15-779 Lecture 7:

Advanced CUDA Programming: Mega-Kernel

Zhihao Jia

Computer Science Department
Carnegie Mellon University

9/19/2025

What is a (Mega-)Kernel?

Programming
Abstraction

Hardware
Architecture

GPU Kernel

Thread block O

Thread block 1

Thread block N

Tensor Memory Accel.

Shared Memory

Tensor Memory Accel.
Shared Memory

o «— - o «— - o «— « -
©T T O © © T O © ©T T O ©
® ®©
3 8 8 3 g 8 8 3 S & 9 3
c C
E EF = E EE = === =
SM 0 SM 1 SMM

Tensor Memory Accel.
Shared Memory

Existing Kernel-Per-Operator Approach

: All

Computation Graph ‘

PyTorch
- MatMul Attention MatMul AllReduce
GPU = Kernel Kernel Kernel Kernel

Existing Kernel-Per-Operator Approach

MatMul
Kernel

Attention AllIReduce

Reduce
Kernel

Kernel Kernel

|

|

|

|

|

|

!

| vatvu |l Matiul
|
|
|
§ Matviul [l MatMul
I
|
I
I
|
|
|
|

Attention AllIReduce

l

I

|

l

I

l

l

I

l

l

= = . |
SM 1 EEE Attention '
l

l

l

I

l

|

I

l

AllIReduce

AlIReduce B AllReduce
AllIReduce @l AllReduce

SM 2 E Attention

o))
<
o
[=)

SVEE T E Attention

Limitations

No Inter-Layer Pipelining Tensor Memory Pipeline

Kernel barriers prevent inter- Accelerator \\\bubbles \\\
layer pipelining Tensor Cores
\\\ Pipeline\\\

CUDA Cores bubbles

Fused Kernel

Tensor Memory

D

CUDA Cores

MatMul Kernel AllGather Kernel

Limitations SM 0
SM 1
No Inter-Layer Pipelining 0. |
Kernel barriers prevent inter- o Matmul b
layer pipelining o // ;
| 7 g
NO OYerIapplng % 20 40 6'0: 80 100
Coarse-grained dependency SMs

prevents comp. & comm. overlap

Fused Kernel

Network Bandwidth (GB/s)
o
o

|/

50+

| AllGather

//

el

20 40

SM 0 _MatMul]| MatMul | MatMul |

SM 1 __MatMul |

NanoFlow: Towards Optimal Large Language Model Serving Throughput. OSDI'25

[
o

wn
=<
0

80

100

Limitations

No Inter-Layer Pipelining
Kernel barriers prevent inter-
layer pipelining

No Overlapping
Coarse-grained dependency
prevents comp. & comm. overlap

Limited Dynamism
Rely on CUDA graphs to reduce
kernel launch overhead

Kernel-Per-Operator v.s. Mega-Kernel

An LLM forward pass launches 100s-1000s kernels

A
(
Attention MatMul
Kernel Kernel Kernel

|
|
|
|
|
|
|
|
|
|
|

Attention I

Reduce I MatMul
 Matul

Mega-Kernel

Attention MatMul | AllReduce | MatMul | AllIReduce
Attention MatMul § AllReduce
Attention MatMul § AllReduce

.
| Kernel

I

|

|

|

|

¥ Matviul ll MatMul [l AllReduce
| |
W MatMul [MatMul @i AllReduce
|
|
|
|

I
W AllIReduce B AllIReduce
I

| AllReduce @ AllIReduce

v" No kernel barriers
v Operator reordering
v" Load balancing

10

Advantages of Mega-Kernel

Attention MatMul AlIReduce
Kernel Kernel Kernel Kernel | t L P | i
niter-Layer ripelining
ASEET MatMulf MatMul All layers are fused in the same
Attention MatMul | MatMul mega-kernel

.
Overlapping Comp/Comm

‘ Fine-grained dependency +

operator reordering
Mega-Kernel

Dynamic Workloads
No need for CUDA graphs +
load balancing

11

Key Challenges

1. How to manage dependency? Task Graph
—

No kernel barriers in mega-kernel

In-Kernel

2. How to handle dynamism? |
— Parallel Runtime

Continuous batching, prefill/decode,
paged/radix attention, speculative decoding

3. How to optimize performance? Mirage Superoptimizer*
—
Existing compilers target individual kernels

* Mirage: A Multi-Level Superoptimizer for Tensor Programs. OSDI'25. 12

Mirage Persistent Kernel:
Compiling LLM Serving into a Mega-Kernel

A
e)= (2

* Low engineering effort: a few dozen lines of Python code to mega-
kernelize an LLM

« Better performance: outperform existing systems by 1.2-6.7x
» Day-0 support for new models: do not rely on manual implementation

Highly Optimized

Mega-Kernel

13

MPK Overview

Serving config (batching, paging,
speculative decoding, etc)

=,

A

So 9
Compiler

LLM

E
E
E
E
E
E
E
E

Task graph

22%%%3%33%%

»

X

User requests

14

Task Graph

—(= & Interleave tasks and events
B task: '
- task: a unit of workload on one SM
BACa AR o
P} - event: synchronization among tasks
—~O-E . task—event: notify event once task is done

-0l event—task: launch task once event is triggered

-6

Be o AR |
BaEa AR
BaLEa AR
eﬁ - Comm. Task on an SM
% —>G—>m - Compute Task onan SM ——+ Task Launch
Event between tasks ——+ Event Notification
c@m © .

Task Graph vs. CUDA Graph

Task graph is a “lower-level” CUDA graph

« Capture sub-kernel dependency

 Static, immutable

» Constructed once and replayed many times

CUDA Graph: nodes are kernels on GPUs

Task Graph: nodes are tasks on SMs

17

The MPK Compiler

* Optimize operator-to-task decomposition based on available SMs
« Add synchronization events to capture precise task dependencies
* Generate high-performance CUDA implementation for each task

18

MPK Overview

Serving config (batching, paging,
speculative decoding, etc)

=,

»

Task graph

g

[

Requests

19

The MPK Runtime

Each scheduler runs on one warp Each worker runs on one SM

PCI Express 5.0 Host Interface

GigaThread Engine with MIG Control

Memory Controller
Iajjonuo) Aloway

Memory Controller
19]jo11u0) Aoway

Memory Controller
J2jjonuo) Aloway

Memory Controller
13jjonuo) Alowaly

Memory Controller
J3jjouo) Kiowapw

Memory Controller
J2jjonuo) Alowa

SECES

High-Speed Hub
h 23 o h 3
NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink

Task-Based Parallel Runtime (Realm within a GPU Kernel)

@ Task queue
Worker O
- Task queue
Worker N
Repeatedly

1. Fetch a task from its queue
2. Execute the task
3. Trigger the completion event

@ Event queue
Scheduler 0
@ Event queue
Scheduler M
Repeatedly

1. Dequeue fully triggered event

2. Launch all tasks depending on
the event

21

Event-Driven Execution

Scheduler
on a warp

Scheduler
on a warp

Worker on
an SM

Worker on
an SM

Worker on
an SM

Worker on
an SM

22

Event-Driven Execution

Scheduler
on a warp

Scheduler
on a warp

Worker on
an SM

Worker on
an SM

Worker on
an SM

Worker on
an SM

Attention

Attention

Attention

23

Event-Driven Execution

Scheduler
on a warp

Scheduler
on a warp

Worker on
an SM

Worker on
an SM

Worker on
an SM

Worker on
an SM

Attention

Attention

Attention

24

Event-Driven Execution

Scheduler
on a warp

Scheduler
on a warp

Worker on
an SM

Worker on
an SM

Worker on
an SM

Worker on
an SM

Attention 4

Attention

Attention

25

Event-Driven Execution

Scheduler
on a warp

Scheduler
on a warp

Worker on
an SM

Worker on
an SM

Worker on
an SM

Worker on
an SM

Attention 4

Attention

Attention

MatMul

MatMul

26

Event-Driven Execution

Scheduler
on a warp

Scheduler
on a warp

Worker on
an SM

Worker on
an SM

Worker on
an SM

Worker on
an SM

o
Attentions MatMull
\ |
Attention 4 Mgt‘l‘/lul
Attention
Attention

MatMul

27

Event-Driven Execution

Scheduler > 1
. LLLLT) on a Warp Ev E,
Scheduler
on a warp G E.
.- Worker on |
E an SM Attention | MatMuI \ AllIReduce AllIReduce
.. Workeron l
E an SM Attention & MatMuI AllIReduce
-+~ Workeron
E an SM Attention MatMul > MatMul
-—- Worker on _
E an SM Attention MatMul MatMul

28

Techniques to Reduce Task Launch Overheads

* Lightweight workers and schedulers
« Task & event queues: circular buffers on device memory
« Event natification, task enqueue/dequeue: atomic operations

* Decentralized scheduling
« Schedulers assign tasks using only local information

* Hybrid task launch
« Ahead-of-time: launched before event trigger to reduce latency
 Just-in-time: launched after event trigger to balance load

« Task launch overhead 2-3us
 Limited hardware support

29

Pushing LLM Inference Latency Towards HW Limits

* Reducing Qwen3-8B per-token latency from 14.5ms to 12.5ms
« Approaching theoretical bound of 10ms

Qwen3-8B (BF16); single-batch; A100 GPUs

PyTorch VLLM SGLang MPK
200

150
100

50

Decoding iterations / second

1 GPU 2 GPUs 4 GPUs
30

Open Questions

A
S
Compiler
LLM

22%%%3%3%3%

How to decompose layers into tasks?

Currently rely on heuristics + profiling-based tuning
Optimized for A100, H100, B200

Users want portability across diverse GPUs

Need more automated methods

31

Open Questions

A
é ‘ MPK
Compiler
LLM

22%%%3%3%3%

How to schedule tasks across workers?

.\ [
C(_) Round-Robin m Dynamic Scheduling
no adapt to runtime load
synchronization with
workers

¥ coordination

	Slide 1: 15-779 Lecture 7: Advanced CUDA Programming: Mega-Kernel
	Slide 2: What is a (Mega-)Kernel?
	Slide 3: Existing Kernel-Per-Operator Approach
	Slide 4: Existing Kernel-Per-Operator Approach
	Slide 5: Limitations
	Slide 6: Limitations
	Slide 8: Limitations
	Slide 10: Kernel-Per-Operator v.s. Mega-Kernel
	Slide 11: Advantages of Mega-Kernel
	Slide 12: Key Challenges
	Slide 13: Mirage Persistent Kernel: Compiling LLM Serving into a Mega-Kernel
	Slide 14: MPK Overview
	Slide 15: Task Graph
	Slide 17: Task Graph vs. CUDA Graph
	Slide 18: The MPK Compiler
	Slide 19: MPK Overview
	Slide 20: The MPK Runtime
	Slide 21: Task-Based Parallel Runtime (Realm within a GPU Kernel)
	Slide 22: Event-Driven Execution
	Slide 23: Event-Driven Execution
	Slide 24: Event-Driven Execution
	Slide 25: Event-Driven Execution
	Slide 26: Event-Driven Execution
	Slide 27: Event-Driven Execution
	Slide 28: Event-Driven Execution
	Slide 29: Techniques to Reduce Task Launch Overheads
	Slide 30: Pushing LLM Inference Latency Towards HW Limits
	Slide 31: Open Questions
	Slide 32: Open Questions
	Slide 33: MPK: Compiling LLMs into a Mega-Kernel

