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Recap: Machine Learning Systems

2

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

ML Compilation

Memory Management

GPU Programming



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Deep Neural Network

• Collection of simple trainable mathematical units that work together to 
solve complicated tasks
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A tensor algebra operator 

(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)
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Graph-Level Optimizations
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Example: Fusing Conv and Batch Normalization
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𝒁 𝒏, 𝒄, 𝒉, 𝒘 = 𝒀 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄 + 𝑷 𝒄

𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾(𝒄, 𝒅, 𝒖, 𝒗) + 𝑩(𝒏, 𝒄, 𝒉, 𝒘)

B

W, B, R, P are constant pre-trained weights
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Fusing Conv and BatchNorm
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𝑾𝟐 𝒏, 𝒄, 𝒉, 𝒘 = 𝑾 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄

𝑩𝟐 𝒏, 𝒄, 𝒉, 𝒘 = 𝑩 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄 + 𝑷(𝒄)

𝒁 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾𝟐 (𝒄, 𝒅, 𝒖, 𝒗) + 𝑩𝟐 (𝒏, 𝒄, 𝒉, 𝒘)
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Fusing Two Convs
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𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾𝟏(𝒄, 𝒅, 𝒖, 𝒗) + 𝑾𝟐(𝒄, 𝒅, 𝒖, 𝒗
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Automated Discovery of Graph Optimizations

• Week 5: Automate Graph-Level Optimizations

• Week 6: Multi-Level Superoptimization
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An Overview of Deep Learning Systems
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run 
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for 
each trainable weight

3. Weight update: use the loss value to update model weights 

11

Forward propagation

Model inputs Model prediction
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run 
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for 
each trainable weight

3. Weight update: use the loss value to update model weights 
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run 
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for 
each trainable weight

3. Weight update: use the loss value to update model weights 
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How can we parallelize ML training?
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Data Parallelism

ML Model

Dataset

GPU 1

GPU 2

GPU N

…
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GPU 1

Data Parallelism for Transformer
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GPU 1

Model Parallelism

• Split a model into multiple subgraphs and assign them to different devices
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GPU 2

Pipeline Model Parallelism for Transformer
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Tensor Model Parallelism for Transformer
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Important to Combine Different Parallelization Strategies

20Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Scale to 512 GPUs by combining data and model parallelism
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3D Parallelism for LLM Training

21https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
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An Overview of Machine Learning Systems
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Key Elements in Machine Learning Compilation

input: Tensor[(1, 3072)]

relu

𝑤2

𝑤1 linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)] Tensor multi-dimensional array that stores the 
input, output and intermediate results of model 
executions.

Tensor Functions that encodes 
computations among the input/output. Note 
that a tensor function can contain multiple 
operations
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ML Compilation Goals

There are many equivalent ways to implement ML computation. 

The common goals are:

Minimize memory usage.

Minimize execution time.

Maximize hardware utilization.
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How to Find Fastest Program?

25
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Existing Approach: Engineer Optimized Tensor Programs

• Hardware vendors provide operator libraries manually developed by 
software/hardware engineers

• cuDNN, cuBLAS, cuRAND, cuSPARSE for GPUs

• cudnnConvolutionForward() for convolution

• cublasSgemm() for matrix multiplication

Issues: 

• Cannot provide immediate support for new operators

• Increasing complexity of hardware -> hand-written kernels are suboptimal

26
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Automated Code Generation: TVM, Triton, Mojo, TileLang, …

27
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Input
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Automated search for performant 

programs:

✓ Immediate support for new operators

✓ Better performance than hand-written 

kernels
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An Overview of Machine Learning Systems
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Recap: GPU Memory is the Bottleneck in DNN Training

• The biggest model we can train is bounded by GPU memory

• Larger models often achieve better predictive performance

• Extremely critical for modern accelerators with limited on-chip memory

29

Forward pass

Backward pass

Need to keep all intermediate results alive
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Memory Efficient Training: Tensor Rematerialization

30

Forward pass
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Memory Efficient Training: Tensor Rematerialization
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Forward pass

Backward pass
Only store colored nodes

Rematerialize missing nodes

Rematerialize missing nodes

If we store a node every K steps on a 

N-node model.

Memory cost = O(N/K) + O(K)

Pick K = 𝑁

Rematerialize missing nodes

Checkpointing cost Rematerialization cost



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Efficiency: Zero Redundancy

• In distributed training, data/model/pipeline parallelism all involve redundancy
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Memory Efficient Training: Zero Redundancy

• Key idea: partition replicated parameters, gradients, and optimizer states 
across GPUs

• When needed, each GPU broadcast its local parameters/gradients to all 
other GPUs

33Figure from ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

Zero redundancy for 

data parallelism

This is achieved at 

the cost of extra 

communications!
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Balancing Computation/Memory/Communication Cost in 
DNN Training

34

Computation Cost Memory Cost

Zero Redundancy

Communication 

Cost

Tensor Rematerialization
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Part 2. PyTorch v.s. TensorFlow
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What are the key differences 

between them?
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TensorFlow’s Deferred Computation Model

36
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TensorFlow’s Deferred Computation Model
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TensorFlow’s Deferred Computation Model
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• Graph-level optimizations

• Deferred/lazy execution
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TensorFlow’s Deferred Computation Model
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• Graph-level optimizations

• Deferred/lazy execution

• Optimization with global 
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TensorFlow’s Deferred Computation Model

40

• Graph-level optimizations

• Deferred/lazy execution

• Optimization with global 
information

• Hard to debug
• Construct graphs and then run
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PyTorch’s Imperative, Pythonic Programming Model

41
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PyTorch’s Imperative, Pythonic Programming Model
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PyTorch’s Imperative, Pythonic Programming Model

• Optimized for productivity instead of performance

• Easy to prototype and debug

43
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PyTorch’s Imperative, Pythonic Programming Model

• Optimized for productivity instead of performance

• Easy to prototype and debug

• Miss optimizations due to no global information

44

relu(t3)

Cannot directly fuse 

relu and matmul 
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TensorFlow v.s. PyTorch

TensorFlow PyTorch

Execution Model Static graph (deferred execution) Imperative (eager execution)

Debugging Less direct (construct graph then run) Native Python (easy to debug)

Optimization Graph-level, global optimizations Low optimizations without global 

information

Target Users Production engineer, large-scale ML 

systems

Researchers, ML engineers, rapid 

prototyping

45
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PyTorch 2.0: The Best of TensorFlow and PyTorch

torch.compile(model)

• Trace computation graph and compile it into optimized kernels

46
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PyTorch 2.0: The Best of TensorFlow and PyTorch

• Capture graph while preserving imperative/eager model

• Graph-level, global optimizations

• Significant performance improvement for both training and inference

47

Cumulative Distribution Function (CDF) of speedups over PyTorch eager mode.
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