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Outline: Kernel Autotuning

• triton.autotune: template + search

• AutoTVM: template + learning-based cost model

• Ansor: sketch generation + annotation search
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Autotuning in Triton

• triton.autotune: whenever the values of keys change, evaluate all 
configurations
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@triton.autotune(configs=[
    triton.Config(kwargs={'BLOCK_SIZE': 128}, num_warps=4),
    triton.Config(kwargs={'BLOCK_SIZE': 1024}, num_warps=8),
  ],
  key=['x_size'] # the two above configs will be evaluated anytime
                 # the value of x_size changes
)
@triton.jit
def kernel(x_ptr, x_size, BLOCK_SIZE: tl.constexpr):
    ...
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Autotuning Matrix Multiplication
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def matmul_get_configs():
    return [triton.Config({'BLOCK_SIZE_M': BM, 'BLOCK_SIZE_N': BN, "BLOCK_SIZE_K": BK, "GROUP_SIZE_M": 8},  
                           num_stages=s, num_warps=w)
        for BM in [128]
        for BN in [128, 256]
        for BK in [64, 128]
        for s in ([2, 3, 4])
        for w in [4, 8]
    ]
@triton.autotune(
    configs=matmul_get_configs(),
    key=["M", "N", "K"],
)
@triton.jit()
def matmul_kernel(a_ptr, b_ptr, c_ptr, M, N, K,
                  BLOCK_SIZE_M: tl.constexpr,
                  BLOCK_SIZE_N: tl.constexpr,
                  BLOCK_SIZE_K: tl.constexpr,
                  GROUP_SIZE_M: tl.constexpr,):

Issue: time consuming to enumerate 

all configurations

Python annotations: easy to use
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Outline: Kernel Autotuning

• triton.autotune: template + search

• AutoTVM: template + learning-based cost model

• Ansor: sketch generation + annotation search
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TVM: A Learning-based Compiler for Deep Learning
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Goal: efficiently deploy deep learning on modern hardware platforms

* Slides from Tianqi Chen
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Challenge: Billions of Possible Optimization Choices in 
the Search Space

11* Slides from Tianqi Chen
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TVM: Learning-based Compiler for Deep Learning
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Hardware-aware Search Space of Optimized Tensor Programs

Machine Learning based Program Optimizer
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Hardware-aware Search Space

13* Slides from Tianqi Chen
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Hardware-aware Search Space
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Hardware-aware Search Space
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Hardware-aware Search Space
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Tensorization
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Tensorization Challenge
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Hardware-aware Search Space
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Hardware-aware Search Space
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Billions of Possible 

Optimization Choices in 

the Search Space
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TVM: Learning-based Compiler for Deep Learning
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Hardware-aware Search Space of Optimized Tensor Programs

Learning based Program Optimizer



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Learning-based Program Optimizer
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Program OptimizerTensor operator Code Generator
program

Runtime performance

Issue: high experiment cost, each trial takes seconds

candidate

programs
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Learning-based Program Optimizer
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Learning-based 

Cost Model

Training dataset

Runtime performance

Learning

Adapt to hardware by learning, make prediction in milliseconds

Program OptimizerTensor operator Code Generator
programschedule
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Efficient ML-based Cost Model
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End-to-end Inference Performance
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Outline: Kernel Autotuning

• triton.autotune: manual template + search

• AutoTVM: manual template + learning-based cost model

• Ansor: sketch generation + annotation search
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Main Issues with TVM and Triton

Templated-guided search

• Manually-written templates to define a 
search space

Drawbacks

• Not fully-automated -> requires huge 
manual effort

• Limited search space -> suboptimal 
performance

26Ansor: Generating High-Performance Tensor Programs for Deep Learning. OSDI 2020
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Ansor’s Approach

Challenge 1. How to build a large 
search space automatically?

• Hierarchical search 
(sketch + annotation)

Challenge 2: How to search 
efficiently?

• Sample complete programs and 
fine-tune them

27Ansor: Generating High-Performance Tensor Programs for Deep Learning. OSDI 2020
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Ansor’s Overview

• Inputs: set of DNNs
• Partitioned into small subgraphs

• Three components
• Task scheduler

• Program sampler

• Performance tuner

28Ansor: Generating High-Performance Tensor Programs for Deep Learning. OSDI 2020
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Program Sampling

• Goal: automatically construct a large search space and uniformly sample 
from the space

Approach: two-level hierarchical search space

• Sketch: a few good high-level structures

• Annotation: billions of low-level details

• Sampling process:

29

Computation 

Graph

Sketch 1

Sketch 2

…

Rule-based Sketch 

Generation Random Annotation Complete 

Programs

Ansor: Generating High-Performance Tensor Programs for Deep Learning. OSDI 2020
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Sketch Generation Example 1/2

30Ansor: Generating High-Performance Tensor Programs for Deep Learning. OSDI 2020
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Sketch Generation Example 2/2

31Ansor: Generating High-Performance Tensor Programs for Deep Learning. OSDI 2020
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Random Annotation Examples

32Ansor: Generating High-Performance Tensor Programs for Deep Learning. OSDI 2020
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Performance Fine-Tuning

Issue: Random samplings does not guarantee high performance

Solution: Perform evolutionary search with learned cost model (AutoTVM)

• Randomly mutate tile size

• Randomly mutate parallel/unroll/vectorize factor and granularity

33Ansor: Generating High-Performance Tensor Programs for Deep Learning. OSDI 2020
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Ansor Automatically Finds High-Performance Kernels

34Ansor: Generating High-Performance Tensor Programs for Deep Learning. OSDI 2020
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Ablation Study
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• The most important factor is the search space

• Fine-tuning improves search results

• Match AutoTVM’s performance with 10x less time
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Comparing Triton, AutoTVM, and Ansor
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Search Space Search Algorithm

triton.autotune Manual template Exhaustive

AutoTVM Manual template Learning-based cost 

model

Ansor Sketch generation + 

random annotation

Learning-based cost 

model
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