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Background: Streaming multiprocessor architecture

• Processing block

• Cuda cores, tensor cores, SFU

• Load/Store unit

• Warp scheduler

• Register file

• Tensor memory accelerator

• …

2https://resources.nvidia.com/en-us-hopper-architecture/nvidia-h100-tensor-c
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Thread block 

Background: Thread Block and Warp

…
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number of warps = ceil(threads per block / warp size(32))
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Background: Warp Scheduling
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Background: Warp Scheduling

Key insight: more 

independent instructions 

across warps
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Background: Data Movement From Host to Device

• on chip memory has 
highest bandwidth

• 20MB = 192KB * 108 
SMs

FLASHATTENTION: fast and memory-efficient exact attention with IO-awareness
6
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Background: Data Movement From Host to Device

• coalesced copy data 
to shared memory

• each thread read 

data with low latency

• …
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A Common Data Movement Paradigm

use __syncthreads() to sync the threads inside a thread block

load/store units busy compute units busy load/store units busy

8
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Software Pipelining

https://en.algorithmica.org/hpc/pipelining/

● instruction level parallelism

● launch next instruction without waiting 

for the previous one to complete

● not “reduce” latency but “hide” latency

9
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Two Approaches to Implement Software Pipelining in CUDA

warp 1: async copy to B0 compute on B0

async copy to B1 async copy to B0

compute on B1

● Multi-stage pipelining

● Warp specialization

warp 2: 

compute on B0

async copy to B1 async copy to B0

compute on B1

async copy to B0 compute on B0

async copy to B1 async copy to B0

compute on B1 compute on B0

async copy to B1 async copy to B0

compute on B1
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async copy to B0 async copy to B1 async copy to B0



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Asynchronous copy in CUDA

• cp.async: initiate an asynchronous copy 
• cp.async.commit_group: batches all prior cp.async instructions into a group
• cp.async.wait_group<N>: let executing threads wait for at most N groups pending.
• cp.async.wait_all: equals to cp.async.wait_group<0>
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commit
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data transfer finished in group 0

cp.async.wait

_group<1>

data transfer finished in group 1

compute 

on group 0

cp.async.wait

_group<0>

compute 

on group 1
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MatMul on Ampere GPU with Multi-stage Pipelining

• Asynchronous data copy 
instruction provides opportunity 
for intra-warp overlapping

• Use cp.async, 
cp.async.commit_group and 
cp.async.wait to construct an 
async pipeline

//prefetch data from device memory to shared memory

for (int k_pipe = 0; k_pipe < PIPELINE_DEPTH - 1; k_pipe++) {

//compute the shared memory and device memory address

for (int i = threadIdx.x; i < NUM_TOTAL_CHUNKS; i += NUM_THREADS) {

// issue the async copy in chunk of 128B

asm volatile("cp.async.cg.shared.global.L2…”);

}

asm volatile("cp.async.commit_group;\n" ::);

}

for (int for_idx = 0; for_idx < FORLOOP_RANGE; for_idx++) {

if (for_idx + PIPELINE_DEPTH - 1 < FORLOOP_RANGE) {

for (int i = threadIdx.x; i < NUM_TOTAL_CHUNKS; i += NUM_THREADS) {

// issue the async copy in chunk of 128B

asm volatile("cp.async.cg.shared.global.L2…”);

}

asm volatile("cp.async.commit_group;\n" ::);

asm volatile("cp.async.wait_group %0;\n" ::"n"(PIPELINE_DEPTH -

1));

} else{

asm volatile("cp.async.wait_all;\n" ::);

}

//tensor core instruction

asm volatile("mma.sync.aligned.m16n8k16…”); 

}
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MatMul on Ampere GPU with Multi-stage Pipelining

DM

pipeline depth = 4

cp.async + commit
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Issues with Multi-Stage Pipelining

● coarse grained synchronization

● address generation overhead

● hard to decouple instruction streams

14
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Two Approaches to Implement Software Pipelining in CUDA

warp 1: async copy to B0 compute on B0

async copy to B1 async copy to B0

compute on B1

● Multi-stage pipelining

● Warp specialization

warp 2: 

compute on B0

async copy to B1 async copy to B0

compute on B1

async copy to B0 compute on B0

async copy to B1 async copy to B0

compute on B1 compute on B0

async copy to B1 async copy to B0

compute on B1
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warp 1: 
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warp 2: 
compute on B0 compute on B1 compute on B0 compute on B1

async copy to B0 async copy to B1 async copy to B0
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Warp Specialization (Spatial Partitioning)

● A thread block can be spatially partitioned to perform independent 

computations.

● One subset of threads produces data that is concurrently consumed by the 

other subset of threads.

16

Producer Warp Consumer Warp

wait for buffer to be ready to be filled signal buffer is ready to be filled

produce data and fill the buffer wait for buffer to be filled

signal buffer is filled consume data in filled buffer
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Synchronization across Warps in a Threadblock

● bar{.cta}.arrive: signal the arrival threads (data transfer has finished filling a 

buffer/computation finished)

● bar{.cta}.sync: block the threads until the name barrier flipped

● use two name barrier to construct a producer/consumer pipeline

if(threadIdx.x < COMPUTE_THREADS){

//wait for dma finished

asm volatile("bar.sync [%0], %1”, barrier_0, 32)

//do computation

asm volatile("wmma.mma…”);

//notify computation is finished

asm volatile("bar.arrive [%0], %1”, barrier_1, 32)

} else {

//wait for computation finished

asm volatile("bar.sync [%0], %1”, barrier_1, 32)

// do data copy

asm volatile("ld.global…”);

//notify data copy is finished

asm volatile("bar.arrive [%0], %1”, barrier_0, 32)

}

copy data 

32 threads launch bar0.arrive

bar0.sync: wait 32 threads 

arrived

compute 

32 threads launch bar1.arrive

bar1.sync: wait 32 threads 

arrived

producer warp consumer warp
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DM

DMA Warp
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CudaDMA:
Overlap Data Load and Compute with Warp Specialization

18

only overlap when multiple CTAs are concurrently resident on an SM
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More Optimizations: Warp Specialization + Double Buffer

● more overlapping, more independent instructions

● but use more barriers, more shared memory reserved
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Nvidia Hopper GPU: Tensor Memory Accelerator(TMA)
tiling information stored in TMA descriptor(CUtensorMap)

CUresult result = cuTensorMapEncodeTiled(tma_desc,
tma_format, // type of data transmitted by TMA
tma_dim, // tma dimension
global_addr, //device tensor address
gmem_shape_ptr, //device tensor shape
gmem_stride_ptr + 1, // device tensor stride
smem_box_shape_ptr, // shared tensor shape
smem_box_stride_ptr, //shared tensor stride
CU_TENSOR_MAP_INTERLEAVE_NONE,
tma_swizzle, // swizzle mode
CU_TENSOR_MAP_L2_PROMOTION_NONE,
CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE);
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Nvidia Hopper GPU: Tensor Memory Accelerator(TMA)

Use coordinate to determine with tile is loaded in the current 

thread block, address generation handled by TMA hardware

block 0

block 2

block 1

block 3

global tensor

0,0

1,1

2,4

3,1
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TMA Reduces Register Usage

● cp.async needs to allocate registers for addressing data copy
● TMA provides hardware support for address calculation

24https://resources.nvidia.com/en-us-hopper-architecture/nvidia-h100-tensor-c
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Nvidia Hopper GPU: Customize Register Allocation Across 
Warps

A Hopper GPU has 64K registers per SM

https://forums.developer.nvidia.com/t/warp-specialize-register-usage/298190
25
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Nvidia Hopper GPU: save register usage by setmaxnreg

template<uint32_t RegCount>

void warpgroup_reg_alloc(){

//increase the maximum number of registers in this warp

asm volatile("setmaxnreg.inc.sync.aligned.u32 %0;\n" : : "n"(RegCount) );

}

template<uint32_t RegCount>

void warpgroup_reg_dealloc(){

//decrease the maximum number of registers in this warp

asm volatile("setmaxnreg.dec.sync.aligned.u32 %0;\n" : : "n"(RegCount) );

}

// usage

if (warp_group_role == WarpGroupRole::Producer) {

cutlass::arch::warpgroup_reg_dealloc<LoadRegisterRequirement>(); // LoadRegisterRequirement = 40

} else if (warp_group_role == WarpGroupRole::Consumer0 || warp_group_role == WarpGroupRole::Consumer1) {

cutlass::arch::warpgroup_reg_alloc<MmaRegisterRequirement>(); // MmaRegisterRequirement = 232

}

https://github.com/NVIDIA/cutlass

40 * 128(producer threads) + 232 * 256(consumer threads) = 64512 (< 65536 registers per SM)
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MatMul on Hopper with Warp Specialization 
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MatMul on Hopper with Warp Specialization + Pingpong 
Scheduling
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FlashAttention 3: Attention with Warp Specialization + 
Pingpong Scheduling 
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FlashAttention 3: Intra-Warpgroup Overlapping
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