15-779 Lecture 2:
ML Systems 101
(Basics + TensorFlow/PyTorch)

Zhihao Jia

Computer Science Department
Carnegie Mellon University

9/3/2025

Recap: Machine Learning Systems

]

L | i,

}

¥ |ed ¥
L

0 ' " 18 b\ g
(880 [-808- [-808- MLM d I H, ol 7 lgl Y lgge
¥ oe00s /¥ 0000/ ausee ode) (il Mo
. . o . B §

L 80 [

Parallelization / Distributed Training

GPU Programming

Ve

B & o

L
L
L
12.56 I 2.5GB/s
16GB/s 16GB/s
PCle Gen 4 VO (] PCle Gen 4 10

o)
~

Deep Neural Network

 Collection of simple trainable mathematical units that work together to

solve complicated tasks

S 2

o O

o £ —
Xg-—o Q—g
o

= O

v
$E90FZ0
m
2
(]
[oN

o
75853
2 /¢ o

A tensor (i.e., n-dimensional array)

A tensor algebra operator
(e.g., convolution, matrix mul)

Graph-Level Optimizations

Fuse conv + batchnorm

N . &

conv3x3

| relu |

Input Computation Potential graph
Graph transformations

Optimized Computation
Graph

Example: Fusing Conv and Batch Normalization
o

BatchNorm

A
} Conv2D E Y(n,c,h,w) = (Z X(n,d,h+u,w+v)*W(cd,u, v)) +B(n,c,h,w)
duyv

W, B, R, P are constant pre-trained weights

Z(n,c,h,w) =Y(n,c,h,w) * R(c) + P(c)

Fusing Conv and BatchNorm

g
! BatchNorm =
A
1 Conv2D E @

W,(n,c,h,w) =W(n,c, h,w) = R(c)

Z(n,c,h,w) = (Z X(nd h+uw+v) W, (c,d,u,v)) + B, (n,c,h,w)

duv
?

I
Conv2D
1

B,(n,c,h,w) = B(n,c,h,w) * R(c) + P(c)

Fusing Two Convs

Y Y
T 1
/Add\ /Conv3x3

Conv3x3 Conv3x3
/T X + 4
W, W, X W, W, X

Y(n,c hw) = <Z X(nd h+uw+v)* Wl(c,d,u,v)> + (Z X(nd,h+uw+7v)* Wz(c,d,u,v)>
duv du,v

Y, c,hw) = z X(n,d,h+u,w+v) * (Wy(c,du,v) + Wy(c,d,u,v))

du v

Automated Discovery of Graph Optimizations

* Week 5: Automate Graph-Level Optimizations
* Week 6: Multi-Level Superoptimization

Graph
el Optimizer

a Graph | Graph
o = Optimization = Optimization

Generator —/ ° Verifier
P
Mathematical

Properties of ML Candidate A% Verified
Optimizations Optimizations

An Overview of Deep Learning Systems

a . 2 B
8 ¢ 8 .0 [4.0
[-a80-\ _|-908- /808 MI M d I } " [(as) [
\ \ \ | B | I |
QUL EPPerdL e, O e V) (Rl 8 i g s
8 8 T - o o o - 8 DGE. ‘L"UD.

Parallelization / Distributed Training

Data Layout and Placement

Kernel Optimizations

Memory Optimizations

10

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs "8t Model prediction

Convolution

ooooooo
CCCCCC

11

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs "8t Model prediction

Convolution

ooooooo
CCCCCC

12

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

S <

w; = w; — yVL(w;) = w; —

Zn: VL;i(w;)
=1

13

How can we parallelize ML training?

S =

w; = w; —YVL(wy) = w; —

Zn: VL;(w;)
=1

14

Data Parallelism

NN
N e

ML Model

Gradients

Data
Parallelism

Aggregation

1. Partition dataset into batches 2. Forward/backward of each 3. Aggregate gradients

batch on a GPU across GPUs .

Data Parallelism for Transformer

GPU 1

>

All
Reduce

>

[
|
1
1

>

————————— -
e o o

>

Input

=

|
e e

>

All
Reduce
GPU 2 J

>

FTTTTTTTN

1
r
|
|
-

>

[—————
e

>

;.----_l

Input

Model Parallelism

» Split a model into multiple subgraphs and assign them to different devices

Model
Parallelism

~ Transfer

intermediate
results
between
devices

17

Pipeline Model Parallelism for Transformer

Tensor Model Parallelism for Transformer

GPU 1 ;

>

All
Reduce

>

>

————————— -
e e o

>

Input

All P
Reduce "'L-------.-
GPU 2 J

>

>

[—————
e

>

;.----_l

Input

1
1
1
1
[

Important to Combine Different Parallelization Strategies

m Model Parallel ®m Model + Data Parallel

100%

100%
r.én 80% 96%
= 82% 77% £3% 79%
T 60%
v
ﬁ 40%
= 20%
0%
1 2 4 8 64 128 256 512

Number of GPUS

Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. 20

3D Parallelism for LLM Training

Pipeline Model Parallelism

| 1 2
= Data Parallel Rank 0 <@
4 Pipeline Stage 0 N " Pipeline Stage 1 " Pipeline Stage 2 4 Pipeline Stage 3 A ©
g
{ () () () —
g 2) o — —) o)
—
% N Network Layers 0-7 _ Network Layers 8-15 v L Network Layers 16-23 o \Network Layers 24-31 / 2
-
— o
o 7))
o (-
(©)
o —
_'(E Data Parallel Rank 1 Scaling to a Trillion P. ;
(DU " Pipeline Stage 0 /" Pipeline Stage 1 /" Pipeline Stage 2 (" Pipeline Stage 3 caling to a friflion Farameters
' ' 1200 1084B
< _ £ < l ' £) 1000
§ I l E E E g 800
? — 2 () 2 (=) 2 2 o
~ ~ ~ @©
< g : : 8 400
__ Network Layers 0-7 _ Network Layers 8-15 _ Network Layers 16-23 _ Network Layers 24-31 g 200
— / 2
= 0
160 320 480 640 800
Number of GPUs

B Parameters ==@==Throughput

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

40

30

20

10

Throughput (PFLOPS)

21

L

An Overview of Machine Learning Systems

a . 2 B
8 ¢ 8 .0 [4.0
[-a80-\ _|-908- /808 MI M d I } " [(as) [
\ \ \ | B | I |
QUL EPPerdL e, O e V) (Rl 8 i g s
8 8 T - o o o - 8 DGE. ‘L"UD.

Algorithmic Optimization

‘ 0 c c “ “

Graph-Level Optimization

Parallelization / Distributed Training

ML Compilation
Memory Management

GPU Programming

22

Key Elements in Machine Learning Compilation

TT eeeee [(1, 10)]
softmax

Tensor [(1, 10)]

@—> linear
A

Tensor [(1, 200)]

Tensor [(1, 200)]

input: Tensor[(1, 3072)]

O

Tensor multi-dimensional array that stores the
input, output and intermediate results of model
executions.

Tensor Functions that encodes
computations among the input/output. Note
that a tensor function can contain multiple
operations

ML Compilation Goals

There are many equivalent ways to implement ML computation.
The common goals are:

Minimize memory usage.

Minimize execution time.

Maximize hardware utilization.

How to Find Fastest Program?

conv3x3 Matmul
y !
\

' C = tvm.compute((m, n),
lambda y, x: tvm.sum(Alk, y] % B[k, x], axis=k))

conv3x3

m Search Space of Possible Program Optimizations

Low-level Program Variants

inp_buffer AL[8][8], BL[8][8] for yo in range(128):

acc_buffer CL[8][8] for xo in range(128): for y in range(1024):

for yo in range(128): Clyo*8:yo*8+8] [x0%8:x0%8+8] = 0 for x in range(1024):
fOCd){g %gl{a;gié%gﬁi: for ko in range(128): ClylIx] =0
for I.w in range(128): for yi :!.nlrange(S): for k in range(1@24):
vdla.dma_copy2d(AL, Al[kox8:kox8+8] [yo*8:yo*8+8]) for xi in range(8): Clyl[x] += A[kl[yl * BI[k] [x]
vdla.dma_copy2d(BL, B[ko*8:ko*8+8] [x0o*8:x0*8+8]) for ki in ['3”93(8):.
vdla. fused_gemm8x8_add(CL, AL, BL) Clyo*8+yi] [xox8+x1i] +=

vdla.dma_copy2d(C[yo*8:yo*8+8, xox8: xo*8+8], CL) Alkox8+ki] [yox8+yi] * Blkox8+ki] [xo*8+xi]

Existing Approach: Engineer Optimized Tensor Programs

« Hardware vendors provide operator libraries manually developed by
software/hardware engineers

« cuDNN, cuBLAS, cuRAND, cuSPARSE for GPUs
« cudnnConvolutionForward() for convolution
 cublasSgemm() for matrix multiplication

« Cannot provide immediate support for new operators
* Increasing complexity of hardware -> hand-written kernels are suboptimal

26

Automated Code Generation: TVM, Triton, Mojo, TileLang, ...

conv3x3 Matmul

v

conv3x3

add

Automated search for performant
programs:

v" Immediate support for new operators

v Better performance than hand-written Thread - Latency [
: Tensorization - cor |
kernels Cooperation Hiding L

I Hardware

Loop Thread Cache
Transformations Bindings Locality

— — - o . . o o e e Eme e Eme Eme mme mme mme mme Eme mme Eme e e e mme e mmm mme mme mme mme e mme mme e e e e mmm e mm— w

27

L

An Overview of Machine Learning Systems

a . 2 B
8 ¢ 8 .0 [4.0
[-a80-\ _|-908- /808 MI M d I } " [(as) [
\ \ \ | B | I |
QUL EPPerdL e, O e V) (Rl 8 i g s
8 8 T - o o o - 8 DGE. ‘L"UD.

Algorithmic Optimization

‘ 0 c c “ “

Graph-Level Optimization

Parallelization / Distributed Training

ML Compilation
Memory Management

GPU Programming

28

Recap: GPU Memory is the Bottleneck in DNN Training
* The biggest model we can train is bounded by GPU memory

« Larger models often achieve better predictive performance

« Extremely critical for modern accelerators with limited on-chip memory

Forward pass Need to keep all intermediate results alive

090 00000 0 0000

Backward pass

29

Memory Efficient Training: Tensor Rematerialization

Backward pass
Only store colored nodes
Forward pass

_BORON RORON RORON RORG
9O

Rematerialize missing nodes

m Rematerialize missing nodes

Rematerialize missing nodes

30

Memory Efficient Training: Tensor Rematerialization

Backward pass
Only store colored nodes
Forward pass

If we store a node every K steps on a
N-node model. m
V\

Memory cost = O(N/K) + O(K)
Rematerialize missing nodes

Checkpointing cost Rematerialization cost c‘—».
Pick K= VN m Rematerialize missing nodes

Rematerialize missing nodes a1

Memory Efficiency: Zero Redundancy

* In distributed training, data/model/pipeline parallelism all involve redundancy

N —

€

o o

ML Model - A._\]

ﬁ] -

Training Dataset AI'\ |_> %
i= = V()= i~ Zvj(i)
‘1—1 ,

Data parallelism replicates

model parameters

Gradients

Aggregation

L

Training Dataset

Parallelism

Model

. 1=
‘ L

i— V()= i——ZV,-(i) ‘

7

j=1

Model/pipeline parallelism
replicate intermediate tensors

Memory Efficient Training: Zero Redundancy

« Key idea: partition replicated parameters, gradients, and optimizer states
across GPUs

 When needed, each GPU broadcast its local parameters/gradients to all

other GPUs
Memory K=12
C d Y=7.5B
gpu, gpy; gPUn_1 onsume N =64
Baseline (2+2+K)*W¥W | 120GB
Zero redundancy for Kaw
. 4GB
data parallelism Pos R
see ers Q2+ K)x¥
Posrg 2%+ — | 16.6GB
, Q2+2+ KW 1.9GB
OS+g+p i

Parameters Gradients Optimizer States

Figure from ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

33

Balancing Computation/Memory/Communication Cost in
DNN Training

Computation Cost Memory Cost

Tensor Rematerialization

Zero Redundancy

Communication

Cost

34

Part 2. PyTorch v.s. TensorFlow

What are the key differences
between them?

35

TensorFlow’s Deferred Computation Model

1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784]) # Placeholder for input.

y = tf.placeholder(tf.float32, [BATCH_SIZE, 101]) # Placeholder for labels.
W_1 = tf.Variable(tf.random_uniform([784, 100])) # 784x100 weight matrix.
b_1 = tf.Variable(tf.zeros ([100])) # 100-element bias vector.
layer_1 = tf.nn.relu(tf.matmul (x, W_1) + b_2) # Output of hidden layer.
W_2 = tf.Variable(tf.random_uniform([100, _101)) # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros ([101])) # 10-element bias vector.
layer_2 = tf.matmul(layer_1, W_2) + b_2 # Output of linear layer.

2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, vy)
train_op = tf.train.AdagradOptimizer (0.01) .minimize (loss)

3. Execute the graph on batches of input data.
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for step in range (NUM_STEPS) :
%x_data, y_data =
sess.run(train_op, {x: x_data, y: y_data}l)

Connect to the TF runtime.
Randomly initialize weights.
Train iteratively for NUM_STEPS.
Load one batch of input data.
Perform one training step.

H FH H= FH=

&

v

TensorFlow’s Deferred Computation Model

1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])
y = tf.placeholder (tf.flcat32, [BATCH_SIZE, 10])
. G _ L] L] L]
raph-level optimizations WL - tf.Variaple (L. randon uniform((784, 10011)
b_1 = tf.Variable(tf.zeros ([100]))

layer_1 = tf.nn.relu(tf.matmul (x, W_1) + b_2)

W_2 = tf.Variable(tf.random_uniform([100, _107]))
b_2 = tf.Variable(tf.zeros ([101))
layer_2 = tf.matmul (layer_1, W_2) + b_2

HH= H=

4

#
#
#

Placeholder for input.
Placeholder for labels.

784x100 weight matrix.
100-element bias vector.
Output of hidden layer.

100x10 weight matrix.
l0-element bias vector.
Output of linear layer.

2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits (layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01) .minimize (loss)

3. Execute the graph on batches of input data.
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for step in range (NUM_STEPS) :
x_data, y_data =
sess.run(train_op, {x: x_data, y: y_data})

Matmul Ad @Vw Ad Softmax Linear + ReLU

n

1
b

= H= = W e

Connect to the TF runtime.
Randomly initialize weights.
Train iteratively for NUM_STEPS.
Load one batch of input data.
Perform one training step.

37

TensorFlow’s Deferred Computation Model

1K Graph-level optimizations
& - Deferred/lazy execution

1. Construct a graph representing the model.

x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])

y = tf.placeholder (tf.flocat32, [BATCH_SIZE, 10]

W_1 = tf.Variable(tf.random_uniform([784, 1001])

b_1 = tf.Variable(tf.zeros ([100]))

layer_1 = tf.nn.relu(tf.matmul (x, W_1) + b_2)

W_2 = tf.Variable(tf.random_uniform([100, _107]))
b_2 = tf.Variable(tf.zeros ([101))
layer_2 = tf.matmul (layer_1, W_2) + b_2

HH= H=

)

) #

4

#
#
#

Placeholder for input.
Placeholder for labels.

784x100 weight matrix.
100-element bias vector.
Output of hidden layer.

100x10 weight matrix.
l0-element bias vector.
Output of linear layer.

2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits (layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01) .minimize (loss)

3. Execute the graph on batches of input data.

with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for step in range (NUM_STEPS) :
x_data, y_data =
sess.run(train_op, {x: x_data, y: y_data})

B

= H= = W e

Connect to the TF runtime.
Randomly initialize weights.
Train iteratively for NUM_STEPS.
Load one batch of input data.
Perform one training step.

Softmax

38

TensorFlow’s Deferred Computation Model

1K Graph-level optimizations
& - Deferred/lazy execution

|b » Optimization with global
information

1. Construct a graph representing the model.

x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])

y = tf.placeholder (tf.flocat32, [BATCH_SIZE, 10]

W_1 = tf.Variable(tf.random_uniform([784, 1001])

b_1 = tf.Variable(tf.zeros ([100]))

layer_1 = tf.nn.relu(tf.matmul (x, W_1) + b_2)

W_2 = tf.Variable(tf.random_uniform([100, _107]))
b_2 = tf.Variable(tf.zeros ([101))
layer_2 = tf.matmul (layer_1, W_2) + b_2

HH= H=

)

) #

4

#
#
#

Placeholder for input.
Placeholder for labels.

784x100 weight matrix.
100-element bias vector.
Output of hidden layer.

100x10 weight matrix.
l0-element bias vector.
Output of linear layer.

2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits (layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01) .minimize (loss)

3. Execute the graph on batches of input data.

with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for step in range (NUM_STEPS) :
x_data, y_data =
sess.run(train_op, {x: x_data, y: y_data})

B

= H= = W e

Connect to the TF runtime.
Randomly initialize weights.
Train iteratively for NUM_STEPS.
Load one batch of input data.
Perform one training step.

Softmax

39

&
15

T

L

TensorFlow’s Deferred Computation Model

Graph-level optimizations
Deferred/lazy execution

Optimization with global
information

Hard to debug

« Construct graphs and then run

1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])

=

Placeholder for input.

y = tf.placeholder (tf.flcat32, [BATCH_SIZE, 10]) # Placeholder for labels.
W_1 = tf.Variable(tf.random_uniform([784, 100])) # 784x100 weight matrix.
b_1 = tf.Variable(tf.zeros ([100])) # 100-element bias wvector.
layer_1 = tf.nn.relu(tf.matmul (x, W_1) + b_2) # Output of hidden layer.
W_2 = tf.Variable(tf.random_uniform([100, _107])) # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros ([101)) # 10-element bias vector.
layer_2 = tf.matmul (layer_1, W_2) + b_2 # Output of linear layer.

2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits (layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01) .minimize (loss)

3. Execute the graph on batches of input data.
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for step in range (NUM_STEPS) :
x_data, y_data = ...
sess.run(train_op, {x: x_data, y: y_data})

B

_|> Linear + ReLU Linear
1

Connect to the TF runtime.
Randomly initialize weights.
Train iteratively for NUM_STEPS.
Load one batch of input data.
Perform one training step.

= H= = W e

40

PyTorch's Imperative, Pythonic Programming Model

class LinearLayer(Module):
def __init__(self, in_sz, out_sz):
super().__init__()
t1 = torch.randn(in_sz, out_sz)
self.w = nn.Parameter(t1)
t2 = torch.randn(out_sz)
self.b = nn.Parameter(t2)

def forward(self, activations):
t = torch.mm(activations, self.w)
return t + self.b

class FullBasicModel (nn.Module):
def __init__(self):
super().__init__Q)
self.conv = nn.Conv2d(1, 128, 3)
self.fc = LinearLayer (128, 10)

def forward(self, x):
t1 = self.conv(x)
t2 = nn.functional.relu(t1)
t3 = self.fc(t1)
return nn.functional.softmax(t3)

41

PyTorch's Imperative, Pythonic Programming Model

Be Pythonic Data scientists are familiar with the Python language, its programming model, and its
tools. PyTorch should be a first-class member of that ecosystem. It follows the commonly established

design goals of keeping interfaces simple and consistent, ideally with one idiomatic way of doing
things. It also integrates naturally with standard plotting, debugging, and data processing tools.

Put researchers first PvyTorch strives to make writing models, data loaders, and optimizers as

easy and productive as possible. The complexity inherent to machine learning should be handled
internally by the PyTorch library and hidden behind intuitive APIs free of side-effects and unexpected
performance cliffs.

Provide pragmatic performance To be useful, PyTorch needs to deliver compelling performance,

although not at the expense of simplicity and ease of use. Trading 10% of speed for a significantly

simpler to use model is acceptable; 100% is not. Therefore, its implementation accepts added
complexity in order to deliver that performance. Additionally, providing tools that allow researchers
to manually control the execution of their code will empower them to find their own performance
improvements independent of those that the library provides automatically.

Worse is better [26] Given a fixed amount of engineering resources, and all else being equal, the
time saved by keeping the internal implementation of PyTorch simple can be used to implement
additional features, adapt to new situations, and keep up with the fast pace of progress in the field of
Al Therefore it is better to have a simple but slightly incomplete solution than a comprehensive but
complex and hard to maintain design.

42

PyTorch’s Imperative, Pythonic Programming Model

1K Optimized for productivity instead of performance
& - Easy to prototype and debug

43

PyTorch’s Imperative, Pythonic Programming Model

1K Optimized for productivity instead of performance
& - Easy to prototype and debug

I@ - Miss optimizations due to no global information

class LinearLayer(Module): class FullBasicModel (nn.Module):
def __init__(self, in_sz, out_sz): def __init__(self):
super().__init__() super().__init__()
t1 = torch.randn(in_sz, out_sz) self.conv = nn.Conv2d(1, 128, 3)
self.w = nn.Parameter(t1) self.fc = LinearLayer (128, 10)
t2 = torch.randn(out_sz)
self.b = nn.Parameter(t2) def forward(self, x): Cannot directly fuse
t1 = self.conv(x) relu and matmul
def forward(self, activations): t2 = nn.functional.relu(t1)
t = torch.mm(activations, self.w) t3 = self.fc(t1)
return t + self.b return nn.functional.relu(t3)

44

TensorFlow v.s. PyTorch

_________ |TensorFlow ______________|PyTorch

Execution Model
Debugging
Optimization

Target Users

Static graph (deferred execution)
Less direct (construct graph then run)
Graph-level, global optimizations

Production engineer, large-scale ML
systems

Imperative (eager execution)
Native Python (easy to debug)

Low optimizations without global
information

Researchers, ML engineers, rapid
prototyping

45

PyTorch 2.0: The Best of TensorFlow and PyTorch

class LinearLayer(Module): class FullBasicModel (nn.Module):

def __init__(self, in_sz, out_sz): def __init__(self):
super().__init__(Q) super().__init__()
t1 = torch.randn(in_sz, out_sz) self.conv = nn.Conv2d(1, 128, 3)
self.w = nn.Parameter(t1) self.fc = LinearLayer (128, 10)
t2 = torch.randn(out_sz)
self.b = nn.Parameter(t2) def forward(self, x):

t1 = self.conv(x)

def forward(self, activations): t2 = nn.functional.relu(t1)
t = torch.mm(activations, self.w) t3 = self.fc(t1)
return t + self.b return nn.functional.softmax(t3)

torch.compile(model)
* Trace computation graph and compile it into optimized kernels

46

PyTorch 2.0: The Best of TensorFlow and PyTorch

& - Capture graph while preserving imperative/eager model
& - Graph-level, global optimizations
|‘ Significant performance improvement for both training and inference

Number of models

GPU Inference (float16) GPU Training (float16)
200 . . » 200
—— TorchInductor I 0] = Torchinductor
150 4+ —— nvFuser /" -8 150 + —— nvFuser
—— NNC € — NNC /
100 4 —— PyTorch/XLA / ‘S 100 4 —— PyTorch/XLA —
—— ONNXRT 5 / Jﬁ/_r—’
504 — TVM - € 50
= T % 7
0 = 0 =_—'_"'_”—
10x 9x 8x 7x 6x 5x 4x 3x 2x 1x 0x 3x 2x 1x
Speedup greater than Speedup greater than

Cumulative Distribution Function (CDF) of speedups over PyTorch eager mode.

0x

47

	Slide 1: 15-779 Lecture 2: ML Systems 101 (Basics + TensorFlow/PyTorch)
	Slide 2: Recap: Machine Learning Systems
	Slide 4: Deep Neural Network
	Slide 5: Graph-Level Optimizations
	Slide 6: Example: Fusing Conv and Batch Normalization
	Slide 7: Fusing Conv and BatchNorm
	Slide 8: Fusing Two Convs
	Slide 9: Automated Discovery of Graph Optimizations
	Slide 10: An Overview of Deep Learning Systems
	Slide 11: Recap: Stochastic Gradient Descent (SGD)
	Slide 12: Recap: Stochastic Gradient Descent (SGD)
	Slide 13: Recap: Stochastic Gradient Descent (SGD)
	Slide 14: How can we parallelize ML training?
	Slide 15: Data Parallelism
	Slide 16: Data Parallelism for Transformer
	Slide 17: Model Parallelism
	Slide 18: Pipeline Model Parallelism for Transformer
	Slide 19: Tensor Model Parallelism for Transformer
	Slide 20: Important to Combine Different Parallelization Strategies
	Slide 21: 3D Parallelism for LLM Training
	Slide 22: An Overview of Machine Learning Systems
	Slide 23: Key Elements in Machine Learning Compilation
	Slide 24: ML Compilation Goals
	Slide 25: How to Find Fastest Program?
	Slide 26: Existing Approach: Engineer Optimized Tensor Programs
	Slide 27: Automated Code Generation: TVM, Triton, Mojo, TileLang, …
	Slide 28: An Overview of Machine Learning Systems
	Slide 29: Recap: GPU Memory is the Bottleneck in DNN Training
	Slide 30: Memory Efficient Training: Tensor Rematerialization
	Slide 31: Memory Efficient Training: Tensor Rematerialization
	Slide 32: Memory Efficiency: Zero Redundancy
	Slide 33: Memory Efficient Training: Zero Redundancy
	Slide 34: Balancing Computation/Memory/Communication Cost in DNN Training
	Slide 35: Part 2. PyTorch v.s. TensorFlow
	Slide 36: TensorFlow’s Deferred Computation Model
	Slide 37: TensorFlow’s Deferred Computation Model
	Slide 38: TensorFlow’s Deferred Computation Model
	Slide 39: TensorFlow’s Deferred Computation Model
	Slide 40: TensorFlow’s Deferred Computation Model
	Slide 41: PyTorch’s Imperative, Pythonic Programming Model
	Slide 42: PyTorch’s Imperative, Pythonic Programming Model
	Slide 43: PyTorch’s Imperative, Pythonic Programming Model
	Slide 44: PyTorch’s Imperative, Pythonic Programming Model
	Slide 45: TensorFlow v.s. PyTorch
	Slide 46: PyTorch 2.0: The Best of TensorFlow and PyTorch
	Slide 47: PyTorch 2.0: The Best of TensorFlow and PyTorch

