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What is a (Mega-)Kernel?
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Existing Kernel-Per-Operator Approach
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Existing Kernel-Per-Operator Approach
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Limitations
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Limitations
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NanoFlow: Towards Optimal Large Language Model Serving Throughput. OSDI’25
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Limitations
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No Inter-Layer Pipelining
Kernel barriers prevent inter-

layer pipelining

No Overlapping
Coarse-grained dependency 

prevents comp. & comm. overlap

Limited Dynamism
Rely on CUDA graphs to reduce 

kernel launch overhead
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Kernel-Per-Operator v.s. Mega-Kernel

✓ No kernel barriers
✓ Operator reordering
✓ Load balancing
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Advantages of Mega-Kernel
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Key Challenges
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1. How to manage dependency?

2. How to handle dynamism?

3. How to optimize performance?
Existing compilers target individual kernels

No kernel barriers in mega-kernel

Continuous batching, prefill/decode, 
paged/radix attention, speculative decoding

Mirage Superoptimizer*

Task Graph

In-Kernel 
Parallel Runtime

* Mirage: A Multi-Level Superoptimizer for Tensor Programs. OSDI’25.
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Mirage Persistent Kernel: 
Compiling LLM Serving into a Mega-Kernel

• Low engineering effort: a few dozen lines of Python code to mega-
kernelize an LLM

• Better performance: outperform existing systems by 1.2-6.7x
• Day-0 support for new models: do not rely on manual implementation
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MPK Overview
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Task Graph

Interleave tasks and events
• task: a unit of workload on one SM
• event: synchronization among tasks
• task→event: notify event once task is done
• event→task: launch task once event is triggered
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Task Graph vs. CUDA Graph

Task graph is a “lower-level” CUDA graph
• Capture sub-kernel dependency
• Static, immutable
• Constructed once and replayed many times
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The MPK Compiler

• Optimize operator-to-task decomposition based on available SMs
• Add synchronization events to capture precise task dependencies
• Generate high-performance CUDA implementation for each task
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MPK Overview
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The MPK Runtime
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Each worker runs on one SMEach scheduler runs on one warp
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Task-Based Parallel Runtime (Realm within a GPU Kernel)

Repeatedly
1. Fetch a task from its queue
2. Execute the task
3. Trigger the completion event

Repeatedly
1. Dequeue fully triggered event
2. Launch all tasks depending on 

the event
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Event-Driven Execution
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Techniques to Reduce Task Launch Overheads

• Lightweight workers and schedulers
• Task & event queues: circular buffers on device memory
• Event notification, task enqueue/dequeue: atomic operations

• Decentralized scheduling
• Schedulers assign tasks using only local information

• Hybrid task launch
• Ahead-of-time: launched before event trigger to reduce latency
• Just-in-time: launched after event trigger to balance load

• Task launch overhead 2-3μs 
• Limited hardware support
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Pushing LLM Inference Latency Towards HW Limits

• Reducing Qwen3-8B per-token latency from 14.5ms to 12.5ms
• Approaching theoretical bound of 10ms
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Open Questions
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LLM

MPK 
Compiler

MPK 
Runtime

How to decompose layers into tasks?

• Currently rely on heuristics + profiling-based tuning
• Optimized for A100, H100, B200
• Users want portability across diverse GPUs 
• Need more automated methods
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Open Questions
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