15-779 Lecture 5:

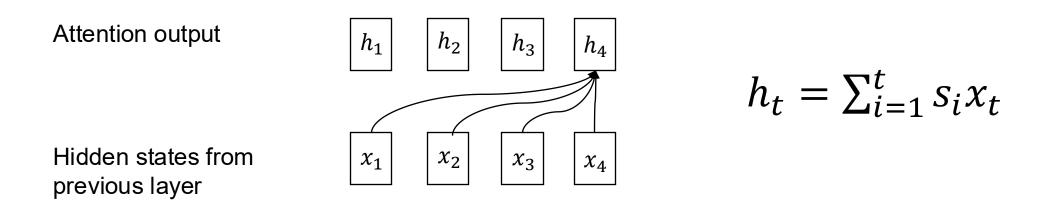
Transformers, Attention, and FlashAttention

Zhihao Jia

Computer Science Department Carnegie Mellon University

Attention Mechanism

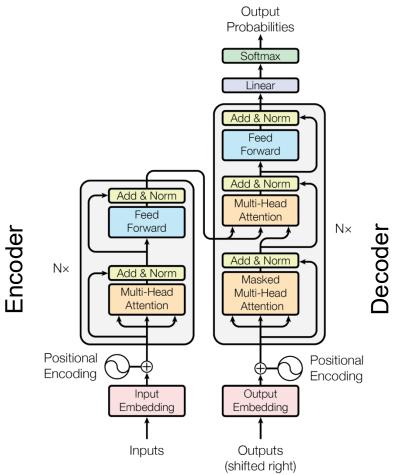
Refer to approach where individual states are combined using weights

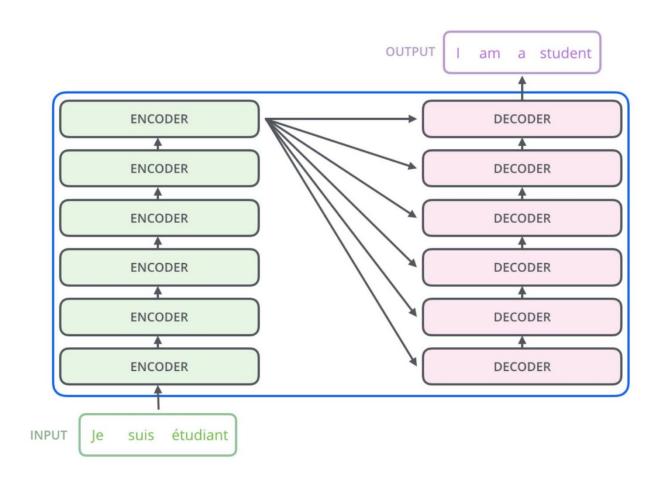


Intuitively s_i is "attention score" that computes how relevant the position i's input is to this current hidden output

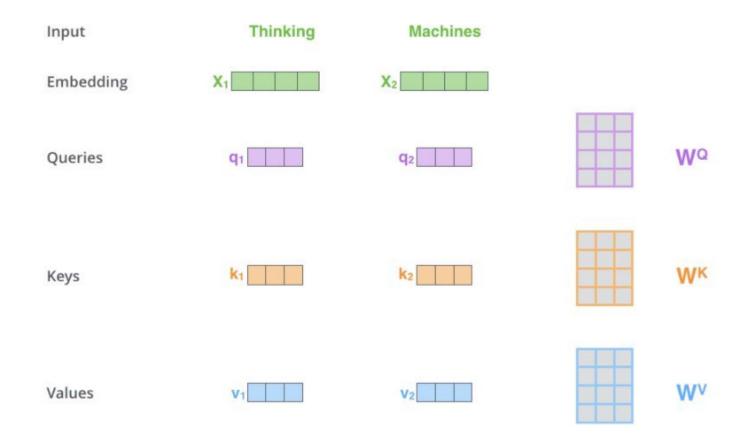
There are different methods to decide how attention score is being computed

Transformer: Self-Attention Mechanism for Language Models



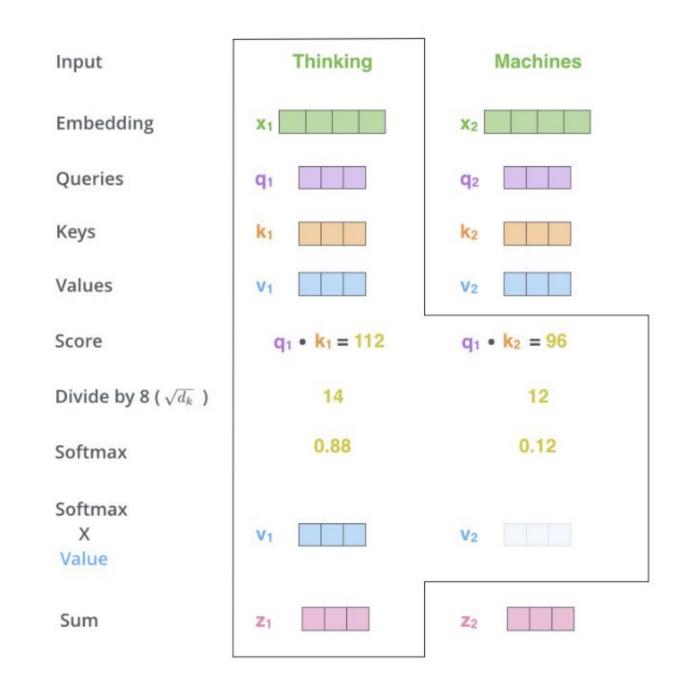


• Mapping a query and a set of key-value pairs to an output



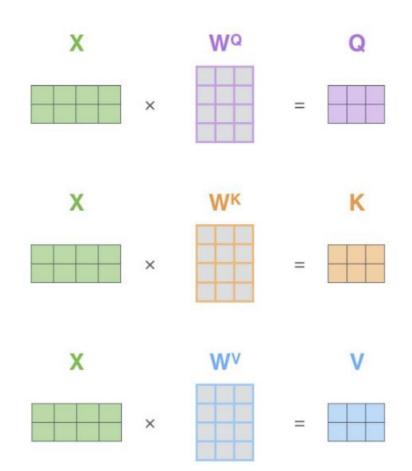
Slide credit: Jay Allamar

 Mapping a query and a set of key-value pairs to an output



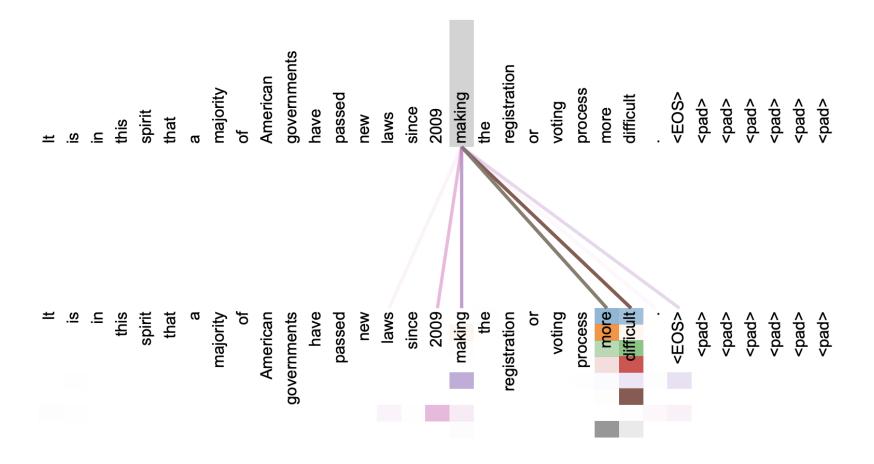
Slide credit: Jay Allamar

Multiple matrix multiplications



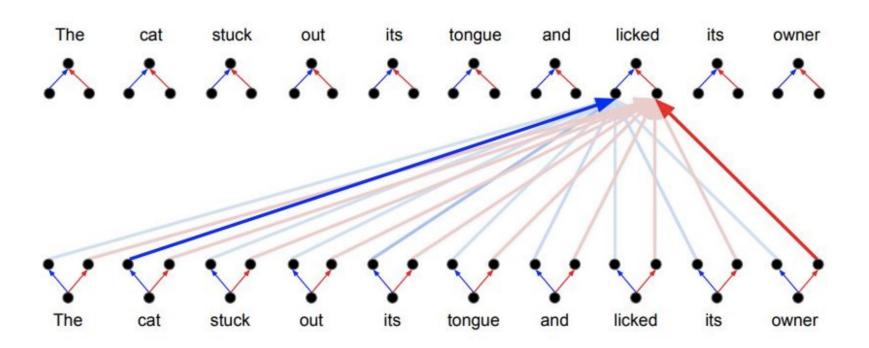
$$A(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d}}\right)V$$

Slide credit: Jay Allamar

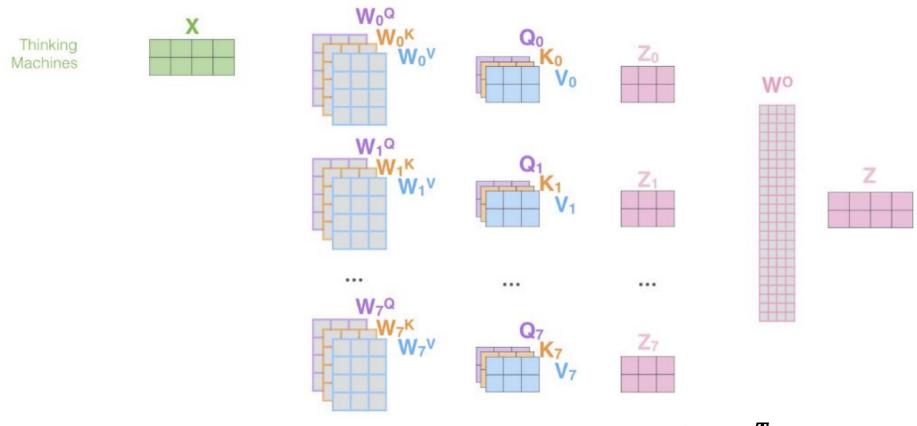


Multi-Head Self-Attention

- Parallelize attention layers with different linear transformations on input and output
- Benefits: more parallelism, reduced computation cost



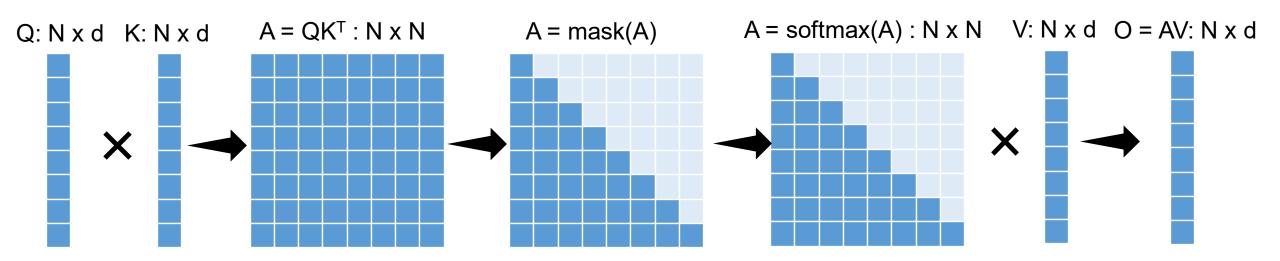
Multi-Head Self-Attention



$$Z_{i} = A(Q_{i}, K_{i}, V_{i}) = softmax \left(\frac{Q_{i}K_{i}^{T}}{\sqrt{d}}\right)V_{i}$$

$$Z = MultiHead(Q, K, V) = Concat(Z_{0}, ..., Z_{7})W^{o}$$

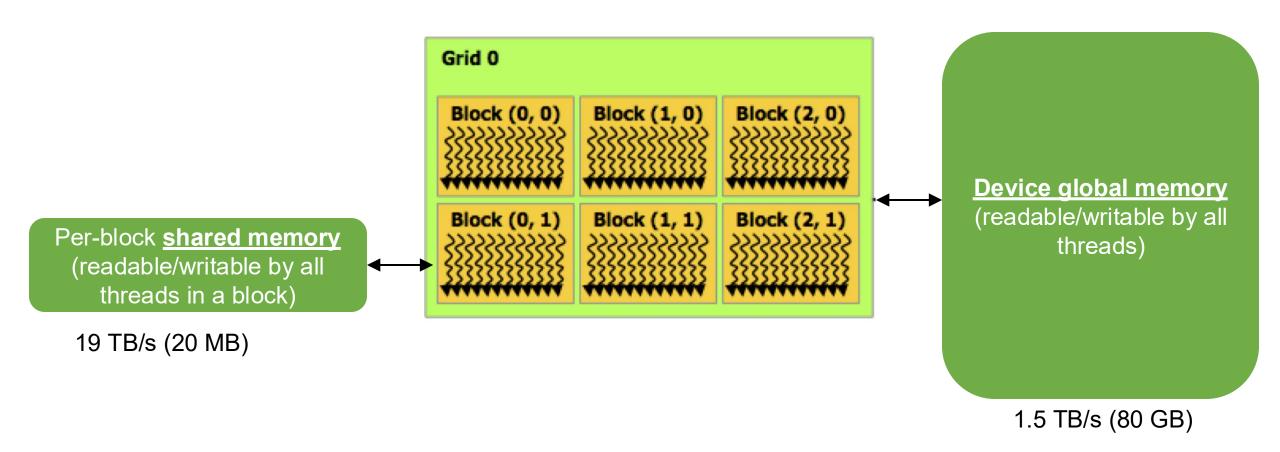
How to Compute Attention on GPUs? $O = Softmax(QK^T) V$



Challenges:

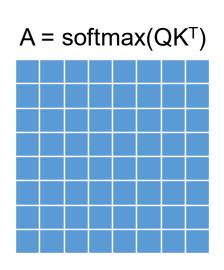
- Large intermediate results
- Repeated reads/writes from GPU device memory
- Cannot scale to long sequences due to O(N²) intermediate results

Revisit: GPU Memory Hierarchy



FlashAttention

Key idea: compute attention by blocks to reduce global memory access

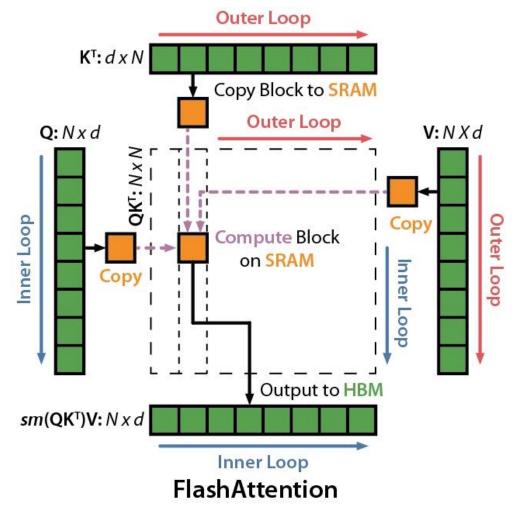


Two main Techniques:

- 1. Tiling: restructure algorithm to load query/key/value block by block from global to shared memory
- 2. Recomputation: don't store attention matrix from forward, recompute it in backward

Tiling: Decompose Large Softmax into smaller ones by Scaling

- 1. Load inputs by blocks from global to shared memory
- 2. On chip, compute attention output wrt the block
- 3. Update output in device memory by scaling



Safe Softmax and Online Softmax $\frac{e^{x_i}}{\sum_{i} e^{x_j}}$

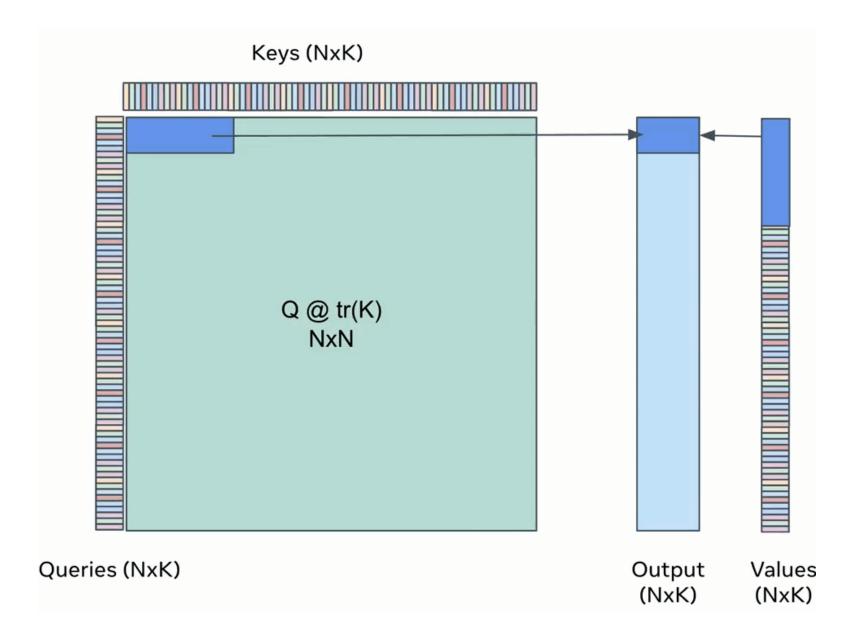
- Issue: maximum value for 16-bit floating point is 65504 ($< e^{12}$)
- To avoid overflow, the softmax of vector x is computed as

$$m(x) := \max_{i} x_{i}, \quad f(x) := [e^{x_{1}-m(x)} \dots e^{x_{B}-m(x)}], \quad \ell(x) := \sum_{i} f(x)_{i}, \quad \text{softmax}(x) := \frac{f(x)}{\ell(x)}.$$

• For two vectors $x^{(1)}$ and $x^{(2)}$, we compute the softmax of $[x^{(1)}, x^{(2)}]$

$$\begin{split} m(x) &= m(\left[x^{(1)} \ x^{(2)}\right]) = \max(m(x^{(1)}), m(x^{(2)})), \quad f(x) = \left[e^{m(x^{(1)}) - m(x)} f(x^{(1)}) \quad e^{m(x^{(2)}) - m(x)} f(x^{(2)})\right], \\ \ell(x) &= \ell(\left[x^{(1)} \ x^{(2)}\right]) = e^{m(x^{(1)}) - m(x)} \ell(x^{(1)}) + e^{m(x^{(2)}) - m(x)} \ell(x^{(2)}), \quad \text{softmax}(x) = \frac{f(x)}{\ell(x)}. \end{split}$$

Tiling



Animation credit: Francisco Massa 15

FlashAttention 2 Algorithm

Algorithm 1 FlashAttention-2 forward pass

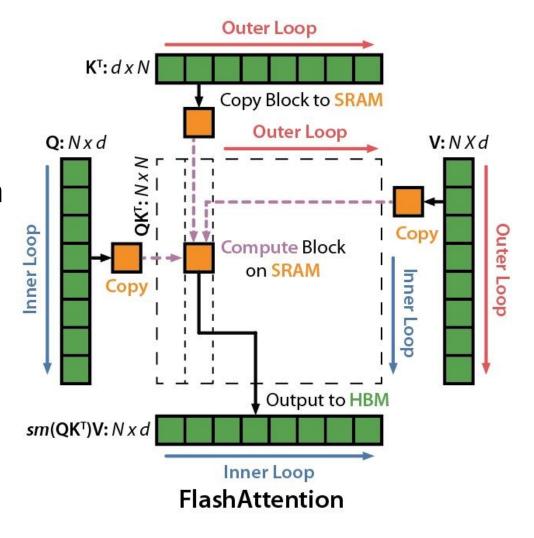
Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, block sizes B_c, B_r .

- 1: Divide **Q** into $T_r = \begin{bmatrix} N \\ B_r \end{bmatrix}$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \begin{bmatrix} N \\ B_c \end{bmatrix}$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 2: Divide the output $\mathbf{O} \in \mathbb{R}^{N \times d}$ into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, and divide the logsum exp L into T_r blocks L_i, \ldots, L_{T_r} of size B_r each.
- 3: for $1 \le i \le T_r$ do
- 4: Load \mathbf{Q}_i from HBM to on-chip SRAM.
- 5: On chip, initialize $\mathbf{O}_{i}^{(0)} = (0)_{B_r \times d} \in \mathbb{R}^{B_r \times d}, \ell_{i}^{(0)} = (0)_{B_r} \in \mathbb{R}^{B_r}, m_{i}^{(0)} = (-\infty)_{B_r} \in \mathbb{R}^{B_r}.$
- 6: for $1 \le j \le T_c$ do
- 7: Load \mathbf{K}_j , \mathbf{V}_j from HBM to on-chip SRAM.
- 8: On chip, compute $\mathbf{S}_{i}^{(j)} = \mathbf{Q}_{i} \mathbf{K}_{i}^{T} \in \mathbb{R}^{B_{r} \times B_{c}}$.
- 9: On chip, compute $m_i^{(j)} = \max(m_i^{(j-1)}, \text{rowmax}(\mathbf{S}_i^{(j)})) \in \mathbb{R}^{B_r}, \ \tilde{\mathbf{P}}_i^{(j)} = \exp(\mathbf{S}_i^{(j)} m_i^{(j)}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\ell_i^{(j)} = e^{m_i^{j-1} m_i^{(j)}} \ell_i^{(j-1)} + \text{rowsum}(\tilde{\mathbf{P}}_i^{(j)}) \in \mathbb{R}^{B_r}$.
- 10: On chip, compute $\mathbf{O}_{i}^{(j)} = \operatorname{diag}(e^{m_{i}^{(j-1)} m_{i}^{(j)}})^{-1}\mathbf{O}_{i}^{(j-1)} + \tilde{\mathbf{P}}_{i}^{(j)}\mathbf{V}_{j}$.
- 11: **end for**
- 12: On chip, compute $\mathbf{O}_i = \operatorname{diag}(\ell_i^{(T_c)})^{-1} \mathbf{O}_i^{(T_c)}$.
- 13: On chip, compute $L_i = m_i^{(T_c)} + \log(\ell_i^{(T_c)})$.
- 14: Write \mathbf{O}_i to HBM as the *i*-th block of \mathbf{O} .
- 15: Write L_i to HBM as the *i*-th block of L.
- 16: **end for**
- 17: Return the output $\mathbf{0}$ and the logsum exp L.

Recomputation: Backward Pass

By storing softmax normalization factors from forward (size N), recompute attention in the backward from inputs in shared memory

Attention	Standard	FlashAttention
GFLOPs	66.6	75.2
Global mem access	40.3 GB	4.4 GB
Runtime	41.7 ms	7.3 ms



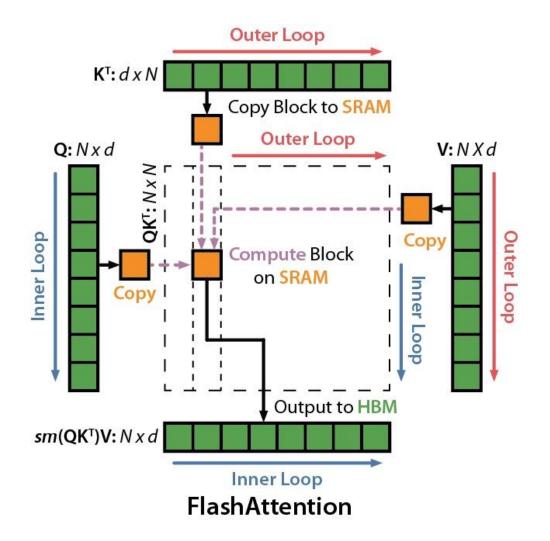
Speed up backward pass with increased FLOPs

FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across thread blocks?

(An A100 has 108 SMMs -> 108 thread blocks)

• Step 1: assign different heads to different thread blocks (16-64 heads)

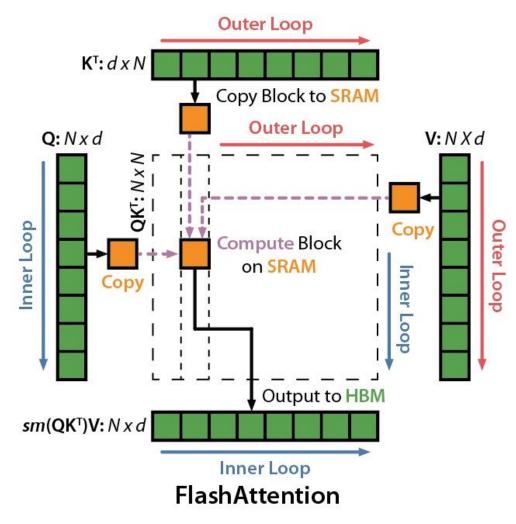


FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across thread blocks?

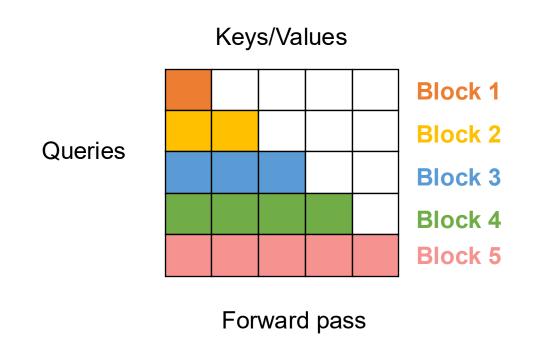
(An A100 has 108 SMMs -> 108 thread blocks)

- Step 1: assign different heads to different thread blocks (16-64 heads)
- Step 2: assign different queries to different thread blocks (Why?)



Thread blocks cannot communicate; cannot perform softmax when partitioning keys/values

FlashAttention: Threadblock-level Parallelism

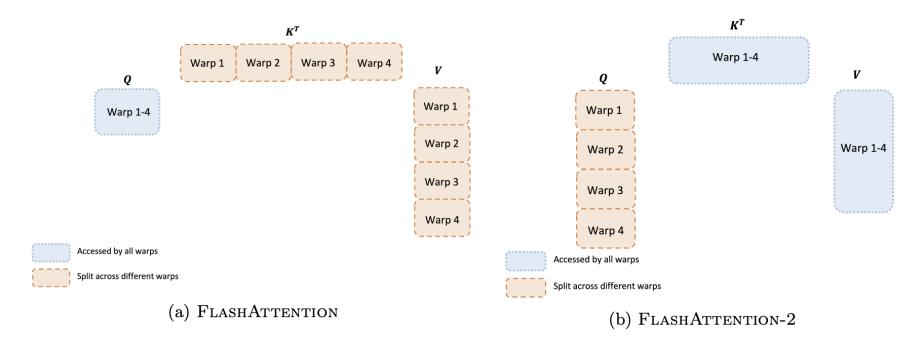


Do we need to handle workload imbalance?

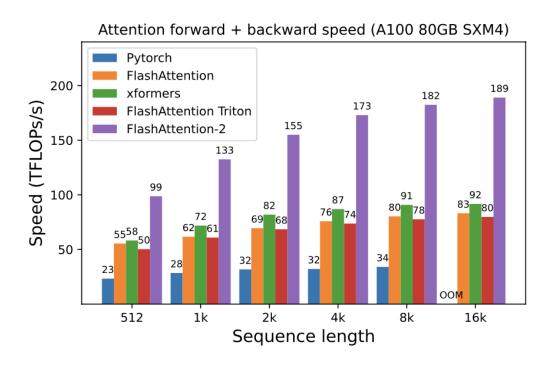
No. GPU scheduler automatically loads the next block once the current one completes.

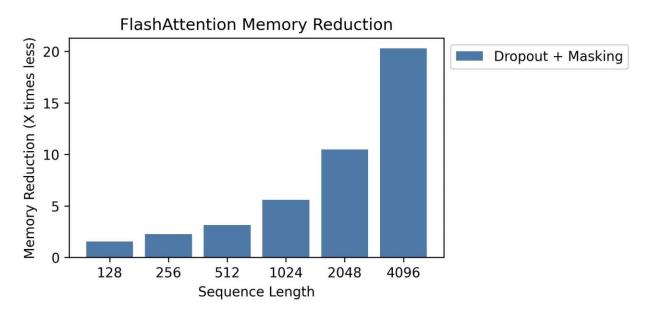
FlashAttention: Warp-Level Parallelism

How to partition FlashAttention across warps within a thread block?

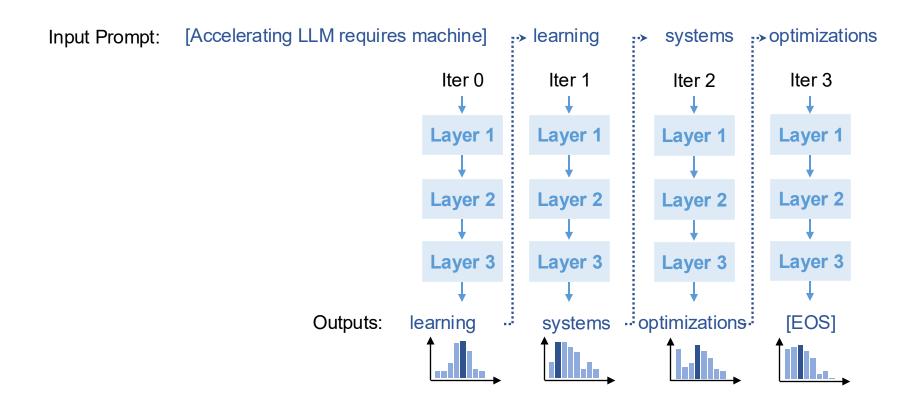


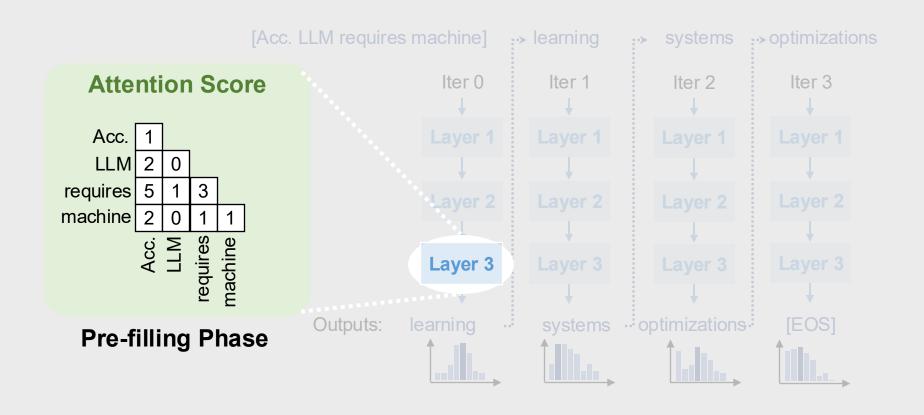
FlashAttention: 2-4x speedup, 10-20x memory reduction

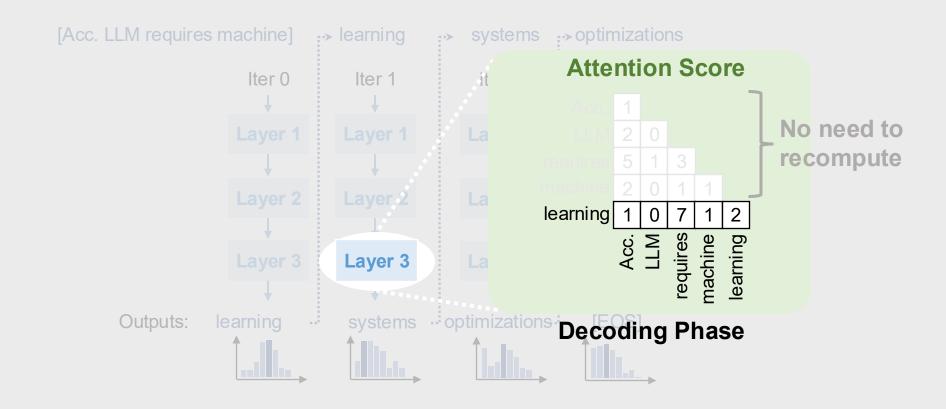




Memory linear in sequence length

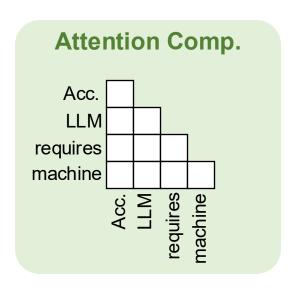


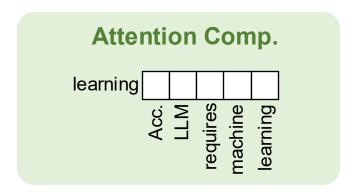




- Pre-filling phase (0-th iteration):
 - Process all input tokens at once
- Decoding phase (all other iterations):
 - Process a single token generated from previous iteration
 - Use attention keys & values of all previous tokens
- Key-value cache:
 - Save attention keys and values for the following iterations to avoid recomputation

Can We Apply FlashAttention to LLM Inference?





Pre-filling phase:

 Yes, compute different queries using different thread blocks/warps

Decoding phase:

 No, there is a single query in the decoding phase

FlashAttention Processes K/V Sequentially

Inefficient for requests with long context (many keys/values)

Flash-Decoding Parallelizes Across Keys/Values

- 1. Split keys/values into small chunks
- 2. Compute attention with these splits using FlashAttention
- 3. Reduce overall all splits

Key insight: attention is associative and commutative

Flash-Decoding is up to 8x faster than prior work

