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Recap: DNN Training Overview
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DNN Training Process

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run 
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for 
each trainable weight

3. Weight update: use the loss value to update model weights 
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Forward propagation

Model inputs Model prediction
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DNN Training Process

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run 
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce a gradient 
for each trainable weight

3. Weight update: use the loss value to update model weights 
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Backward propagation

Model inputs Model prediction

𝜕𝐿(𝑤)
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DNN Training Process

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run 
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce a gradient 
for each trainable weight

3. Weight update: use the gradients to update model weights 
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How can we parallelize DNN training?
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Data Parallelism

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…
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1. Partition training data into batches 2. Compute the gradients of 

each batch on a GPU 

Gradients 

Aggregation

3. Aggregate gradients 

across GPUs
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Data Parallelism: Parameter Server
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Workers push gradients to 

parameter servers and pull 

updated parameters back
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Inefficiency of Parameter Server

• Centralized communication: all workers communicate with parameter 
servers for weights update; cannot scale to large numbers of workers

• How can we decentralize communication in DNN training?
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Inefficiency of Parameter Server

• Centralized communication: all workers communicate with parameter 
servers for weights update; cannot scale to large numbers of workers

• How can we decentralize communication in DNN training?

• AllReduce: perform element-wise reduction across multiple devices
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Different Ways to Perform AllReduce

• Naïve AllReduce

• Ring AllReduce

• Tree AllReduce

• Butterfly AllReduce
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Naïve AllReduce

12

• Each worker can send its local gradients to all other workers

• If we have N workers and each worker contains M parameters

• Overall communication: N * (N-1) * M parameters

• Issue: each worker communicates with all other workers; same scalability 
issue as parameter server 
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Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 
next worker on the ring; repeat N times
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Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 
next worker on the ring; repeat N times
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Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 
next worker on the ring; repeat N times
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Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 
next worker on the ring; repeat N times

• After step 1, each worker has the aggregated version of M/N parameters
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Ring AllReduce
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• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 
next worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters 
to the next worker; repeat N times
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Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 
next worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters 
to the next worker; repeat N times
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Ring AllReduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the 
next worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters 
to the next worker; repeat N times

• Overall communication: 2 * M * N parameters

• Aggregation: M * N parameters

• Broadcast: M * N parameters
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Tree AllReduce

• Construct a tree of N workers;

• Step 1 (Aggregation): each worker sends M parameters to its parent; 
repeat log(N) times

• Step 2 (Broadcast): each worker sends M parameters to its children; 
repeat log(N) times  

20
Worker 0 Worker 1 Worker 2 Worker 3

Worker 4 Worker 5

Worker 6
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Tree AllReduce

• Construct a tree of N workers;

• Step 1 (Aggregation): each worker sends M parameters to its parent; 
repeat log(N) times

• Step 2 (Broadcast): each worker sends M parameters to its children; 
repeat log(N) times  

• Overall communication: 2 * N * M parameters

• Aggregation: M * N parameters

• Broadcast: M * N parameters
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Butterfly Network
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Butterfly AllReduce

• Repeat log(N) times:

1. Each worker sends M parameters to 
its target node in the butterfly 
network

2. Each worker aggregates gradients 
locally

• Overall communication: N * M * log(N) 
parameters
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Comparing different AllReduce Methods

24

Parameter 

Server

Naïve 

AllReduce

Ring 

AllReduce

Tree 

AllReduce

Butterfly 

AllReduce

Overall 

communicatio

n

2 × 𝑁 × 𝑀 𝑁2 × 𝑀 2 × 𝑁 × 𝑀 2 × 𝑁 × 𝑀 𝑁 × 𝑀
× log 𝑁

Question: Ring AllReduce is more efficient and scalable then 

Tree AllReduce and Parameter Server, why?
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Ring AllReduce v.s. Tree AllReduce v.s. Parameter 
Server
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Each worker sends M/N parameters per 

iteration; repeat for 2*N iterations

Latency: M/N * (2*N) / bandwidth

Each worker sends M parameters per 

iteration; repeat for 2*log(N) iterations

Latency: M * 2 * log(N) / bandwidth

All workers send M parameters to 

parameter servers and receive M 

parameters from servers

Latency: M * N / bandwidth

Ring AllReduce:

• Best latency

• Balanced workload across workers

• More scalable since each worker 

sends 2*M parameters (independent to 

the number of workers)
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An Issue with Data Parallelism

• Each GPU saves a replica of the 
entire model

• Cannot train large models that 
exceed GPU device memory

26

GPU 1

GPU 2

GPU N

…

Gradients 
Aggregation
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Bert-

Large GPT-2

Turing 

17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative 

Computation 1x 4.7x 54x 547x 

Memory Footprint 5.12GB 24GB 275GB 2800GB 

27

Large Model Training Challenges



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Bert-

Large GPT-2

Turing 

17.2 NLG GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative 

Computation 1x 4.7x 54x 547x 

Memory Footprint 5.12GB 24GB 275GB 2800GB 
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Large Model Training Challenges

NVIDIA V100 GPU memory capacity: 16G/32G

NVIDIA A100 GPU memory capacity: 40G/80G
Out of Memory
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ZeRO: Zero Redundancy Optimizer

• Eliminating data redundancy in data 
parallel training

• A widely used technique for data 
parallel training of large models

29

GPU 1

GPU 2

GPU N

…

Gradients 
Aggregation
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Revisit: Stocastic Gradient Descent

For t = 1 to T

    ∆w = η x 
1

𝑏
 σ𝑖=1

𝑏 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖  
// compute derivative and update

     w -= ∆w   // apply update

End

Forward passBackward pass

Adapted from Minjia Zhang, DeepSpeed Presentation
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Adaptive Learning Rates (Adam)

For t = 1 to T

    g = 
1

𝑏
 σ𝑖=1

𝑏 ∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖  

    ∆w = adam(g)

    w -= ∆w   // apply update

End

[1] Kingma and Ba, “Adam: A Method for Stochastic Optimization”, 2014, 

https://arxiv.org/abs/1412.6980

[1]
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Transformer for Language Models
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Ashish Vaswani et. al. Attention is all you need.



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

GPU1

Transformer stack Transformer stack
Data1

Understanding Memory Consumption 
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A 16-layer transformer model = 1 layer

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

Each cell   represents GPU memory used by its corresponding transformer layer
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Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

• FP16 parameter

FP16 ParametersFP16 Parameters

35

Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters
FP16 Gradient

FP16 Parameters
FP16 Gradient

• FP16 parameter

• FP16 Gradients

36

Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter

• FP16 Gradients

• FP32 Optimizer States

• Gradients, Variance, Momentum, Parameters
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Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter : 2M bytes

• FP16 Gradients : 2M bytes

• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model
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Understanding Memory Consumption 

Example 1B parameter model -> 

20GB/GPU

Memory consumption doesn’t include:

• Input batch + activations

Adapted from Minjia Zhang, DeepSpeed Presentation
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• ZeRO removes the redundancy across data parallel process

• Stage 1: partitioning optimizer states

• Stage 2: partitioning gradients

• Stage 3: partitioning parameters

39

ZeRO-DP: ZeRO powered Data Parallelism
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Data0

Transformer stack

Activations

Transformer stack

Activations

Data1

• ZeRO Stage 1

GPU0 GPU1

ZeRO Stage 1: Partitioning Optimizer States

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

ZeRO Stage 1: Partitioning Optimizer States

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to average

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to average

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to average

• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to 

average

• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to 

average

• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to 

average

• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to 

average

• Update the FP32 weights with ADAM optimizer

• Update the FP16 weights 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to 

average

• Update the FP32 weights with ADAM optimizer

• Update the FP16 weights

• All Gather the FP16 weights to complete the iteration 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to 

average

• Update the FP32 weights with ADAM optimizer

• Update the FP16 weights

• All Gather the FP16 weights to complete the iteration 
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ZeRO: Zero Redundancy Optimizer

• Progressive memory savings and communication volume

• Turning NLR 17.2B is powered by Stage 1 and Megatron

Stage 1

Stage 2

Stage 3
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• The forward process remains the same as stage 1

ZeRO Stage 2: Partitioning Gradients
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Perform AllReduce right after back propagation of each layer

ZeRO Stage 2: Partitioning Gradients

AllReduce
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Only one GPU keeps the gradients after AllReduce

ZeRO Stage 2: Partitioning Gradients

AllReduce
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Reduce gradients on GPUs responsible for updating parameters

ZeRO Stage 2: Partitioning Gradients

AllReduce
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Reduce gradients on GPUs responsible for updating parameters

ZeRO Stage 2: Partitioning Gradients

AllReduce
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Reduce gradients on GPUs responsible for updating parameters

ZeRO Stage 2: Partitioning Gradients
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ZeRO: Zero Redundancy Optimizer

• Progressive memory savings and communication volume

• Turning NLR 17.2B is powered by Stage 1 and Megatron

Stage 1

Stage 2

Stage 3
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GPU 1

ZeRO Stage 3: Partitioning Parameters

• In data parallel training, all GPUs keep all parameters during training

72
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ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs
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GPU1
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GPU2
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ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters during forward
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ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• Parameters are discarded right after use
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ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters again during backward
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ZeRO: Zero Redundancy Optimizer

• ZeRO has three different stages

• Progressive memory savings and communication volume

Stage 1

Stage 2

Stage 3
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PyTorch FSDP: Fully Sharded Data Parallel

78
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PyTorch FSDP: Fully Sharded Data Parallel

1. Divide model parameters into FSDP units

79* PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel
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PyTorch FSDP: Fully Sharded Data Parallel

80

1. Divide model parameters into FSDP units

2. Share each unit across multiple GPUs
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PyTorch FSDP: Fully Sharded Data Parallel

81

1. Divide model parameters into FSDP units

2. Share each unit across multiple GPUs

3. Run forward pass;
1. Perform all-gather so that each GPU get all parameters of a unit

2. Run forward pass & discard parameter shards

All-Gather



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch FSDP: Fully Sharded Data Parallel

82

1. Divide model parameters into FSDP units

2. Share each unit across multiple GPUs

3. Run forward pass

4. Run backward pass

Reduce-Scatter

1. Perform all-gather again to get 

all parameters of a unit

2. Each GPU computes gradients 

for all parameters

3. Perform reduce-scatter to 

aggregate full gradients
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Programming in PyTorch FSDP

83

from torch.distributed.fsdp import fully_shard, FSDPModule
from torch.distributed.tensor import Dtensor

model = Transformer()
for layer in model.layers:
    fully_shard(layer)
fully_shard(model)

for param in model.parameters():
    assert isinstance(param, DTensor)

optim = torch.optim.Adam(model.parameters(), lr=1e-2)

for _ in range(epochs):
    x = torch.randint(0, vocab_size, (batch_size, seq_len))
    loss = model(x).sum()
    loss.backward()
    optim.step()
    optim.zero_grad()

Sharding individual 

layers and entire model

Parameters are of type 

DTensor after sharding

Optimizer will be sharded 

automatically

Normal training forward 

& backward as before
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Summary

• Data-parallel training
• Parameter server

• Ring AllReduce

• Tree AllReduce

• Butterfly AllReduce

• ZeRO: zero redundancy optimizer

• PyTorch FSDP: Fully Shared Data Parallelism

84
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