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Recap: Machine Learning Systems
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Deep Neural Network

 Collection of simple trainable mathematical units that work together to

solve complicated tasks
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A tensor (i.e., n-dimensional array)

A tensor algebra operator
(e.g., convolution, matrix mul)



Graph-Level Optimizations

Fuse conv + batchnorm

N . &

conv3x3

| relu |

Input Computation Potential graph
Graph transformations

Optimized Computation
Graph



Example: Fusing Conv and Batch Normalization
o

BatchNorm

A
} Conv2D E Y(n,c,h,w) = (Z X(n,d,h+u,w+v)*W(cd,u, v)) +B(n,c,h,w)
duyv

W, B, R, P are constant pre-trained weights

Z(n,c,h,w) =Y(n,c,h,w) * R(c) + P(c)




Fusing Conv and BatchNorm

g
! BatchNorm =
A
1 Conv2D E @

W,(n,c,h,w) =W(n,c, h,w) = R(c)

Z(n,c,h,w) = (Z X(nd h+uw+v) W, (c,d,u,v)) + B, (n,c,h,w)

duv
?

I
Conv2D
1

B,(n,c,h,w) = B(n,c,h,w) * R(c) + P(c)



Fusing Two Convs

Y Y
T 1
/Add\ /Conv3x3

Conv3x3 Conv3x3
/T X + 4
W, W, X W, W, X

Y(n,c hw) = <Z X(nd h+uw+v)* Wl(c,d,u,v)> + (Z X(nd,h+uw+7v)* Wz(c,d,u,v)>
duv du,v

Y, c,hw) = z X(n,d,h+u,w+v) * (Wy(c,du,v) + Wy(c,d,u,v))

du v



Automated Discovery of Graph Optimizations

* Week 5: Automate Graph-Level Optimizations
* Week 6: Multi-Level Superoptimization

Graph
el Optimizer

a Graph | Graph
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An Overview of Deep Learning Systems
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Parallelization / Distributed Training

Data Layout and Placement

Kernel Optimizations

Memory Optimizations
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs "8t Model prediction

Convolution

ooooooo
CCCCCC
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

S <

w; = w; — yVL(w;) = w; —

Zn: VL;i(w;)
=1
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How can we parallelize ML training?

S =

w; = w; —YVL(wy) = w; —

Zn: VL;(w;)
=1
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Data Parallelism

NN
N e

ML Model

Gradients

Data
Parallelism

Aggregation

1. Partition dataset into batches 2. Forward/backward of each 3. Aggregate gradients

batch on a GPU across GPUs .



Data Parallelism for Transformer
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Model Parallelism

» Split a model into multiple subgraphs and assign them to different devices

Model
Parallelism

~ Transfer

intermediate
results
between
devices
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Pipeline Model Parallelism for Transformer




Tensor Model Parallelism for Transformer
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Important to Combine Different Parallelization Strategies

m Model Parallel ®m Model + Data Parallel

100%

100%
r.én 80% 96%
= 82% 77% £3% 79%
T 60%
v
ﬁ 40%
= 20%
0%
1 2 4 8 64 128 256 512

Number of GPUS

Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. 20



3D Parallelism for LLM Training

Pipeline Model Parallelism
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An Overview of Machine Learning Systems
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Algorithmic Optimization
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Graph-Level Optimization
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ML Compilation
Memory Management

GPU Programming
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Key Elements in Machine Learning Compilation

TT eeeee [(1, 10)]
softmax

Tensor [(1, 10)]

@—> linear
A

Tensor [(1, 200)]

Tensor [(1, 200)]

input: Tensor[ (1, 3072)]

O

Tensor multi-dimensional array that stores the
input, output and intermediate results of model
executions.

Tensor Functions that encodes
computations among the input/output. Note
that a tensor function can contain multiple
operations



ML Compilation Goals

There are many equivalent ways to implement ML computation.
The common goals are:

Minimize memory usage.

Minimize execution time.

Maximize hardware utilization.



How to Find Fastest Program?

conv3x3 Matmul
y !
\

' C = tvm.compute((m, n),
lambda y, x: tvm.sum(Alk, y] % B[k, x], axis=k))

conv3x3

m Search Space of Possible Program Optimizations

Low-level Program Variants

inp_buffer AL[8][8], BL[8][8] for yo in range(128):

acc_buffer CL[8][8] for xo in range(128): for y in range(1024):

for yo in range(128): Clyo*8:yo*8+8] [x0%8:x0%8+8] = 0 for x in range(1024):
fOCd){g %gl{a;gié%gﬁi: for ko in range(128): ClylIx] =0
for I.w in range(128): for yi :!.nlrange(S): for k in range(1@24):
vdla.dma_copy2d(AL, Al[kox8:kox8+8] [yo*8:yo*8+8]) for xi in range(8): Clyl[x] += A[kl[yl * BI[k] [x]
vdla.dma_copy2d(BL, B[ko*8:ko*8+8] [x0o*8:x0*8+8]) for ki in ['3”93(8):.
vdla. fused_gemm8x8_add(CL, AL, BL) Clyo*8+yi] [xox8+x1i] +=

vdla.dma_copy2d(C[yo*8:yo*8+8, xox8: xo*8+8], CL) Alkox8+ki] [yox8+yi] * Blkox8+ki] [xo*8+xi]




Existing Approach: Engineer Optimized Tensor Programs

« Hardware vendors provide operator libraries manually developed by
software/hardware engineers

« cuDNN, cuBLAS, cuRAND, cuSPARSE for GPUs
« cudnnConvolutionForward() for convolution
 cublasSgemm() for matrix multiplication

« Cannot provide immediate support for new operators
* Increasing complexity of hardware -> hand-written kernels are suboptimal

26



Automated Code Generation: TVM, Triton, Mojo, TileLang, ...

conv3x3 Matmul

v

conv3x3

add

Automated search for performant
programs:

v" Immediate support for new operators

v Better performance than hand-written Thread - Latency [
: Tensorization - cor |
kernels Cooperation Hiding L

I Hardware

Loop Thread Cache
Transformations Bindings Locality
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An Overview of Machine Learning Systems
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Recap: GPU Memory is the Bottleneck in DNN Training
* The biggest model we can train is bounded by GPU memory

« Larger models often achieve better predictive performance

« Extremely critical for modern accelerators with limited on-chip memory

Forward pass Need to keep all intermediate results alive

090 00000 0 0000

Backward pass

29



Memory Efficient Training: Tensor Rematerialization

Backward pass
Only store colored nodes
Forward pass

_BORON RORON RORON RORG
9O

Rematerialize missing nodes

m Rematerialize missing nodes

Rematerialize missing nodes

30



Memory Efficient Training: Tensor Rematerialization

Backward pass
Only store colored nodes
Forward pass

If we store a node every K steps on a
N-node model. m
V\

Memory cost = O(N/K) + O(K)
Rematerialize missing nodes

Checkpointing cost Rematerialization cost c‘—».
Pick K= VN m Rematerialize missing nodes

Rematerialize missing nodes a1



Memory Efficiency: Zero Redundancy

* In distributed training, data/model/pipeline parallelism all involve redundancy
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Memory Efficient Training: Zero Redundancy

« Key idea: partition replicated parameters, gradients, and optimizer states
across GPUs

 When needed, each GPU broadcast its local parameters/gradients to all

other GPUs
Memory K=12
C d Y=7.5B
gpu, gpy; gPUn_1 onsume N =64
Baseline (2+2+K)*W¥W | 120GB
Zero redundancy for Kaw
. 4GB
data parallelism Pos R
see ers Q2+ K)x¥
Posrg 2%+ — | 16.6GB
, Q2+2+ KW 1.9GB
OS+g+p i

Parameters Gradients Optimizer States

Figure from ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
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Balancing Computation/Memory/Communication Cost in
DNN Training

Computation Cost Memory Cost

Tensor Rematerialization

Zero Redundancy

Communication

Cost
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Part 2. PyTorch v.s. TensorFlow

What are the key differences
between them?
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TensorFlow’s Deferred Computation Model

# 1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784]) # Placeholder for input.

y = tf.placeholder(tf.float32, [BATCH_SIZE, 101]) # Placeholder for labels.
W_1 = tf.Variable(tf.random_uniform([784, 100])) # 784x100 weight matrix.
b_1 = tf.Variable(tf.zeros ([100])) # 100-element bias vector.
layer_1 = tf.nn.relu(tf.matmul (x, W_1) + b_2) # Output of hidden layer.
W_2 = tf.Variable(tf.random_uniform([100, _101)) # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros ([101])) # 10-element bias vector.
layer_2 = tf.matmul(layer_1, W_2) + b_2 # Output of linear layer.

# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, vy)
train_op = tf.train.AdagradOptimizer (0.01) .minimize (loss)

# 3. Execute the graph on batches of input data.
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for step in range (NUM_STEPS) :
%x_data, y_data =
sess.run(train_op, {x: x_data, y: y_data}l)

Connect to the TF runtime.
Randomly initialize weights.
Train iteratively for NUM_STEPS.
Load one batch of input data.
Perform one training step.

H FH H= FH=
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TensorFlow’s Deferred Computation Model

# 1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])
y = tf.placeholder (tf.flcat32, [BATCH_SIZE, 10])
. G _ L ] L] L]
raph-level optimizations WL - tf.Variaple (L. randon uniform((784, 10011)
b_1 = tf.Variable(tf.zeros ([100]))

layer_1 = tf.nn.relu(tf.matmul (x, W_1) + b_2)

W_2 = tf.Variable(tf.random_uniform([100, _107]))
b_2 = tf.Variable(tf.zeros ([101))
layer_2 = tf.matmul (layer_1, W_2) + b_2

HH= H=

4

#
#
#

Placeholder for input.
Placeholder for labels.

784x100 weight matrix.
100-element bias vector.
Output of hidden layer.

100x10 weight matrix.
l0-element bias vector.
Output of linear layer.

# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits (layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01) .minimize (loss)

# 3. Execute the graph on batches of input data.
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for step in range (NUM_STEPS) :
x_data, y_data =
sess.run(train_op, {x: x_data, y: y_data})

Matmul Ad @Vw Ad Softmax Linear + ReLU

n

1
b

= H= = W e

Connect to the TF runtime.
Randomly initialize weights.
Train iteratively for NUM_STEPS.
Load one batch of input data.
Perform one training step.
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TensorFlow’s Deferred Computation Model

1K Graph-level optimizations
& - Deferred/lazy execution

# 1. Construct a graph representing the model.

x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])

y = tf.placeholder (tf.flocat32, [BATCH_SIZE, 10]

W_1 = tf.Variable(tf.random_uniform([784, 1001])

b_1 = tf.Variable(tf.zeros ([100]))

layer_1 = tf.nn.relu(tf.matmul (x, W_1) + b_2)

W_2 = tf.Variable(tf.random_uniform([100, _107]))
b_2 = tf.Variable(tf.zeros ([101))
layer_2 = tf.matmul (layer_1, W_2) + b_2

HH= H=

)

) #

4

#
#
#

Placeholder for input.
Placeholder for labels.

784x100 weight matrix.
100-element bias vector.
Output of hidden layer.

100x10 weight matrix.
l0-element bias vector.
Output of linear layer.

# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits (layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01) .minimize (loss)

# 3. Execute the graph on batches of input data.

with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for step in range (NUM_STEPS) :
x_data, y_data =
sess.run(train_op, {x: x_data, y: y_data})

B

= H= = W e

Connect to the TF runtime.
Randomly initialize weights.
Train iteratively for NUM_STEPS.
Load one batch of input data.
Perform one training step.

Softmax
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TensorFlow’s Deferred Computation Model

1K Graph-level optimizations
& - Deferred/lazy execution

|b » Optimization with global
information

# 1. Construct a graph representing the model.

x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])

y = tf.placeholder (tf.flocat32, [BATCH_SIZE, 10]

W_1 = tf.Variable(tf.random_uniform([784, 1001])

b_1 = tf.Variable(tf.zeros ([100]))

layer_1 = tf.nn.relu(tf.matmul (x, W_1) + b_2)

W_2 = tf.Variable(tf.random_uniform([100, _107]))
b_2 = tf.Variable(tf.zeros ([101))
layer_2 = tf.matmul (layer_1, W_2) + b_2

HH= H=

)

) #

4

#
#
#

Placeholder for input.
Placeholder for labels.

784x100 weight matrix.
100-element bias vector.
Output of hidden layer.

100x10 weight matrix.
l0-element bias vector.
Output of linear layer.

# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits (layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01) .minimize (loss)

# 3. Execute the graph on batches of input data.

with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for step in range (NUM_STEPS) :
x_data, y_data =
sess.run(train_op, {x: x_data, y: y_data})

B

= H= = W e

Connect to the TF runtime.
Randomly initialize weights.
Train iteratively for NUM_STEPS.
Load one batch of input data.
Perform one training step.

Softmax
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TensorFlow’s Deferred Computation Model

Graph-level optimizations
Deferred/lazy execution

Optimization with global
information

Hard to debug

« Construct graphs and then run

# 1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])

=

Placeholder for input.

y = tf.placeholder (tf.flcat32, [BATCH_SIZE, 10]) # Placeholder for labels.
W_1 = tf.Variable(tf.random_uniform([784, 100])) # 784x100 weight matrix.
b_1 = tf.Variable(tf.zeros ([100])) # 100-element bias wvector.
layer_1 = tf.nn.relu(tf.matmul (x, W_1) + b_2) # Output of hidden layer.
W_2 = tf.Variable(tf.random_uniform([100, _107])) # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros ([101)) # 10-element bias vector.
layer_2 = tf.matmul (layer_1, W_2) + b_2 # Output of linear layer.

# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits (layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01) .minimize (loss)

# 3. Execute the graph on batches of input data.
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for step in range (NUM_STEPS) :
x_data, y_data = ...
sess.run(train_op, {x: x_data, y: y_data})

B

_|> Linear + ReLU Linear
1

Connect to the TF runtime.
Randomly initialize weights.
Train iteratively for NUM_STEPS.
Load one batch of input data.
Perform one training step.

= H= = W e
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PyTorch's Imperative, Pythonic Programming Model

class LinearLayer(Module):
def __init__(self, in_sz, out_sz):
super().__init__()
t1 = torch.randn(in_sz, out_sz)
self.w = nn.Parameter(t1)
t2 = torch.randn(out_sz)
self.b = nn.Parameter(t2)

def forward(self, activations):
t = torch.mm(activations, self.w)
return t + self.b

class FullBasicModel (nn.Module):
def __init__(self):
super().__init__Q)
self.conv = nn.Conv2d(1, 128, 3)
self.fc = LinearLayer (128, 10)

def forward(self, x):
t1 = self.conv(x)
t2 = nn.functional.relu(t1)
t3 = self.fc(t1)
return nn.functional.softmax(t3)

41



PyTorch's Imperative, Pythonic Programming Model

Be Pythonic Data scientists are familiar with the Python language, its programming model, and its
tools. PyTorch should be a first-class member of that ecosystem. It follows the commonly established

design goals of keeping interfaces simple and consistent, ideally with one idiomatic way of doing
things. It also integrates naturally with standard plotting, debugging, and data processing tools.

Put researchers first PvyTorch strives to make writing models, data loaders, and optimizers as

easy and productive as possible. The complexity inherent to machine learning should be handled
internally by the PyTorch library and hidden behind intuitive APIs free of side-effects and unexpected
performance cliffs.

Provide pragmatic performance To be useful, PyTorch needs to deliver compelling performance,

although not at the expense of simplicity and ease of use. Trading 10% of speed for a significantly

simpler to use model is acceptable; 100% is not. Therefore, its implementation accepts added
complexity in order to deliver that performance. Additionally, providing tools that allow researchers
to manually control the execution of their code will empower them to find their own performance
improvements independent of those that the library provides automatically.

Worse is better [26] Given a fixed amount of engineering resources, and all else being equal, the
time saved by keeping the internal implementation of PyTorch simple can be used to implement
additional features, adapt to new situations, and keep up with the fast pace of progress in the field of
Al Therefore it is better to have a simple but slightly incomplete solution than a comprehensive but
complex and hard to maintain design.
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PyTorch’s Imperative, Pythonic Programming Model

1K Optimized for productivity instead of performance
& - Easy to prototype and debug
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PyTorch’s Imperative, Pythonic Programming Model

1K Optimized for productivity instead of performance
& - Easy to prototype and debug

I@ - Miss optimizations due to no global information

class LinearLayer(Module): class FullBasicModel (nn.Module):
def __init__(self, in_sz, out_sz): def __init__(self):
super().__init__() super().__init__()
t1 = torch.randn(in_sz, out_sz) self.conv = nn.Conv2d(1, 128, 3)
self.w = nn.Parameter(t1) self.fc = LinearLayer (128, 10)
t2 = torch.randn(out_sz)
self.b = nn.Parameter(t2) def forward(self, x): Cannot directly fuse
t1 = self.conv(x) relu and matmul
def forward(self, activations): t2 = nn.functional.relu(t1)
t = torch.mm(activations, self.w) t3 = self.fc(t1)
return t + self.b return nn.functional.relu(t3)
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TensorFlow v.s. PyTorch

_________ |TensorFlow ______________|PyTorch

Execution Model
Debugging
Optimization

Target Users

Static graph (deferred execution)
Less direct (construct graph then run)
Graph-level, global optimizations

Production engineer, large-scale ML
systems

Imperative (eager execution)
Native Python (easy to debug)

Low optimizations without global
information

Researchers, ML engineers, rapid
prototyping
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PyTorch 2.0: The Best of TensorFlow and PyTorch

class LinearLayer(Module): class FullBasicModel (nn.Module):

def __init__(self, in_sz, out_sz): def __init__(self):
super().__init__(Q) super().__init__()
t1 = torch.randn(in_sz, out_sz) self.conv = nn.Conv2d(1, 128, 3)
self.w = nn.Parameter(t1) self.fc = LinearLayer (128, 10)
t2 = torch.randn(out_sz)
self.b = nn.Parameter(t2) def forward(self, x):

t1 = self.conv(x)

def forward(self, activations): t2 = nn.functional.relu(t1)
t = torch.mm(activations, self.w) t3 = self.fc(t1)
return t + self.b return nn.functional.softmax(t3)

torch.compile(model)
* Trace computation graph and compile it into optimized kernels
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PyTorch 2.0: The Best of TensorFlow and PyTorch

& - Capture graph while preserving imperative/eager model
& - Graph-level, global optimizations
|‘  Significant performance improvement for both training and inference

Number of models

GPU Inference (float16) GPU Training (float16)
200 . . » 200
—— TorchInductor I 0] = Torchinductor
150 4+ —— nvFuser /" -8 150 + —— nvFuser
—— NNC € — NNC /
100 4 —— PyTorch/XLA / ‘S 100 4 —— PyTorch/XLA —
—— ONNXRT 5 / Jﬁ/_r—’
504 — TVM - € 50
= T % 7
0 = 0 =_—'_"'_”—
10x  9x 8x 7x 6x 5x 4x 3x 2x 1x 0x 3x 2x 1x
Speedup greater than Speedup greater than

Cumulative Distribution Function (CDF) of speedups over PyTorch eager mode.

0x
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