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Attention Mechanism

Refer to approach where individual states are combined using weights
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ℎ1 ℎ2 ℎ3 ℎ4

𝑥1 𝑥2 𝑥3 𝑥4Hidden states from 

previous layer

Attention output

ℎ𝑡 = σ𝑖=1
𝑡 𝑠𝑖𝑥𝑡  

Intuitively 𝑠𝑖  is “attention score” that computes how relevant the position 𝑖’s input is 
to this current hidden output

There are different methods to decide how attention score is being computed
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Transformer: Self-Attention Mechanism for Language 
Models
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Ashish Vaswani et. al. Attention is all you need.



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Self-Attention

4Slide credit: Jay Allamar

• Mapping a query and a set of key-value pairs to an output
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Self-Attention

5Slide credit: Jay Allamar

• Mapping a query and a set of 
key-value pairs to an output
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Self-Attention

• Multiple matrix multiplications
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𝑨 𝑸,𝑲, 𝑽 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙
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Self-Attention
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Multi-Head Self-Attention

• Parallelize attention layers with different linear transformations on input 
and output

• Benefits: more parallelism, reduced computation cost
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Multi-Head Self-Attention
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𝒁𝒊 = 𝑨 𝑸𝒊, 𝑲𝒊, 𝑽𝒊 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝒊𝑲𝒊

𝑻
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𝒁 = 𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅 𝑸,𝑲, 𝑽 = 𝑪𝒐𝒏𝒄𝒂𝒕 𝒁𝟎, … , 𝒁𝟕 𝑾𝒐
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How to Compute Attention on GPUs?
O = Softmax(QKT) V
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Q: N x d K: N x d A = QKT : N x N A = softmax(A) : N x N V: N x d O = AV: N x d

Challenges:

• Large intermediate results

• Repeated reads/writes from GPU device memory

• Cannot scale to long sequences due to O(N^2) intermediate results

A = mask(A)
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Revisit: GPU Memory Hierarchy

11

Per-block shared memory 

(readable/writable by all 

threads in a block)

Device global memory 

(readable/writable by all 

threads)

19 TB/s (20 MB)

1.5 TB/s (80 GB)
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FlashAttention

Key idea: compute attention by blocks to reduce global memory 
access

Two main Techniques:
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1. Tiling: restructure algorithm to load query/key/value block by 

block from global to shared memory

2. Recomputation: don’t store attention matrix from forward, recompute 

it in backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

A = softmax(QKT)
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Tiling: Decompose Large Softmax into smaller ones by 
Scaling

1. Load inputs by blocks from global to 
shared memory

2. On chip, compute attention output 
wrt the block

3. Update output in device memory by 
scaling
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Safe Softmax and Online Softmax
𝑒𝑥𝑖

σ𝑗 𝑒
𝑥𝑗

• Issue: maximum value for 16-bit floating point is 65504 (< 𝑒12)

• To avoid overflow, the softmax of vector 𝑥 is computed as

• For two vectors 𝑥(1) and 𝑥(2), we compute the softmax of [𝑥(1) 𝑥(2)]
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Tiling

15Animation credit: Francisco Massa
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FlashAttention 2 Algorithm
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Recomputation: Backward Pass

By storing softmax normalization factors 
from forward (size N), recompute attention in 
the backward from inputs in shared memory
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Attention Standard FlashAttention

GFLOPs 66.6 75.2

Global mem access 40.3 GB 4.4 GB

Runtime 41.7 ms 7.3 ms

Speed up backward pass with increased FLOPs
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FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across 
thread blocks?

(An A100 has 108 SMMs -> 108 thread 
blocks)

• Step 1: assign different heads to different 
thread blocks (16-64 heads)

18
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FlashAttention: Threadblock-level 
Parallelism

How to partition FlasshAttention across 
thread blocks?

(An A100 has 108 SMMs -> 108 thread 
blocks)

• Step 1: assign different heads to different 
thread blocks (16-64 heads)

• Step 2: assign different queries to 
different thread blocks (Why?)
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Thread blocks cannot communicate; cannot perform 

softmax when partitioning keys/values
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FlashAttention: Threadblock-level Parallelism
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Queries

Keys/Values

Block 1

Block 2

Block 3

Block 4

Block 5

Do we need to handle workload imbalance? 

No. GPU scheduler automatically loads the next block 

once the current one completes.

Forward pass
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FlashAttention: Warp-Level Parallelism

• How to partition FlashAttention across warps within a thread block?
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Splitting across K/V requires 

communication to add results

Splitting across Q avoids 

communications
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FlashAttention: 2-4x speedup, 10-20x memory reduction
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Memory linear in sequence length
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Generative LLM Inference: Autoregressive Decoding
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[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]
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[Acc. LLM requires machine]

Generative LLM Inference: Autoregressive Decoding
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[Acc. LLM requires machine]

Generative LLM Inference: Autoregressive Decoding
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Generative LLM Inference: Autoregressive Decoding

• Pre-filling phase (0-th iteration):

• Process all input tokens at once

• Decoding phase (all other iterations):

• Process a single token generated from previous iteration

• Use attention keys & values of all previous tokens

• Key-value cache:

• Save attention keys and values for the following iterations to avoid 
recomputation
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Can We Apply FlashAttention to LLM Inference?

Pre-filling phase:

• Yes, compute different queries 
using different thread blocks/warps

Decoding phase:

• No, there is a single query in the 
decoding phase
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FlashAttention Processes K/V Sequentially

28

Inefficient for requests with long context (many keys/values)
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Flash-Decoding Parallelizes Across Keys/Values

1. Split keys/values into small chunks

2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits
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Key insight: attention is associative and commutative
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Flash-Decoding is up to 8x faster than prior work 
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