
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-779 Lecture 6:
Advanced CUDA Programming:

Warp Specialization

Xinhao Cheng

Computer Science Department

Carnegie Mellon University

17/9/25 https://catalyst.cs.cmu.edu/ 1

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Background: Streaming multiprocessor architecture

• Processing block

• Cuda cores, tensor cores, SFU

• Load/Store unit

• Warp scheduler

• Register file

• Tensor memory accelerator

• …

2https://resources.nvidia.com/en-us-hopper-architecture/nvidia-h100-tensor-c

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Thread block

Background: Thread Block and Warp

…

T
h

re
a

d
 0

T
h

re
a

d
 1

T
h

re
a

d
 2

T
h

re
a

d
 T

32 threads

32 threads

32 threads

32 threads

number of warps = ceil(threads per block / warp size(32))

3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Background: Warp Scheduling

Unused

Active

Stalled

Eligible

Selected

warp status warp slots

7

4

1

0

6

5

3

2

4

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Cycle N

7

4

1

0

6

5

3

2

Cycle N+1

7

4

1

0

6

5

3

2

Cycle N+2

7

4

1

0

6

5

3

2

0 1 N/A

Cycle N+3

7

4

1

0

6

5

3

2

2

warps stalled: 16

warps eligible: 5

warps issued: 3

issue_slot_utlization: 75%

we need more eligible

warps to increase the slot

utilization

Background: Warp Scheduling

Key insight: more

independent instructions

across warps
5

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Background: Data Movement From Host to Device

• on chip memory has
highest bandwidth

• 20MB = 192KB * 108
SMs

FLASHATTENTION: fast and memory-efficient exact attention with IO-awareness
6

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Background: Data Movement From Host to Device

• coalesced copy data
to shared memory

• each thread read

data with low latency

• …

7

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A Common Data Movement Paradigm

use __syncthreads() to sync the threads inside a thread block

load/store units busy compute units busy load/store units busy

8

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Software Pipelining

https://en.algorithmica.org/hpc/pipelining/

● instruction level parallelism

● launch next instruction without waiting

for the previous one to complete

● not “reduce” latency but “hide” latency

9

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Two Approaches to Implement Software Pipelining in CUDA

warp 1: async copy to B0 compute on B0

async copy to B1 async copy to B0

compute on B1

● Multi-stage pipelining

● Warp specialization

warp 2:

compute on B0

async copy to B1 async copy to B0

compute on B1

async copy to B0 compute on B0

async copy to B1 async copy to B0

compute on B1 compute on B0

async copy to B1 async copy to B0

compute on B1

10

warp 1:
async copy to B0 async copy to B1

warp 2:
compute on B0 compute on B1 compute on B0 compute on B1

async copy to B0 async copy to B1 async copy to B0

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Asynchronous copy in CUDA

• cp.async: initiate an asynchronous copy
• cp.async.commit_group: batches all prior cp.async instructions into a group
• cp.async.wait_group<N>: let executing threads wait for at most N groups pending.
• cp.async.wait_all: equals to cp.async.wait_group<0>

cp.async

cp.async

cp.async

cp.async

cp.async

cp.async

cp.async

cp.async

thread1

thread2

thread3

thread32

commit

group

cp.async

cp.async

cp.async

cp.async

cp.async

cp.async

cp.async

cp.async

commit

group

data transfer finished in group 0

cp.async.wait

_group<1>

data transfer finished in group 1

compute

on group 0

cp.async.wait

_group<0>

compute

on group 1

11

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

MatMul on Ampere GPU with Multi-stage Pipelining

• Asynchronous data copy
instruction provides opportunity
for intra-warp overlapping

• Use cp.async,
cp.async.commit_group and
cp.async.wait to construct an
async pipeline

//prefetch data from device memory to shared memory

for (int k_pipe = 0; k_pipe < PIPELINE_DEPTH - 1; k_pipe++) {

//compute the shared memory and device memory address

for (int i = threadIdx.x; i < NUM_TOTAL_CHUNKS; i += NUM_THREADS) {

// issue the async copy in chunk of 128B

asm volatile("cp.async.cg.shared.global.L2…”);

}

asm volatile("cp.async.commit_group;\n" ::);

}

for (int for_idx = 0; for_idx < FORLOOP_RANGE; for_idx++) {

if (for_idx + PIPELINE_DEPTH - 1 < FORLOOP_RANGE) {

for (int i = threadIdx.x; i < NUM_TOTAL_CHUNKS; i += NUM_THREADS) {

// issue the async copy in chunk of 128B

asm volatile("cp.async.cg.shared.global.L2…”);

}

asm volatile("cp.async.commit_group;\n" ::);

asm volatile("cp.async.wait_group %0;\n" ::"n"(PIPELINE_DEPTH -

1));

} else{

asm volatile("cp.async.wait_all;\n" ::);

}

//tensor core instruction

asm volatile("mma.sync.aligned.m16n8k16…”);

}

12

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

MatMul on Ampere GPU with Multi-stage Pipelining

DM

pipeline depth = 4

cp.async + commit

wait + compute

cp.async + commit

cp.async + commit

cp.async + commit

cp.async + commit

wait + compute

wait + compute

wait + compute

cp.async + commit

cp.async + commit

cp.async + commit

wait + compute

wait + compute

wait + compute

wait + compute

cp.async + commit

cp.async + commit

cp.async + commit

cp.async + commit

wait + compute

wait + compute

wait + compute

wait + compute

13

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Issues with Multi-Stage Pipelining

● coarse grained synchronization

● address generation overhead

● hard to decouple instruction streams

14

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Two Approaches to Implement Software Pipelining in CUDA

warp 1: async copy to B0 compute on B0

async copy to B1 async copy to B0

compute on B1

● Multi-stage pipelining

● Warp specialization

warp 2:

compute on B0

async copy to B1 async copy to B0

compute on B1

async copy to B0 compute on B0

async copy to B1 async copy to B0

compute on B1 compute on B0

async copy to B1 async copy to B0

compute on B1

15

warp 1:
async copy to B0 async copy to B1

warp 2:
compute on B0 compute on B1 compute on B0 compute on B1

async copy to B0 async copy to B1 async copy to B0

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Warp Specialization (Spatial Partitioning)

● A thread block can be spatially partitioned to perform independent

computations.

● One subset of threads produces data that is concurrently consumed by the

other subset of threads.

16

Producer Warp Consumer Warp

wait for buffer to be ready to be filled signal buffer is ready to be filled

produce data and fill the buffer wait for buffer to be filled

signal buffer is filled consume data in filled buffer

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Synchronization across Warps in a Threadblock

● bar{.cta}.arrive: signal the arrival threads (data transfer has finished filling a

buffer/computation finished)

● bar{.cta}.sync: block the threads until the name barrier flipped

● use two name barrier to construct a producer/consumer pipeline

if(threadIdx.x < COMPUTE_THREADS){

//wait for dma finished

asm volatile("bar.sync [%0], %1”, barrier_0, 32)

//do computation

asm volatile("wmma.mma…”);

//notify computation is finished

asm volatile("bar.arrive [%0], %1”, barrier_1, 32)

} else {

//wait for computation finished

asm volatile("bar.sync [%0], %1”, barrier_1, 32)

// do data copy

asm volatile("ld.global…”);

//notify data copy is finished

asm volatile("bar.arrive [%0], %1”, barrier_0, 32)

}

copy data

32 threads launch bar0.arrive

bar0.sync: wait 32 threads

arrived

compute

32 threads launch bar1.arrive

bar1.sync: wait 32 threads

arrived

producer warp consumer warp

17

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

DM

DMA Warp

Compute Warp bar 0

arrived

copy data

compute

bar 1

arrive

bar 0

sync

bar 1

sync

bar 0

arrived

copy data
bar 1

arrive

bar 0

sync

compute
bar 1

sync

bar 0

arrived

bar 0

sync

CudaDMA:
Overlap Data Load and Compute with Warp Specialization

18

only overlap when multiple CTAs are concurrently resident on an SM

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

More Optimizations: Warp Specialization + Double Buffer

● more overlapping, more independent instructions

● but use more barriers, more shared memory reserved

DM

DMA Warp

Compute Warp bar 0

arrived

copy data

compute

bar 2

arrive

bar 1

arrived

bar 0

sync

bar 1

sync
copy data

bar 3

arrive

bar 2

sync

bar 0

arrived

bar 3

sync
compute

bar 1

arrived

copy data
bar 2

arrive

bar 0

sync

bar 1

sync
copy data

bar 3

arrive

compute
bar 2

sync

bar 0

arrived

bar 3

sync
...

bar 0

sync

19

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Nvidia Hopper GPU: Tensor Memory Accelerator(TMA)
tiling information stored in TMA descriptor(CUtensorMap)

CUresult result = cuTensorMapEncodeTiled(tma_desc,
tma_format, // type of data transmitted by TMA
tma_dim, // tma dimension
global_addr, //device tensor address
gmem_shape_ptr, //device tensor shape
gmem_stride_ptr + 1, // device tensor stride
smem_box_shape_ptr, // shared tensor shape
smem_box_stride_ptr, //shared tensor stride
CU_TENSOR_MAP_INTERLEAVE_NONE,
tma_swizzle, // swizzle mode
CU_TENSOR_MAP_L2_PROMOTION_NONE,
CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE);

21

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Nvidia Hopper GPU: Tensor Memory Accelerator(TMA)

Use coordinate to determine with tile is loaded in the current

thread block, address generation handled by TMA hardware

block 0

block 2

block 1

block 3

global tensor

0,0

1,1

2,4

3,1

22

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TMA Reduces Register Usage

● cp.async needs to allocate registers for addressing data copy
● TMA provides hardware support for address calculation

24https://resources.nvidia.com/en-us-hopper-architecture/nvidia-h100-tensor-c

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Nvidia Hopper GPU: Customize Register Allocation Across
Warps

A Hopper GPU has 64K registers per SM

https://forums.developer.nvidia.com/t/warp-specialize-register-usage/298190
25

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Nvidia Hopper GPU: save register usage by setmaxnreg

template<uint32_t RegCount>

void warpgroup_reg_alloc(){

//increase the maximum number of registers in this warp

asm volatile("setmaxnreg.inc.sync.aligned.u32 %0;\n" : : "n"(RegCount));

}

template<uint32_t RegCount>

void warpgroup_reg_dealloc(){

//decrease the maximum number of registers in this warp

asm volatile("setmaxnreg.dec.sync.aligned.u32 %0;\n" : : "n"(RegCount));

}

// usage

if (warp_group_role == WarpGroupRole::Producer) {

cutlass::arch::warpgroup_reg_dealloc<LoadRegisterRequirement>(); // LoadRegisterRequirement = 40

} else if (warp_group_role == WarpGroupRole::Consumer0 || warp_group_role == WarpGroupRole::Consumer1) {

cutlass::arch::warpgroup_reg_alloc<MmaRegisterRequirement>(); // MmaRegisterRequirement = 232

}

https://github.com/NVIDIA/cutlass

40 * 128(producer threads) + 232 * 256(consumer threads) = 64512 (< 65536 registers per SM)

26

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

MatMul on Hopper with Warp Specialization

DM

Producer Warp

Consumer Warp 0

Consumer Warp 1

TMA

Tensor Core MMA(epilogue

epilogue

TMA

Tensor Core MMA(

TMA

Tensor Core MMA(epilogue

Tensor Core MMA(epilogue

TMA

27

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

MatMul on Hopper with Warp Specialization + Pingpong
Scheduling

DM

Producer Warp

Consumer Warp 0

Consumer Warp 1

TMA

Tensor Core MMA epilogue

TMA

Tensor Core MMA

TMA

epilogue

epilogue

TMA

Tensor Core MMA

Tensor Core MMA

Tensor Core MMA Tensor Core MMA Tensor Core MMA Tensor Core MMAResult of pipeline:near

continuous tensor core

utilization
28

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention 3: Attention with Warp Specialization +
Pingpong Scheduling

29

DM

Producer Warp

Consumer Warp 0

Consumer Warp 1

TMA

QK GEMM softmax PV GEMM

TMA

QK GEMM softmax

QK GEMM softmax

PV GEMM QK GEMM softmax

PV GEMM QK GEMM softmax

PV GEMM

TMATMA …

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention 3: Intra-Warpgroup Overlapping

30

DM

QK GEMM

PV GEMM

stage 0

Softmax stage 0

stage 1

stage 1

stage 0

stage 2

stage 2

stage 1

	Slide 1: 15-779 Lecture 6: Advanced CUDA Programming: Warp Specialization
	Slide 2: Background: Streaming multiprocessor architecture
	Slide 3: Background: Thread Block and Warp
	Slide 4: Background: Warp Scheduling
	Slide 5: Background: Warp Scheduling
	Slide 6: Background: Data Movement From Host to Device
	Slide 7: Background: Data Movement From Host to Device
	Slide 8: A Common Data Movement Paradigm
	Slide 9: Software Pipelining
	Slide 10: Two Approaches to Implement Software Pipelining in CUDA
	Slide 11: Asynchronous copy in CUDA
	Slide 12: MatMul on Ampere GPU with Multi-stage Pipelining
	Slide 13: MatMul on Ampere GPU with Multi-stage Pipelining
	Slide 14: Issues with Multi-Stage Pipelining
	Slide 15: Two Approaches to Implement Software Pipelining in CUDA
	Slide 16: Warp Specialization (Spatial Partitioning)
	Slide 17: Synchronization across Warps in a Threadblock
	Slide 18: CudaDMA: Overlap Data Load and Compute with Warp Specialization
	Slide 19: More Optimizations: Warp Specialization + Double Buffer
	Slide 21: Nvidia Hopper GPU: Tensor Memory Accelerator(TMA)
	Slide 22: Nvidia Hopper GPU: Tensor Memory Accelerator(TMA)
	Slide 24: TMA Reduces Register Usage
	Slide 25: Nvidia Hopper GPU: Customize Register Allocation Across Warps
	Slide 26: Nvidia Hopper GPU: save register usage by setmaxnreg
	Slide 27: MatMul on Hopper with Warp Specialization
	Slide 28: MatMul on Hopper with Warp Specialization + Pingpong Scheduling
	Slide 29: FlashAttention 3: Attention with Warp Specialization + Pingpong Scheduling
	Slide 30: FlashAttention 3: Intra-Warpgroup Overlapping

