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Final Project Logistics

« Each group has 1-3 members
« More group members -> larger project scope

« Potential project ideas & past project reports available on the website

Proposal (1 page): due 10/10 (next Friday)

Intermediate check-in meeting: 11/7 during the regular lecture slot
Final presentations: 12/3 and 12/5

Final project report: due 12/15



Graph-Level Optimization Lecture 10

Lecture 11
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Recap: Deep Neural Network

 Collection of simple trainable mathematical units that work together to

solve complicated tasks
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A tensor (i.e., n-dimensional array)

A tensor algebra operator
(e.g., convolution, matrix mul)



Graph-Level Optimizations

Fuse conv + batchnorm

N . &

conv3x3

| relu |

Input Computation Potential graph
Graph transformations

Optimized Computation
Graph



Example: Fusing Convolution and Batch Normalization
o

BatchNorm

A
} Conv2D E Y(n,c,h,w) = (Z X(n,d,h+u,w+v)*W(cd,u, v)) +B(n,c,h,w)
duyv

W, B, R, P are constant pre-trained weights

Z(n,c,h,w) =Y(n,c,h,w) * R(c) + P(c)




Fusing Conv and BatchNorm

g
! BatchNorm =
A
1 Conv2D E @

W,(n,c,h,w) =W(n,c, h,w) = R(c)

Z(n,c,h,w) = (Z X(nd h+uw+v) W, (c,d,u,v)) + B, (n,c,h,w)

duv
?

I
Conv2D
1

B,(n,c,h,w) = B(n,c,h,w) * R(c) + P(c)



Recap: Resnet Example

D 1 1
Y(n,c hw) =7 X(n,d,h+uw+v)«W(cd u,v)
( d u=1v=1
Conv3x3 Conv1x1
+ Relu + Relu
* D 3 3

Conv3x3

Y(n,c,hw) = 77 7X(n,d,h+u,w+v) * W(c,d, u,v)

V| V|

| Add_ e

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015



Recap: Resnet Example
3 3
Y(n,c,hw) = 77 7X(n,d,h+u,w-|—v) * W(c,d, u,v)

J

( d u=1v=1

Convix1 Conv3x3 Conv3x3
+ Relu + Relu + Relu

______ [ v -7

Conv3x3

Conv3x3
+ Relu

v

Conv3x3

(Decrease performance)

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015 9



D 3 3
Y(n,c,hw) = 7 X(nd,h+uw+v)*W'i(cd u,v)
d u=1v=1

Conv3x3
+ Relu

v

Conv3x3

Conv3x3

Conv3x3 |
+ Relu

(Decrease performance)

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015
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Recap: Resnet Example

Conv3x3
+ Relu

v

Conv3x3

Conv3x3
+ Relu

Conv3x3
+ Relu

Conv1ix1
+ Relu

Conv3x3 |
+ Relu

Enlarge
convs

(Decrease performance)

1t

Conv3x3 |
+ Relu

Conv3x3 |
+ Relu

x 2

Conv3x3 |
+ Relu

The final graph is 30% faster on V100 GPU but 10% slower on K80 GPU.

* Kaim




Challenge of Graph Optimizations for ML

Graph Optimizations

Graph Hardware
Operators Architectures Backends

Infeasible to manually design graph optimizations
for all cases

12



This Lecture

« TASO: Automatically Generate Graph Transformations
« PET: Discover Partially-Equivalent Graph Transformations

13



TASO: Optimizing Deep Learning with
Automatic Generation of Graph Substitutions

TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
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TASO: Tensor Algebra SuperOptimizer

Key idea: replace manually-designed graph optimizations with
of graph substitutions for tensor algebra

* Less engineering effort: LOC for manual graph optimizations in
TensorFlow — LOC in TASO

« Better performance: outperform existing optimizers by up to
« Stronger correctness: formally verify all generated substitutions

TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
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Graph Substitution

Y Y
T 1
/Add “_ /Conv3x3

Conv3x3 Conv3x3
/> X b 4
W, W, X W, W, X

Y(n,c,hw) = (Z X(n,d,h+uw+v) *Wl(c,d,u,v)) + (Z X(n,d,h+uw+v) *WZ(c,d,u,v))

duv duv

Y, c,hw) = Z X(n,d,h+u,w+v)*((Wq (c,du,v)+W,(c,dunv))

du v
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Input

TASO Workflow Comp. Graph

Subst. Subst.
Operator Generator ®‘ éJ Verifier
Specifications
Candidate A+ Verified
Substitutions Substitutions

Optimized
Comp. Graph17



Subst. Subst. Graph

A Generator Verifier Optimizer

Graph Substitution Generator

Enumerate all possible graphs up to a
fixed size using available operators

___________________________

___________________________

Operators supported by
hardware backend

18



' Subst. | |
8 Generator pd =

Graph Substitution Generator | Y NSRS W

66M graphs with up to 4 operators

5009 D114

A substitution = a pair of equivalent graphs

Explicitly considering all pairs does not scale
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Subst. Subst. Graph

A Generator Verifier Optimizer

Graph Substitution Generator

mi Compute output fingerprints
Ul ) with random input tensors

88

L@...e«\y}
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' Subst.
8 Generator pd =

Graph Substitution Generator | Y NSRS W

‘f’ Pairs of graphs with identical
Q fingerprint are candidate substitutions

m
TASO generates 28,744 substitutions by
enumerating graphs with up to 4 operators §

<
|

v
o,
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1 Subst. Subst. Graph
d Generator Verifier Optimizer

Pruning Redundant Substitutions =~ =

28.744 substitutions

4

Input Tensor
Renaming

17,346 substitutions
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Subst. Subst. Graph

, Generator Verifier Optimizer

Pruning Redundant Substitutions

28.744 substitutions X X
I add add
\\//
Input Tensor o matmul
Renaming N . . : . .
| A+ (BxC) (BxC)+A
-
17,346 substitutions
¥ x x
Common matmul matmul
Subgraphs . /
‘ A B C B A C
743 substitutions (A+B)xC (B +A)x C
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Candidate
Substitutions

Subst. Subst. Graph

d Generator Verifier Optimizer

Verified
A% Substitutions

- Graph Subst.
Verifier

P1. conv is distributive
over concatenation
P2. conv is bilinear VX, Wy, W, .

Conv(x, Concat(w,,w,)) =

Pn.
Concat(Conv(x, w, ), Conv(x, WZ))

Operator
Specifications

24



i Subst.
Verifier [

Verification Workflow i e
1 2
\ /
Y1 Y2 Split
R I ¢ ;
Conv Conv = | Conv
/ \ / \ Concat
W X W, + 4
/ Wi W, X
Vx, W1, W>. - 4
(Conv(x,Bv,),@onvx,8v,)) Split(Conv(x,@oncat(w4,8v,)))

(Conv(x, w;), Conv(x, Wz))

= Split (Conv(x, Concat(wy, Wz))) L

v/

Automated
Theorem

Prover

P1. Vx, Wy, W>.
C onv(x, Concat(wy, wz)) =

C oncat(C onv(x,w,), Conv(x, Wz))
P2. ...

Operator Specifications .



Operator Property

Vx,y, z. ewadd(x, ewadd(y, z)) = ewadd(ewadd(x, y), z)
Vx,y. ewadd(x, y) = ewadd(y, x)
Vx,y, z. ewmul(x, ewmul(y, z)) = ewmul(ewmul(x, y), z)
Vx,y. ewnul(x, y) = ewmul(y, x)

Ve rifi Cat i O n Effo rt Vx,y,z. ewmul(ewadd(x, y), z) = ewadd(ewmul(x, z), ewmul(y, z))

Vx, y w. smul(smul(x y) w) = smul(x smul(y, w))

TASO generates all 743 substitutions in 5 minutes, and
verifies them against 43 operator properties in 10 minutes

Supporting a new operator requires a few hours of human
effort to specify its properties

Va,x,y. splity(a, concat(a, x,y)) = x

Operator specifications in TASO = 1,400 LOC
Manual graph optimizations in TensorFlow = 53,000 LOC

Vs,p,x,y,z,w conv(s p Anones concat(l X, z) concat(l Y, w)) =

ewadd(conv(s, p, Anone. X, y), conv(s, p, Anone. Z, W))
Vk,s,p,x,y. concat(l, poolavg(k, s, p.x), poolavg(k, s.p.y)) = poolavg(k, s, p.concat(l, x,y))
Vk,s,p, x,y. concat(0, poolyay(k, s, p, x), pool .y (k, s, p, y)) = pool,a(k,s, p, concat(0, x, y))
Vk,s,p, x,y. concat(l, poolyax(k, s, p, x), poolpax(k, s, p, y)) = poolyax(k,s, p, concat(l, x, y))

ewadd is associative
ewadd is commutative
ewmul is associative
ewmul is commutative
distributivity

smul is associative
distributivity

is its own inverse
mmutativity
mmutativity
mmutativity
ssociative

near

near

l transpose

conv is bilinear
conv is bilinear

)
Arelu applies relu
conv. with Cpoo1
nel
atrix
tity
split definition
pition
pf concatenation

on and transpose
on and matrix mul.
on and matrix mul.

ation and conv.

concatenation and conv.

concatenation and pooling
concatenation and pooling
concatenation and pooling




| | Graph
7 md Optimizer

Search-Based Graph Optimizer A

Based on individual
operators’ cost

Measure the cost of each
operator on hardware

Cost Model’

/.

Cost-based backtracking
search
Optimizing an ML model

Search-Based

Graph Optimizer

[
takes less than 10 minutes
Input Optimized
Comp. Graph Comp. Graph

A Verified Substitutions

1. Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks. ICML’18. 27



End-to-end Inference Performance (Nvidia V100 GPU)

® TensorFlow ®TensorFlow XLA = TensorRT mTASO
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Runtime (ms)
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O
2%

BERT-Large
----- \-------------------------------l

Competitive on Larger speedups on
standard models emerging models
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*DWC: depth-wise convolution
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Case Study: NASNet




Why TASO is a SuperOptimizer?

What is the difference between optimizer and super-optimizer?

Goal: gradually improve an Goal: automatically find an

iInput program by greedily optimal program for an input
applying optimizations program

30



Optimizing Tensor Programs with Partially Equivalent
Transformations and Automated Corrections

PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI'21

31



Motivation: Fully v.s. Partially Equivalent Transformations

Vp. Y[p] = Z[p] Ap. Y[p] # Z[p]
Y Z Y Z
! t
Add Conv - T T
/ — _— y Dilated i Conv
;onv Sg‘i\ — Add \ /Con\bl\ / \
W, W, X vc1 v\*l2 X X w X w

Fully Equivalent Transformations Partially Equivalent Transformations
lb Pro: better performance
lero: preserve functionality » Faster ML operators
* More efficient tensor layouts
I’Con: miss optimization opportunities » Hardware-specific optimizations
I@ Con: potential accuracy loss

32



Motivation: Fully v.s. Partially Equivalent Transformations

Vp. Y[p] = Z[p] dp. Y[p] # Z[p]

Is it possible to exploit partially equivalent transformations to
improve performance while preserving equivalence?

W, W, X w, W, X W W
Fully Equivalent Transformations Partially Equivalent Transformations
l‘ Pro: better performance
I‘Pro: preserve functionality » Faster ML operators
* More efficient tensor layouts
I’Con: miss optimization opportunities « Hardware-specific optimizations

I@ Con: potential accuracy loss

33



v
reshape & transpose

Motivating Example I
)

s

7
7
reshape & transpose
7

AN

Input Program

VAN

Incorrect results

Partially Equivalent Transformation

AMANNIN

——

Correcting Results
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Motivating Example I
)

v

reshape & transpose

s

W

reshap transpose

(<]
7 .

7
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Input Program

AN

Wﬂ—/ . I-l
HHE

7
7
7
7
%

1

Correcting Results

* Transformation and correction lead to 1.2x speedup for ResNet-18

« Correction preserves end-to-end equivalence

35



PET

* Tensor program optimizer with partially equivalent transformations

by combining fully and partially equivalent
transformations

. outperform existing optimizers by up to
. automated corrections to preserve end-to-end equivalence

PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI'21
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PET Overview

% Mutant oy
w4 Generator

Input
Program

=,
5

Mutant

Programs

Mutant
4 Corrector

%

" Program

- A % s Optimizer
Corrected
Mutants

2B

Optimized
Program

39



PET vs TASO

Input
Program

2,

Mutant
w4 Generator

Mutant

%—/ Corrector

Mutant
Programs

a'aa Graph Graph
=) Subst. 8 4 - Subst.
Operator Generator @.‘ é] 4 Verifier
Specifications )

Candidate

Substitutions

- % s d Optimizer
)

Corrected
Mutants

N+ Verified
Substitutions

Program

Graph
e Optimizer

40



Key Challenges

1. How to generate partially equivalent transformations?

2. How to correct them??

41



Mutant Mutant Program
d Generator Corrector Optimizer

Mutant Generator  —— e e

Superoptimization adopted from TASO'

Enumerate all possible programs up to a
fixed size using available operators

Input
(Sub)program

_____________________________

N e

Operators supported by
hardware backend

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19. 42



Mutant Mutant Program
d Generator Corrector Optimizer

Mutant Generator  —— e e

Superoptimization adopted from TASO'

Programs with the same input/output
shapes are potential mutants

Input
(Sub)program

_____________________________

Discover both fully and partially
equivalent transformations

N e

Operators supported by
hardware backend

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19. 43



] Mutant
J’ Corrector

Challenges: Examine Transformations ey Gy o
¥ ?

1. Which part of the computation is not equivalent?
2. How to correct the results?

44



A Strawman Approach

« Step 1: Explicitly consider all
output positions (m positions)

» Step 2: For each position p,
examine all possible inputs
(n inputs)

& vI. f(DIp] = g(DIp]?

Require O(m * n) examinations, but both m and n are too

large to explicitly enumerate
45



Multi-Linear Tensor Program (MLTP)

« Aprogram f is multi-linear if the output is linear to all inputs
° f(Il' ...,X, ...,In) + f(Il' e Y, ...,In) — f(Il' ,X + Y, ...,In)
ca-f(y,..X,...L.)=fU,..a- X, .., 1)

 DNN computation = MLTP + non-linear activations

Majority of the computation

O(1) examinations in
PET’s approach

O(m * n) examinations
in strawman approach

46



Insight #1: No Need to Enumerate All Output Positions

=P

Group all output positions with an identical 1,
summation interval into a region

conv

*Theorem 1: For two MLTPs f and g, if f=¢g
for O(1) positions in a region, then f=g for
all positions in the region

region

Only need to examine O(1) positions for -~
each region.
Complexity: O(m * n) — O(n) conv(c, hw) I,(dh+xw+y)

xXI,(dcxYy)

Summation interval
*Proof details available in the paper 47



Insight #2: No Need to Consider All Possible Inputs

Examining equivalence for a single position I
IS still challenging

|
4

*Theorem 2: If 94/. f(I)|p]| + g(I)|pl, then —

the probability that f and g give identical

results on t random integer inputs is (%)t Db 1P
==

Run t random tests for each position p @9\

Complexity: O(n) — O(f) = O(1) vI. f(D[p] = g(DI|p]?

*Proof details available in the paper



Mutant Corrector

Goal: quickly and efficiently correcting
the outputs of a mutant program

r

reshape & transpose

reshape & transpose

I* NN E l I‘J

Mutant Program

49



Mutant Corrector

Goal: quickly and efficiently correcting
the outputs of a mutant program

Step 1: recompute the incorrect outputs
using the original program

reshape & transpose

reshape & transpose

e <I* NNNNN % I I‘J

r

Mutant Program

50



Mutant Corrector

reshape & transpose

Goal: quickly and efficiently correcting
the outputs of a mutant program

Step 1: recompute the incorrect outputs
using the original program

y I

Step 2: opportunistically fuse correction
kernels with other operators Kernel Eusion

%
Correction introduces less than % .
1% overhead %

<
----------‘

[ e e e

%
-

N

IHIN

51



Inout 4 Mutant Mutant Program
P d Generator Corrector Optimizer
Program !

Program Optimizer . oo

e Beam search
* Optimizing a DNN architecture

takes less than 30 minutes é MLTP
Search-Based

Program
Optimizer

Mutant

Generator &
Corrector

Other optimizations:
» Operator fusion

. Constant folding Mutants w/ Corrections
 Redundancy elimination

Optimized
Program

52



End-to-end Inference Performance (Nvidia V100 GPU)

Runtime (ms)

o

m TensorFlow ®TensorRT = TASO mPET

140
120

100

80

60

2.5x 40
20
0

ResNet-18 CSRNet

L 1.4x

Inception-v3 BERT ResNet3D-18

PET outperforms existing optimizers by 1.2-2.5x
by combining fully and partially equivalent transformations
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Recap: PET

« Atensor program optimizer with partially equivalent transformations and
automated corrections

by combining fully and partially equivalent
transformations

. outperform existing optimizers by up to
. automated corrections to preserve end-to-end equivalence

55



From Equivalent to Non-Equivalent Optimizations for ML

TASO PET
Partially-equivalent

optimizations w/

I Non-equivalent
accuracy guarantees

Equivalent optimizations optimizations w/
automated corrections

Model Pruning, Quantization,
Distillation, etc.

56



Questions to Discuss
1. How does PET differ from TASO in generating graph transformations?
2. How does PET differ from TASO in verifying/correcting transformations?

3. How can we combine graph optimizations with kernel optimizations?

o7
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