters to its children;
repeat log(N) times

• Overall communication: 2 * N * M parameters

• Aggregation: M * N parameters

• Broadcast: M * N parameters

21

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Butterfly Network

22

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Butterfly AllReduce

• Repeat log(N) times:

1. Each worker sends M parameters to
its target node in the butterfly
network

2. Each worker aggregates gradients
locally

• Overall communication: N * M * log(N)
parameters

23

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comparing different AllReduce Methods

24

Parameter

Server

Naïve

AllReduce

Ring

AllReduce

Tree

AllReduce

Butterfly

AllReduce

Overall

communicatio

n

2 × 𝑁 × 𝑀 𝑁2 × 𝑀 2 × 𝑁 × 𝑀 2 × 𝑁 × 𝑀 𝑁 × 𝑀
× log 𝑁

Question: Ring AllReduce is more efficient and scalable then

Tree AllReduce and Parameter Server, why?

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Ring AllReduce v.s. Tree AllReduce v.s. Parameter
Server

25

Each worker sends M/N parameters per

iteration; repeat for 2*N iterations

Latency: M/N * (2*N) / bandwidth

Each worker sends M parameters per

iteration; repeat for 2*log(N) iterations

Latency: M * 2 * log(N) / bandwidth

All workers send M parameters to

parameter servers and receive M

parameters from servers

Latency: M * N / bandwidth

Ring AllReduce:

• Best latency

• Balanced workload across workers

• More scalable since each worker

sends 2*M parameters (independent to

the number of workers)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

An Issue with Data Parallelism

• Each GPU saves a replica of the
entire model

• Cannot train large models that
exceed GPU device memory

26

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Bert-

Large GPT-2

Turing

17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative

Computation 1x 4.7x 54x 547x

Memory Footprint 5.12GB 24GB 275GB 2800GB

27

Large Model Training Challenges

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Bert-

Large GPT-2

Turing

17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative

Computation 1x 4.7x 54x 547x

Memory Footprint 5.12GB 24GB 275GB 2800GB

28

Large Model Training Challenges

NVIDIA V100 GPU memory capacity: 16G/32G

NVIDIA A100 GPU memory capacity: 40G/80G
Out of Memory

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ZeRO: Zero Redundancy Optimizer

• Eliminating data redundancy in data
parallel training

• A widely used technique for data
parallel training of large models

29

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Revisit: Stocastic Gradient Descent

For t = 1 to T

 ∆w = η x
1

𝑏
 σ𝑖=1

𝑏 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖
// compute derivative and update

 w -= ∆w // apply update

End

Forward passBackward pass

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Adaptive Learning Rates (Adam)

For t = 1 to T

 g =
1

𝑏
 σ𝑖=1

𝑏 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖

 ∆w = adam(g)

 w -= ∆w // apply update

End

[1] Kingma and Ba, “Adam: A Method for Stochastic Optimization”, 2014,

https://arxiv.org/abs/1412.6980

[1]

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Transformer for Language Models

32

E
n
c
o

d
e
r

D
e

c
o
d
e

r

Ashish Vaswani et. al. Attention is all you need.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

GPU1

Transformer stack Transformer stack
Data1

Understanding Memory Consumption

33

A 16-layer transformer model = 1 layer

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

Each cell represents GPU memory used by its corresponding transformer layer

34

Understanding Memory Consumption

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

• FP16 parameter

FP16 ParametersFP16 Parameters

35

Understanding Memory Consumption

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters
FP16 Gradient

FP16 Parameters
FP16 Gradient

• FP16 parameter

• FP16 Gradients

36

Understanding Memory Consumption

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter

• FP16 Gradients

• FP32 Optimizer States

• Gradients, Variance, Momentum, Parameters

37

Understanding Memory Consumption

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter : 2M bytes

• FP16 Gradients : 2M bytes

• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model

38

Understanding Memory Consumption

Example 1B parameter model ->

20GB/GPU

Memory consumption doesn’t include:

• Input batch + activations

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

• ZeRO removes the redundancy across data parallel process

• Stage 1: partitioning optimizer states

• Stage 2: partitioning gradients

• Stage 3: partitioning parameters

39

ZeRO-DP: ZeRO powered Data Parallelism

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Data0

Transformer stack

Activations

Transformer stack

Activations

Data1

• ZeRO Stage 1

GPU0 GPU1

ZeRO Stage 1: Partitioning Optimizer States

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

ZeRO Stage 1: Partitioning Optimizer States

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to average

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to average

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to average

• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to

average

• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to

average

• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to

average

• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to

average

• Update the FP32 weights with ADAM optimizer

• Update the FP16 weights

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to

average

• Update the FP32 weights with ADAM optimizer

• Update the FP16 weights

• All Gather the FP16 weights to complete the iteration

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to

average

• Update the FP32 weights with ADAM optimizer

• Update the FP16 weights

• All Gather the FP16 weights to complete the iteration

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ZeRO: Zero Redundancy Optimizer

• Progressive memory savings and communication volume

• Turning NLR 17.2B is powered by Stage 1 and Megatron

Stage 1

Stage 2

Stage 3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• The forward process remains the same as stage 1

ZeRO Stage 2: Partitioning Gradients

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Perform AllReduce right after back propagation of each layer

ZeRO Stage 2: Partitioning Gradients

AllReduce

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Only one GPU keeps the gradients after AllReduce

ZeRO Stage 2: Partitioning Gradients

AllReduce

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Reduce gradients on GPUs responsible for updating parameters

ZeRO Stage 2: Partitioning Gradients

AllReduce

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Reduce gradients on GPUs responsible for updating parameters

ZeRO Stage 2: Partitioning Gradients

AllReduce

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Reduce gradients on GPUs responsible for updating parameters

ZeRO Stage 2: Partitioning Gradients

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ZeRO: Zero Redundancy Optimizer

• Progressive memory savings and communication volume

• Turning NLR 17.2B is powered by Stage 1 and Megatron

Stage 1

Stage 2

Stage 3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU 1

ZeRO Stage 3: Partitioning Parameters

• In data parallel training, all GPUs keep all parameters during training

72

Conv1

W1

Conv2

W2

Loss

Conv1’ Conv2’

∆W2

GPU1

∆W1

Conv1

W1

Conv2

W2

Loss

Conv1’ Conv2’

∆W2

GPU2

∆W1

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

73

Conv1

W1

Conv2

GPU1

Conv1 Conv2

W2

GPU2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters during forward

74

Conv1

W1

Conv2

Loss

GPU1

Conv1 Conv2

W2

Loss

GPU2

W2 W1

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• Parameters are discarded right after use

75

Conv1

W1

Conv2

Loss

GPU1

Conv1 Conv2

W2

Loss

GPU2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters again during backward

76

Conv1

W1

Conv2

Loss

Conv1’ Conv2’

GPU1

Conv1 Conv2

W2

Loss

Conv1’ Conv2’

GPU2

W2 W1

∆W2∆W1 ∆W2∆W1

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ZeRO: Zero Redundancy Optimizer

• ZeRO has three different stages

• Progressive memory savings and communication volume

Stage 1

Stage 2

Stage 3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch FSDP: Fully Sharded Data Parallel

78

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch FSDP: Fully Sharded Data Parallel

1. Divide model parameters into FSDP units

79* PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch FSDP: Fully Sharded Data Parallel

80

1. Divide model parameters into FSDP units

2. Share each unit across multiple GPUs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch FSDP: Fully Sharded Data Parallel

81

1. Divide model parameters into FSDP units

2. Share each unit across multiple GPUs

3. Run forward pass;
1. Perform all-gather so that each GPU get all parameters of a unit

2. Run forward pass & discard parameter shards

All-Gather

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch FSDP: Fully Sharded Data Parallel

82

1. Divide model parameters into FSDP units

2. Share each unit across multiple GPUs

3. Run forward pass

4. Run backward pass

Reduce-Scatter

1. Perform all-gather again to get

all parameters of a unit

2. Each GPU computes gradients

for all parameters

3. Perform reduce-scatter to

aggregate full gradients

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Programming in PyTorch FSDP

83

from torch.distributed.fsdp import fully_shard, FSDPModule
from torch.distributed.tensor import Dtensor

model = Transformer()
for layer in model.layers:
 fully_shard(layer)
fully_shard(model)

for param in model.parameters():
 assert isinstance(param, DTensor)

optim = torch.optim.Adam(model.parameters(), lr=1e-2)

for _ in range(epochs):
 x = torch.randint(0, vocab_size, (batch_size, seq_len))
 loss = model(x).sum()
 loss.backward()
 optim.step()
 optim.zero_grad()

Sharding individual

layers and entire model

Parameters are of type

DTensor after sharding

Optimizer will be sharded

automatically

Normal training forward

& backward as before

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Summary

• Data-parallel training
• Parameter server

• Ring AllReduce

• Tree AllReduce

• Butterfly AllReduce

• ZeRO: zero redundancy optimizer

• PyTorch FSDP: Fully Shared Data Parallelism

84

	Slide 1: 15-779 Lecture 12: Parallelization Part 1: Data Parallelism and Zero Redundancy
	Slide 2: Recap: DNN Training Overview
	Slide 3: DNN Training Process
	Slide 4: DNN Training Process
	Slide 5: DNN Training Process
	Slide 6: How can we parallelize DNN training?
	Slide 7: Data Parallelism
	Slide 8: Data Parallelism: Parameter Server
	Slide 9: Inefficiency of Parameter Server
	Slide 10: Inefficiency of Parameter Server
	Slide 11: Different Ways to Perform AllReduce
	Slide 12: Naïve AllReduce
	Slide 13: Ring AllReduce
	Slide 14: Ring AllReduce
	Slide 15: Ring AllReduce
	Slide 16: Ring AllReduce
	Slide 17: Ring AllReduce
	Slide 18: Ring AllReduce
	Slide 19: Ring AllReduce
	Slide 20: Tree AllReduce
	Slide 21: Tree AllReduce
	Slide 22: Butterfly Network
	Slide 23: Butterfly AllReduce
	Slide 24: Comparing different AllReduce Methods
	Slide 25: Ring AllReduce v.s. Tree AllReduce v.s. Parameter Server
	Slide 26: An Issue with Data Parallelism
	Slide 27: Large Model Training Challenges
	Slide 28: Large Model Training Challenges
	Slide 29: ZeRO: Zero Redundancy Optimizer
	Slide 30: Revisit: Stocastic Gradient Descent
	Slide 31: Adaptive Learning Rates (Adam)
	Slide 32: Transformer for Language Models
	Slide 33: Understanding Memory Consumption
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: ZeRO-DP: ZeRO powered Data Parallelism
	Slide 40: ZeRO Stage 1: Partitioning Optimizer States
	Slide 41: ZeRO Stage 1: Partitioning Optimizer States
	Slide 42: ZeRO Stage 1: Partitioning Optimizer States
	Slide 43: ZeRO Stage 1: Partitioning Optimizer States
	Slide 44: ZeRO Stage 1: Partitioning Optimizer States
	Slide 45: ZeRO Stage 1: Partitioning Optimizer States
	Slide 46: ZeRO Stage 1: Partitioning Optimizer States
	Slide 47: ZeRO Stage 1: Partitioning Optimizer States
	Slide 48: ZeRO Stage 1: Partitioning Optimizer States
	Slide 49: ZeRO Stage 1: Partitioning Optimizer States
	Slide 50: ZeRO Stage 1: Partitioning Optimizer States
	Slide 51: ZeRO Stage 1: Partitioning Optimizer States
	Slide 52: ZeRO Stage 1: Partitioning Optimizer States
	Slide 53: ZeRO Stage 1: Partitioning Optimizer States
	Slide 54: ZeRO Stage 1: Partitioning Optimizer States
	Slide 55: ZeRO Stage 1: Partitioning Optimizer States
	Slide 56: ZeRO Stage 1: Partitioning Optimizer States
	Slide 57: ZeRO Stage 1: Partitioning Optimizer States
	Slide 58: ZeRO Stage 1: Partitioning Optimizer States
	Slide 59: ZeRO Stage 1: Partitioning Optimizer States
	Slide 60: ZeRO Stage 1: Partitioning Optimizer States
	Slide 61: ZeRO Stage 1: Partitioning Optimizer States
	Slide 62: ZeRO Stage 1: Partitioning Optimizer States
	Slide 63: ZeRO Stage 1: Partitioning Optimizer States
	Slide 64: ZeRO: Zero Redundancy Optimizer
	Slide 65: ZeRO Stage 2: Partitioning Gradients
	Slide 66: ZeRO Stage 2: Partitioning Gradients
	Slide 67: ZeRO Stage 2: Partitioning Gradients
	Slide 68: ZeRO Stage 2: Partitioning Gradients
	Slide 69: ZeRO Stage 2: Partitioning Gradients
	Slide 70: ZeRO Stage 2: Partitioning Gradients
	Slide 71: ZeRO: Zero Redundancy Optimizer
	Slide 72: ZeRO Stage 3: Partitioning Parameters
	Slide 73: ZeRO Stage 3: Partitioning Parameters
	Slide 74: ZeRO Stage 3: Partitioning Parameters
	Slide 75: ZeRO Stage 3: Partitioning Parameters
	Slide 76: ZeRO Stage 3: Partitioning Parameters
	Slide 77: ZeRO: Zero Redundancy Optimizer
	Slide 78: PyTorch FSDP: Fully Sharded Data Parallel
	Slide 79: PyTorch FSDP: Fully Sharded Data Parallel
	Slide 80: PyTorch FSDP: Fully Sharded Data Parallel
	Slide 81: PyTorch FSDP: Fully Sharded Data Parallel
	Slide 82: PyTorch FSDP: Fully Sharded Data Parallel
	Slide 83: Programming in PyTorch FSDP
	Slide 84: Summary

