
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-779 Lecture 2:
ML Systems 101

(Basics + TensorFlow/PyTorch)

Zhihao Jia

Computer Science Department

Carnegie Mellon University

1
9/3/2025

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Machine Learning Systems

2

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

ML Compilation

Memory Management

GPU Programming

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Deep Neural Network

• Collection of simple trainable mathematical units that work together to
solve complicated tasks

4

A tensor algebra operator

(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph-Level Optimizations

5

conv3x3 conv1x1

Input

conv3x3

add

relu

…

Potential graph

transformations

conv3x3 conv1x1

Input

conv3x3

add

relu

batchnorm batchnorm

Input Computation

Graph

Optimized Computation

Graph

Fuse conv + batchnorm

conv

batchnorm

conv

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example: Fusing Conv and Batch Normalization

6

Conv2D

X W

BatchNorm

Y

Z

R P

𝒁 𝒏, 𝒄, 𝒉, 𝒘 = 𝒀 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄 + 𝑷 𝒄

𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾(𝒄, 𝒅, 𝒖, 𝒗) + 𝑩(𝒏, 𝒄, 𝒉, 𝒘)

B

W, B, R, P are constant pre-trained weights

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Fusing Conv and BatchNorm

7

Conv2D

X W

BatchNorm

Y

Z

R P

B

Conv2D

X W2

Z

B2

𝑾𝟐 𝒏, 𝒄, 𝒉, 𝒘 = 𝑾 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄

𝑩𝟐 𝒏, 𝒄, 𝒉, 𝒘 = 𝑩 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄 + 𝑷(𝒄)

𝒁 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾𝟐 (𝒄, 𝒅, 𝒖, 𝒗) + 𝑩𝟐 (𝒏, 𝒄, 𝒉, 𝒘)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Fusing Two Convs

8

Conv3x3

W1 W2 X

Conv3x3
Add

Conv3x3

W1 W2 X

Y Y

Add

𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾𝟏(𝒄, 𝒅, 𝒖, 𝒗) + ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾𝟐(𝒄, 𝒅, 𝒖, 𝒗)

֞ 𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾𝟏(𝒄, 𝒅, 𝒖, 𝒗) + 𝑾𝟐(𝒄, 𝒅, 𝒖, 𝒗

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Automated Discovery of Graph Optimizations

• Week 5: Automate Graph-Level Optimizations

• Week 6: Multi-Level Superoptimization

9

Mathematical

Properties of ML

Graph

Optimization

Generator

Graph

Optimization

Verifier

Candidate

Optimizations
Verified

Optimizations

Graph

Optimizer
… …

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

An Overview of Deep Learning Systems

10

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

Data Layout and Placement

Kernel Optimizations

Memory Optimizations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

11

Forward propagation

Model inputs Model prediction

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

12

Backward propagation

Model inputs Model prediction

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

13

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How can we parallelize ML training?

14

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Data Parallelism

ML Model

Dataset

GPU 1

GPU 2

GPU N

…

15

Gradients

Aggregation
Data

Parallelism

1. Partition dataset into batches 2. Forward/backward of each

batch on a GPU

3. Aggregate gradients

across GPUs

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU 1

Data Parallelism for Transformer

16

GPU 2

Input Matmul

Weights

Matmul
All

Reduce

Weights

Matmul Attention

Weights Weights

Input Matmul

Weights

Matmul

Weights

Matmul Attention

Weights Weights

All

Reduce

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU 1

Model Parallelism

• Split a model into multiple subgraphs and assign them to different devices

17

GPU 2

ML Model

Dataset

Model

Parallelism

Transfer

intermediate

results

between

devices

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU 2

Pipeline Model Parallelism for Transformer

18

GPU 1

Input Matmul

Weights

Matmul Copy

Weights

Matmul Attention

Weights Weights

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4GPU 1

GPU 2

Forward Backward

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tensor Model Parallelism for Transformer

19

GPU 1

GPU 2

Input Matmul

Weights

Matmul
All

Reduce

Weights

Matmul Attention

Weights Weights

Input Matmul

Weights

Matmul

Weights

Matmul Attention

Weights Weights

All

Reduce

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Important to Combine Different Parallelization Strategies

20Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Scale to 512 GPUs by combining data and model parallelism

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

3D Parallelism for LLM Training

21https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

D
a

ta
 P

a
ra

lle
lis

m

Pipeline Model Parallelism

T
e
n

s
o
r

M
o
d
e

l
P

a
ra

lle
lis

m

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

An Overview of Machine Learning Systems

22

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Algorithmic Optimization

Graph-Level Optimization

Parallelization / Distributed Training

ML Compilation

Memory Management

GPU Programming

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Key Elements in Machine Learning Compilation

input: Tensor[(1, 3072)]

relu

𝑤2

𝑤1 linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)] Tensor multi-dimensional array that stores the
input, output and intermediate results of model
executions.

Tensor Functions that encodes
computations among the input/output. Note
that a tensor function can contain multiple
operations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ML Compilation Goals

There are many equivalent ways to implement ML computation.

The common goals are:

Minimize memory usage.

Minimize execution time.

Maximize hardware utilization.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How to Find Fastest Program?

25

conv3x3 Matmul

Input

conv3x3

add

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Existing Approach: Engineer Optimized Tensor Programs

• Hardware vendors provide operator libraries manually developed by
software/hardware engineers

• cuDNN, cuBLAS, cuRAND, cuSPARSE for GPUs

• cudnnConvolutionForward() for convolution

• cublasSgemm() for matrix multiplication

Issues:

• Cannot provide immediate support for new operators

• Increasing complexity of hardware -> hand-written kernels are suboptimal

26

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Automated Code Generation: TVM, Triton, Mojo, TileLang, …

27

conv3x3 Matmul

Input

conv3x3

add

Automated search for performant

programs:

✓ Immediate support for new operators

✓ Better performance than hand-written

kernels

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

An Overview of Machine Learning Systems

28

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Algorithmic Optimization

Graph-Level Optimization

Parallelization / Distributed Training

ML Compilation

Memory Management

GPU Programming

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: GPU Memory is the Bottleneck in DNN Training

• The biggest model we can train is bounded by GPU memory

• Larger models often achieve better predictive performance

• Extremely critical for modern accelerators with limited on-chip memory

29

Forward pass

Backward pass

Need to keep all intermediate results alive

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Efficient Training: Tensor Rematerialization

30

Forward pass

Backward pass
Only store colored nodes

Rematerialize missing nodes

Rematerialize missing nodes

Rematerialize missing nodes

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Efficient Training: Tensor Rematerialization

31

Forward pass

Backward pass
Only store colored nodes

Rematerialize missing nodes

Rematerialize missing nodes

If we store a node every K steps on a

N-node model.

Memory cost = O(N/K) + O(K)

Pick K = 𝑁

Rematerialize missing nodes

Checkpointing cost Rematerialization cost

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Efficiency: Zero Redundancy

• In distributed training, data/model/pipeline parallelism all involve redundancy

32

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

� ≔ � − � ∇� � = � −
�

�
∇� (�)

Gradients
Aggregation

GPU 1

GPU 2

ML Model

Training Dataset

Model

Parallelism

� ≔ � − � ∇� � = � −
�

�
∇� (�)

Data parallelism replicates

model parameters

Model/pipeline parallelism

replicate intermediate tensors

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Efficient Training: Zero Redundancy

• Key idea: partition replicated parameters, gradients, and optimizer states
across GPUs

• When needed, each GPU broadcast its local parameters/gradients to all
other GPUs

33Figure from ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

Zero redundancy for

data parallelism

This is achieved at

the cost of extra

communications!

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Balancing Computation/Memory/Communication Cost in
DNN Training

34

Computation Cost Memory Cost

Zero Redundancy

Communication

Cost

Tensor Rematerialization

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Part 2. PyTorch v.s. TensorFlow

35

What are the key differences

between them?

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TensorFlow’s Deferred Computation Model

36

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TensorFlow’s Deferred Computation Model

37

𝑋

𝑊1
Matmul

𝑏1

Add ReLU Matmul Add

𝑊2

𝑏2

Softmax

• Graph-level optimizations

𝑋

𝑊1
Linear + ReLU

𝑏1

Linear

𝑊2

𝑏2

Softmax

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TensorFlow’s Deferred Computation Model

38

• Graph-level optimizations

• Deferred/lazy execution

𝑋

𝑊1
Linear + ReLU

𝑏1

Linear

𝑊2 𝑏2

Softmax

Auxiliary layers

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TensorFlow’s Deferred Computation Model

39

• Graph-level optimizations

• Deferred/lazy execution

• Optimization with global
information

𝑋

𝑊1
Linear + ReLU

𝑏1

Linear

𝑊2 𝑏2

Softmax

Auxiliary layers

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TensorFlow’s Deferred Computation Model

40

• Graph-level optimizations

• Deferred/lazy execution

• Optimization with global
information

• Hard to debug
• Construct graphs and then run

𝑋

𝑊1
Linear + ReLU

𝑏1

Linear

𝑊2 𝑏2

Softmax

Auxiliary layers

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch’s Imperative, Pythonic Programming Model

41

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch’s Imperative, Pythonic Programming Model

42

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch’s Imperative, Pythonic Programming Model

• Optimized for productivity instead of performance

• Easy to prototype and debug

43

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch’s Imperative, Pythonic Programming Model

• Optimized for productivity instead of performance

• Easy to prototype and debug

• Miss optimizations due to no global information

44

relu(t3)

Cannot directly fuse

relu and matmul

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TensorFlow v.s. PyTorch

TensorFlow PyTorch

Execution Model Static graph (deferred execution) Imperative (eager execution)

Debugging Less direct (construct graph then run) Native Python (easy to debug)

Optimization Graph-level, global optimizations Low optimizations without global

information

Target Users Production engineer, large-scale ML

systems

Researchers, ML engineers, rapid

prototyping

45

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch 2.0: The Best of TensorFlow and PyTorch

torch.compile(model)

• Trace computation graph and compile it into optimized kernels

46

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PyTorch 2.0: The Best of TensorFlow and PyTorch

• Capture graph while preserving imperative/eager model

• Graph-level, global optimizations

• Significant performance improvement for both training and inference

47

Cumulative Distribution Function (CDF) of speedups over PyTorch eager mode.

	Slide 1: 15-779 Lecture 2: ML Systems 101 (Basics + TensorFlow/PyTorch)
	Slide 2: Recap: Machine Learning Systems
	Slide 4: Deep Neural Network
	Slide 5: Graph-Level Optimizations
	Slide 6: Example: Fusing Conv and Batch Normalization
	Slide 7: Fusing Conv and BatchNorm
	Slide 8: Fusing Two Convs
	Slide 9: Automated Discovery of Graph Optimizations
	Slide 10: An Overview of Deep Learning Systems
	Slide 11: Recap: Stochastic Gradient Descent (SGD)
	Slide 12: Recap: Stochastic Gradient Descent (SGD)
	Slide 13: Recap: Stochastic Gradient Descent (SGD)
	Slide 14: How can we parallelize ML training?
	Slide 15: Data Parallelism
	Slide 16: Data Parallelism for Transformer
	Slide 17: Model Parallelism
	Slide 18: Pipeline Model Parallelism for Transformer
	Slide 19: Tensor Model Parallelism for Transformer
	Slide 20: Important to Combine Different Parallelization Strategies
	Slide 21: 3D Parallelism for LLM Training
	Slide 22: An Overview of Machine Learning Systems
	Slide 23: Key Elements in Machine Learning Compilation
	Slide 24: ML Compilation Goals
	Slide 25: How to Find Fastest Program?
	Slide 26: Existing Approach: Engineer Optimized Tensor Programs
	Slide 27: Automated Code Generation: TVM, Triton, Mojo, TileLang, …
	Slide 28: An Overview of Machine Learning Systems
	Slide 29: Recap: GPU Memory is the Bottleneck in DNN Training
	Slide 30: Memory Efficient Training: Tensor Rematerialization
	Slide 31: Memory Efficient Training: Tensor Rematerialization
	Slide 32: Memory Efficiency: Zero Redundancy
	Slide 33: Memory Efficient Training: Zero Redundancy
	Slide 34: Balancing Computation/Memory/Communication Cost in DNN Training
	Slide 35: Part 2. PyTorch v.s. TensorFlow
	Slide 36: TensorFlow’s Deferred Computation Model
	Slide 37: TensorFlow’s Deferred Computation Model
	Slide 38: TensorFlow’s Deferred Computation Model
	Slide 39: TensorFlow’s Deferred Computation Model
	Slide 40: TensorFlow’s Deferred Computation Model
	Slide 41: PyTorch’s Imperative, Pythonic Programming Model
	Slide 42: PyTorch’s Imperative, Pythonic Programming Model
	Slide 43: PyTorch’s Imperative, Pythonic Programming Model
	Slide 44: PyTorch’s Imperative, Pythonic Programming Model
	Slide 45: TensorFlow v.s. PyTorch
	Slide 46: PyTorch 2.0: The Best of TensorFlow and PyTorch
	Slide 47: PyTorch 2.0: The Best of TensorFlow and PyTorch

