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What is a (Mega-)Kernel?
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Existing Kernel-Per-Operator Approach
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Existing Kernel-Per-Operator Approach
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Limitations

No Inter-Layer Pipelining  Tensor Memory Pipeline

Kernel barriers prevent inter- Accelerator \\\bubbles \\\
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Limitations

No Inter-Layer Pipelining
Kernel barriers prevent inter-
layer pipelining

No Overlapping
Coarse-grained dependency
prevents comp. & comm. overlap

Limited Dynamism
Rely on CUDA graphs to reduce
kernel launch overhead



Kernel-Per-Operator v.s. Mega-Kernel

An LLM forward pass launches 100s-1000s kernels
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Advantages of Mega-Kernel
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Key Challenges

1. How to manage dependency? Task Graph
—

No kernel barriers in mega-kernel

In-Kernel

2. How to handle dynamism? |
— Parallel Runtime

Continuous batching, prefill/decode,
paged/radix attention, speculative decoding

3. How to optimize performance? Mirage Superoptimizer*
—
Existing compilers target individual kernels

* Mirage: A Multi-Level Superoptimizer for Tensor Programs. OSDI'25. 12



Mirage Persistent Kernel:
Compiling LLM Serving into a Mega-Kernel
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* Low engineering effort: a few dozen lines of Python code to mega-
kernelize an LLM

« Better performance: outperform existing systems by 1.2-6.7x
» Day-0 support for new models: do not rely on manual implementation

Highly Optimized

Mega-Kernel
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MPK Overview

Serving config (batching, paging,
speculative decoding, etc)
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Task Graph
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Task Graph vs. CUDA Graph

Task graph is a “lower-level” CUDA graph

« Capture sub-kernel dependency

 Static, immutable

» Constructed once and replayed many times

CUDA Graph: nodes are kernels on GPUs

Task Graph: nodes are tasks on SMs
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The MPK Compiler

* Optimize operator-to-task decomposition based on available SMs
« Add synchronization events to capture precise task dependencies
* Generate high-performance CUDA implementation for each task
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MPK Overview

Serving config (batching, paging,
speculative decoding, etc)
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The MPK Runtime

Each scheduler runs on one warp Each worker runs on one SM

PCI Express 5.0 Host Interface

GigaThread Engine with MIG Control

Memory Controller
Iajjonuo) Aloway

Memory Controller
19]jo11u0) Aoway

Memory Controller
J2jjonuo) Aloway

Memory Controller
13jjonuo) Alowaly

Memory Controller
J3jjouo) Kiowapw

Memory Controller
J2jjonuo) Alowa

SECES

High-Speed Hub
h 23 o h 3
NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink




Task-Based Parallel Runtime (Realm within a GPU Kernel)

@ Task queue
Worker O
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Repeatedly

1. Fetch a task from its queue
2. Execute the task
3. Trigger the completion event

@ Event queue
Scheduler 0
@ Event queue
Scheduler M
Repeatedly

1. Dequeue fully triggered event

2. Launch all tasks depending on
the event
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Event-Driven Execution
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Event-Driven Execution
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Event-Driven Execution
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Event-Driven Execution
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Event-Driven Execution
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Event-Driven Execution
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Event-Driven Execution
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Techniques to Reduce Task Launch Overheads

* Lightweight workers and schedulers
« Task & event queues: circular buffers on device memory
« Event natification, task enqueue/dequeue: atomic operations

* Decentralized scheduling
« Schedulers assign tasks using only local information

* Hybrid task launch
« Ahead-of-time: launched before event trigger to reduce latency
 Just-in-time: launched after event trigger to balance load

« Task launch overhead 2-3us
 Limited hardware support
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Pushing LLM Inference Latency Towards HW Limits

* Reducing Qwen3-8B per-token latency from 14.5ms to 12.5ms
« Approaching theoretical bound of 10ms

Qwen3-8B (BF16); single-batch; A100 GPUs
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Open Questions
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How to decompose layers into tasks?

Currently rely on heuristics + profiling-based tuning
Optimized for A100, H100, B200

Users want portability across diverse GPUs

Need more automated methods
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Open Questions
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How to schedule tasks across workers?

.\ [
C(_) Round-Robin m Dynamic Scheduling
no adapt to runtime load
synchronization with
workers

¥ coordination
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