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Abstract

The hypercontractivity inequalities and the small-set expansion are two fundamental topics very
related to each other and play important roles in every fields and several recent breakthroughs in
theoretical computer science. This thesis proposal is focused on generalizations and applications of
hypercontractivity and small-set expansion such as (i) pseudorandom-set expansion, (ii) communi-
cation distillation, (iii) decouping, and (iv) property testing on k-wise uniformity. For each of these
problems, we try to propose new algorithms, improve complexity measures or give better bounds.



1 Introduction

The hypercontractivity inequalities and the small-set expansion are two fundamental topics very related
to each other and play important roles in every fields and several recent breakthroughs in theoretical
computer science. In this thesis proposal, we seek to establish more generalizations and applications of
hypercontractivity and small-set expansion in several aspects.

In most parts of this proposal, we discuss the hypercontractivity on Boolean function and the small-
set expansion on Boolean hypercube. We present some basic preliminaries here before further discussion.
These notations are consistent with [O’D14].

The domain of a Boolean function
f : {−1, 1}n → R,

is the Hamming cube {−1, 1}n. Such a boolean function can be represented as a unique multilinear
polynomial

f(x) =
∑
S⊆[n]

f̂(S)xS ,

where xS =
∏
i∈S xi. This is called Fourier expansion of function f and f̂(S) is the Fourier coefficient of

f on set S. We define the usual norm ‖f‖p = (E[f(x)p])
1/p

.
Let ρ ∈ [0, 1] and fixed x ∈ {−1, 1}n. We write y ∼ Nρ(x) to denote random Boolean string y is

drawn as following:

yi =

{
xi with probability ρ

uniformly random with probability 1− ρ

for each i ∈ [n] independently. If x ∼ {−1, 1}n is drawn uniformly and y ∼ Nρ(x), we say that (x,y) is
ρ-correlated.

We define the noise operator Tρ on functions f : {−1, 1}n → R be

Tρ(x) = E
y∼Nρ(x)

[f(y)].

1.1 Hypercontractivity inequality

In 1970, Bonami proved the full Hypercontractivity Theorem for uniform ±1 in [Bon70]:

Theorem 1.1 (The Hypercontractivity Theorem for uniform distribution). Let f : {−1, 1}n → R, and

let 1 ≤ p ≤ q ≤ ∞. Then ‖Tρf‖p ≤ ‖f‖q for 0 ≤ ρ ≤
√

p−1
q−1 .

The term “hypercontractivity” was introduce in [SHK72]. “-Contractivity” describes the fact that
Tρ is a “contraction” or “smoothing” operator while “hyper-” indicates that it can be even viewed as a
contractive operator from Lp({−1, 1}n) to Lq({−1, 1}n).

The Hypercontractivity Theorem is crucial and its applications appears in every fields of theoretical
computer science, such as expander graphs [HLW06], probability theory [BLM13], circuit complexity
[LMN89], coding theory [CCH10], hardness of approximation [KKMO07, DS05], etc.

One branch of applications is based on Generalized Bonami Lemma [Bon68] and Level-k Inequalities
[KKL88] proved via hypercontrctivity. These theorems show that low-degree polynomials are reason-
able. Some highlights using these results are Kahn-Kalai-Linial Theorem [KKL88] and Bourgain’s Sharp
Threshold Theorem [FB99]. We study some new applications along this track in Section 4 and 5.

Neveu [Nev76] shows that there is an equivalent two-function version of hypercontractivity which has
its own interests:

Theorem 1.2 (Two-Function Hypercontractivity Theorem for uniform distribution). Let f, g : {−1, 1}n →
R, and let 1 ≤ p ≤ q ≤ ∞. Then

E
(x,y)

ρ-correlated

[f(x)g(y)] = ‖f‖p‖g‖q′
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for 0 ≤ ρ ≤
√

p−1
q−1 .

1.2 Small-set expansion

Small set expansion is another nice application from hypercontractivity. (p, 2)-Hypercontracitvity Theo-
rem says for any function f : {−1, 1}n → R and 1 ≤ p ≤ 2,

‖T√p−1f‖2 ≤ ‖f‖p.

This theorem does not have a good combinatorial meaning by itself. However, the noise operator T can
be interpreted to an important concept, noise stability:

Stabρ[f ] = 〈f,Tρf〉 = ‖T√ρf‖22 ≤ ‖f‖21+ρ.

By focusing on function f : {−1, 1}n → {0, 1}, a very interesting meaning is shown in [KKL88]:

Theorem 1.3 (Small-Set Expansion Theorem). Let A ⊆ {−1, 1}n have volume α; i.e., let 1A : {−1, 1}n →
{0, 1} satisfy E[1A] = α. Then for any 0 ≤ ρ ≤ 1,

Stabρ[1A] = Pr
x∼{−1,1}n
y∼Nρ(x)

[x ∈ A,y ∈ A] ≤ α
2

1+ρ .

Consider the hypercube graph G = (V,E) with vertices V = {−1, 1}n and edges E = V × V , where
the weight of edge (x, y) is equal to Pr[(x,y) = (x, y)] when x,y are ρ-correlated. Then Theorem 1.3
suggests that for any subset A with volume α, choosing a random vertex x ∈ A and a random edge out

of x with probability proportional to its weight, we will go outside of A with high probability, 1− α
2

1+ρ .
Therefore this hypercube graph is a good small-set expander.

Similarly, by focusing on f, g : {−1, 1}n → {0, 1}, Two-Function Hypercontractivity Theorem (The-
orem 1.2) is also interpreted into a two-set generalization of the Small-Set Expansion Theorem due to
[MOR+06]:

Theorem 1.4. Let A,B ⊆ {−1, 1}n have volume α and β. Then for any 0 ≤ ρ ≤ 1,

Pr
x∼{−1,1}n
y∼Nρ(x)

[x ∈ A,y ∈ B] ≤ α
1
p β

1
q′ ,

for any p, q′ which satisfies x is (p, q, ρ)-hypercontractive.

Until recently, the small-set expansion is seen as a corollary of hypercontractivity. However in [Nai14]
they showed that these two theorems are equivalent. More discussion of the relationship between small-set
expansion and hypercontractivity will be mentioned in Section 3.

A recent breakthrough of proving 2-to-2 games conjecture is related to the pseudomrandom-set ex-
pansion in Grassmann graphs [KMS18]. We will study pseudorandom-set expansion and its relationship
to classical small-set expansion and hypercontractivity in Section 2.

1.3 Problem studied

Pseudorandom-set expansion. A recent breakthrough of proving the 2-to-2 games conjecture is com-
pleted by showing the pseudorandom-set expansion on Grassmann graphs [KMS18]. Roughly speaking, if
any subset of vertices on Grassmann graph is “pseudorandom” enough, it will have almost full expansion
on the graph. A similar property is also shown on Johnson graphs [KMMS18]. These pseudorandom-set
expansion results can be seen as an improvement of small-set expansion for special cases. We prove the
pseudorandom-set expansion on biased Boolean cube as an analog of that on Johnson graphs, with a very
short and comprehensive proof. Our goal is to give an analog of Grassmann graph expansion and hope
to inspire further directions for the unique games conjecture.
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Communication distillation. The communication distillation problem is about two parties with noisy
private randomness trying to extract a common random string via communication. We show that the
upper and lower bounds of this problem are both related to the small-set expansion based on the work
of [AC98, GR11]. We also show that communication distillation with high probability is related to some
properties of extreme points in the hypercontractivity domain.

Decoupling. The decoupling method refers to the idea of analyzing a complicated random sum involv-
ing dependent random variables by comparing it to a simpler random sum where some independence is
introduced between the variables. We present a new kind of “one-block decoupling” with better param-
eters than the classical results. We use decoupling and hypercontractivity to show tight tail bounds of
low-degree Boolean functions and tight versions of DFKO Theorems.

Property testing on k-wise uniformity. A probability distribution over {−1, 1}n is k-wise uniform
if its marginal distribution on every subset of k coordinates is the uniform distribution. These k-wise
uniform distributions satisfy that all low-degree Fourier coefficients of its density function is equal to
zero. Using the hypercontractivity inequalities to study the properties of low-degree Fourier weights of
Boolean function, we show better bounds for the Closeness and Testing problems of k-wise uniformity.

1.4 Organization

In Section 2, we discuss the pseudorandom-set expansion on Grassmann graphs, Johnson graphs and
biased Boolean hypercube as a generalization of small-set expansion. In Section 3, we study the commu-
nication distillation problem and its underlying relationship to small-set expansion and extreme points
of hypercontractivity domain. In Section 4, we discuss the decoupling method and tight bound of DFKO
Theorem as an application of hypercontractivity. In Section 5, we study property testing on k-wise
uniformity as another application of hypercontractivity.
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2 Pseudorandom-set expansion

2.1 Pseudorandom-set expansion on Grassmann and Johnson graphs

A recent exciting breakthrough is proving the 2-to-2-games conjecture which is a milestone of attacking the
unique games conjecture. [KMS18] completed the last missing piece of the proof by proving Grassmann
expansion hypothesis. The reduction from Grassmann expansion hypothesis to 2-to-2-games conjecture
is established along [DKK+18, KMS17, BKS18]. We will not explain about the details of the reduction
here, and concentrate more on the statement of Grassmann Expansion Hypothesis itself.

Grassmann expansion hypothesis says that pseudorandom sets in Grassmann graph have near-perfect
expansion. Here is the definition of Grassmann graph and pseudorandom set on it:

Definition 2.1 (Grassmann graph). Grassmann graph Grn,k is the graph on vertex set of all k-dimensional
subspaces of vector space Fn2 . There is an edge between subspaces H,H ′ if and only if dim(H∧H ′) = k−1.
For any subspaces A ≤ B ≤ Fn2 , we define Grn,k[A,B] be the subset of vertices H satisfying A ≤ H ≤ B.

A subset of vertices S ⊆ Grn,k is called (r, ε)-pseudorandom if for any subspace A ≤ B ≤ Fn2 with
dim(A) + codim(B) ≤ r, we have

|S ∩Grn,k[A,B]|
|Grn,k[A,B]|

≤ ε.

A precise statement of Grasssmann expansion hypothesis appears below (proved as Theorem 1.8 in
[KMS18]):

Theorem 2.2. For every constant 0 < η < 1, there exists a constant ε > 0 and a non-negative integer
r such that for large enough k and (after fixing k) sufficiently large n, the following holds. If subset of
veritices S ⊆ Grn,k is (r, ε)-pseudorandom, then its edge expansion Φ(S) ≥ 1− η.

The proof of Grassmann expansion hypothesis uses Fourier analysis on a selected subset of Boolean
cube (Cayley graph). This irregular setting makes it hard to figure out an exact orthogonal basis so the
proof of Grassmann expansion hypothesis in [KMS18] uses a lot of approximations and is long and not
easy to comprehend.

A similar Johnson expansion hypothesis is proved in [KMMS18] and the technical insight therein is
similar to the proof technique of Grassmann expansion hypothesis in [KMS18]. Here is the definition of
generalized Johnson graph and pseudorandom set on it.

Definition 2.3 (Johnson graph). Johnson graph Jn,k,t is the graph whose vertices are subsets of size k
in [n]. There is an edge between vertices u, v if and only if the intersection of u and v is of size t. For
any subset R ⊆ [n], we define Jn,k,t[R] be the subset of vertices u in Jn,k,t satisfying u ⊇ R.

A subset of vertices S ⊆ Jn,k,t is called (r, ε)-pseudorandom if for any subset R ⊆ [n] of size at most
r, we have ∣∣∣∣Pr

u⊇R
[u ∈ S]−Pr

u
[u ∈ S]

∣∣∣∣ ≤ ε.
If we represent a subset [n] as a Boolean string of length n, then we can treat the vertices of Johnson

graph Jn,k,t as a slice of the Boolean cube of dimension n. Johnson graphs and slices of the Boolean
hypercube are the subject of considerable interest recently, see [Fil14, FM16, FKMW18]. Johnson graphs
and slices of the Boolean hypercube have been used in numerous applications: for the study of sharp
thresholds of graph properties [FB99], for direct product tests [IKW12] and for a recent candidate hard
unique game [KM16].

A precise statement of Johnson expansion hypothesis appears below (proved as Theorem 1.3 in
[KMMS18]):

Theorem 2.4. For every constant 0 < α < 1 and 0 < η < 1, there exists a constant ε > 0 and a
non-negative integer r such that for large enough k and (after fixing k) sufficiently large n, the following
holds. If subset of veritices S ⊆ Jn,k,αk is (r, ε)-pseudorandom, then its edge expansion Φ(S) ≥ 1− η.

The proof of Johnson graph hypothesis is slightly easier comparing to the proof of Grassmann graph
hypothesis due to the easier structure of Johnson graph. However it is still hard to get the exact orthogonal
basis so the proof still need a lot of approximation and complicated calculation.
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2.2 Our current progress and goal

As mentioned above, Johnson graph can be seen as a slice of the Boolean hypercube. This connection
leads us to consider using biased distribution on Boolean hypercube to simplify the proof.

Consider p-biased Fourier analysis on {−1, 1}n with p = k/n. This distribution concentrates on
Boolean strings with k bits of −1 which is similar to Johnson Graph Jn,k,t. Then we consider the noise
operator with parameter ρ = t/k, which means that for each bit with probability ρ we keep it, and with
probability 1− ρ we redraw the bit for p-biased distribution. This is an analog of edges in Jn,k,t since for
any Boolean strings with k bits of −1’s, it is most likely that we keep t bits of −1’s in the string choose
other k − t of −1’s uniformly randomly among the rest bits.

We define a subset A ⊆ {−1, 1}n be (r, ε)-pseudorandom if for any subcube R ⊆ {−1, 1}n with
codimension at most r, ∣∣∣∣Pr

x∈R
[x ∈ A]−Pr

x
[x ∈ A]

∣∣∣∣ ≤ ε.
We currently prove the following analog of Johnson graph hypothesis.

Theorem 2.5. For every constant 0 < ρ < 1 and 0 < η < 1, there exists a constant ε > 0 and a
non-negative integer r such that for any p-biased distribution, the following holds. If subset of Boolean
cube A ⊆ {−1, 1}n is (r, ε)-pseudorandom, then

Pr
x∼π⊗n
y∼Nρ(x)

[y ∈ A|x ∈ A] ≤ η.

Theorem 2.5 is proposed as an open problem in [KMMS18]. We prove this theorem and also remove
the assumption that p should be tiny (k should be much smaller than n in Johnson graph). The proof of
Theorem 2.5 is simple and clean comparing to the proof of Grassmann and Johnson graph hypothesis in
[KMS18, KMMS18]. The proof uses some tricks of randomization/symmetrization of Boolean functions
which is also used in the proof of Bourgain’s Sharp Threshold Theorem in [FB99].

Our ultimate goal is to give an analog of Grassmann graph hypothesis. This may simplify the proof in
[KMS18] and may give some inspirations on the further direction of attacking the unique games conjecture.
One possible approach is to construct a q-analog of Fourier analysis on the Boolean hypercube and a
q-analog of hypercontractivity, since Grassmann graph is a q-analog of Johnson graph with q = 2.
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3 Communication distillation

3.1 Hypercontractivity and small-set expansion on general finite domain

In fact we can generalize our definition of hypercontractivity and small-set expansion to any joint fi-
nite probability space ((X ,Y), µ), and its product ((X ,Y)n, µ⊗n). We say that (X,Y ) ∼ µ is (p, q)-
hypercontractive if for any function f : X → R and g : Y → R,

E
(X,Y )∼µ

[f(X)g(Y )] ≤ ‖f‖p‖g‖q′ .

In fact even with this generalized definition, Small-Set Expansion Theorem is not a weaker statement
than Hypercontractivity Theorem. They are equivalent as well as similar statements in other measures,
like KL divergence and mutual information.

Theorem 3.1. The following statements are equivalent:

1) (X,Y ) ∼ µ is (p, q)-hypercontractive;

2) D(ν‖µ) ≥ 1
pD(νX‖µX) + 1

q′D(νY ‖µY ) for any distribution ν on space X × Y;

3) Pr(x,y)∼µ⊗n [x ∈ A,y ∈ B] ≤ |A|
1
p |B|

1
q′ for all n, A ⊆ Xn, B ⊆ Yn;

4) I(U ;X,Y ) ≥ 1
pI(U ;X) + 1

q′ I(U ;Y ) for any random variable U , where (X,Y ) ∼ µ.

Theorem 3.1 is first mentioned and proved in [Nai14]. They showed that 1), 2) and 4) are equivalent.
They did not mention about small-set expansion explicitly, but the 3) is hidden in the proof to be equal
to all other statements. We refined the proof and pointed out the equivalence of small-set expansion and
hypercontractivity. As far as we know, [Nai14] is the very first study showing that small-set expansion is
as strong as hypercontractivity.

If we fix subsets A ⊆ Xn, B ⊆ Yn, and try to optimize the bound in Small-Set Expansion Theorem,
we get the following corollary:

Corollary 3.2. For any n, and subsets A ⊆ Xn, B ⊆ Yn,

Pr
(x,y)∼µ⊗n

[x ∈ A,y ∈ B] ≤ inf
(p,q)-hypercontractive on µ

|A|
1
p |B|

1
q′

This corollary is tight because of Theorem 3.1, the equivalence of small-set expansion and hypercon-
tractivity. That is to say, for (p, q) not hypercontractive on µ, there exists some n, A ⊆ Xn, B ⊆ Yn,
such that

Pr
(x,y)∼µ⊗n

[x ∈ A,y ∈ B] > |A|
1
p |B|

1
q′ .

We propose a stronger conjecture that Small-Set Expansion Theorem is still tight even when we fix

ratio log |B|
log |A| to any constant.

Conjecture 3.3. If we fix log |B|
log |A| to be some constant c, then Corollary 3.2 is still tight—i.e.,

lim
n→∞

inf
log |B|
log |A|=c

{
log Pr(x,y)∼µ⊗n [x ∈ A,y ∈ B]

log |A|

}
= sup

(p,q)-hypercontractive on µ

{
1

p
+
c

q′

}
;

Or the equivalent KL-divergence form is

inf
D(νy‖µy)

D(νx‖µx)
=c

{
D(ν‖µ)

D(νx‖µx)

}
= sup

(p,q)-hypercontractive on µ

{
1

p
+
c

q′

}
.

Conjecture 3.3 is directly related to communication-assisted agreement distillation mentioned in the
next subsection.
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3.2 Communication-assisted agreement distillation

Consider the following problem. Suppose Alice holds string x ∈ Xn and Bob holds string y ∈ Yn where
each bit pair (xi,yi) is drawn from the joint distribution µ independently. Alice and Bob want to extract
a common uniformly random string with length k. We aim to maximize the agreement probability with
limited communication between Alice and Bob.

In [BM11], they studied this scenario with zero communication, for the motivation from the problem
of extracting a unique identification string from process variations. Furthermore, this communication-free
scenario with noisy Boolean strings x and y, is also related to a widely interested information-theoretic
conjecture proposed in [CK14]: the dictator function maximize mutual information on noisy Boolean
inputs. The communication-assisted agreement version of this distillation problem is related to the
question of communication with imperfectly shared randomness in [CGMS17].

In this work we care less about the length of string x and y, assuming n→∞.
We focus on the trade-off between communication and success probability in this agreement distil-

lation problem. I.e., what is the exact maximum agreement probability for any fixed number of bits in
communication? In [GR16], they proved the following result.

Theorem 3.4 (Generalized version of Theorem 4.1, [GR16]). Suppose Alice holds string x and Bob holds
string y as in the above setting (x ∈ Xn, y ∈ Yn with sufficiently large length n, X and Y are finite sets,
(xi,yi) is drawn from joint distribution µ independently). Alice decides a uniformly distributed Boolean
string gA(X) ∈ {0, 1}k. Bob wants to agree on gA(X) after two-way communication with Alice. For any
communication protocol exchanging ck bits, the maximum success probability will be at most 2−γk where

γ = sup
(p,q)-hypercontractive on µ

{
1

p
+

1− c
q′
− 1

}
.

In [GR16], they focused on binary symmetric channel and binary erasure channel distortion, but their
proof works for general joint distribution. We also rephrase the proof in a more comprehensive way using
Small-Set Expansion Theorem and Theorem 3.1.

On the other side, we want to construct a protocol to meet the upper bound in Theorem 3.4. Theo-
rem 4.1 in [AC98] indicates a way to construct a protocol, which is also related to the expansion property.

Theorem 3.5 (Theorem 4.1 in [AC98]). Suppose A ⊆ Xm, B ⊆ Ym satisfies |B| = |A|1−c and

Pr
(x,y)∼µ⊗m

[y ∈ B|x ∈ A] = |A|γ ,

Then we can construct a protocol such that Alice first proposes uniformly random Boolean string gA(x) of
length k, and then sends ck bits to Bob. Bob can guess gA(x) successfully with probability at least 2−γk.

Therefore if we wants to maximize the success probability using the protocol proposed in Theorem 3.5,
it is equal to say that we want to maximize γ among all sets A,B satisfying |B| = |A|1−c. This is exactly
what states in Conjecture 3.3. Therefore Conjecuture 3.3 induces tightness of the bound in Theorem 3.4:

Corollary 3.6. If Conjecture 3.3 holds, then Theorem 3.4 is tight. I.e., there exists an one-way commu-
nication protocol with ck bits, and the probability of Bob guessing gA(x) successfully is 2−γk, for any

γ > sup
(p,q)-hypercontractive on µ

{
1

p
+

1− c
q′
− 1

}
.

3.3 Further discussion on communication distillation and hypercontractivity

The whole discussion above gives us a general scheme for communication distillation in any finite proba-
bility space ((X ,Y), µ). When we try to calculate the exact bound for some interesting special cases, like
BEC or BSC channels focused in [GR16], it remains to calculate the quantity

sup
(p,q)-hypercontractive on µ

{
1

p
+

1− c
q′
− 1

}
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for these specific probability spaces. The underlying general discussion is a fundamental question: In some
specific probability spaces, like BEC and BSC channels, can we calculate the exact hypercontractivity
domains?

For BEC channel, this is just the classical case that x and y are ρ-correlated Boolean strings and
we know the exact hypercontractivity domain. For BSC channel, Nair and Wang shows partial result in
[NW16].

Theorem 3.7 (Theorem 3, [NW16]). Consider a uniform Boolean random variable X passed through a
binary erasure channel BEC(ε) producing the ternary output Y . If

ε− 1

2
≤ 3

2
(q′ − 1),

then X and Y is (p, q)-hypercontractive if and only if

1− ε ≤ (p− 1)(q′ − 1).

Exact computation of the hypercontractivity parameters has been a challenging task with very few
exact characterizations. But if we only want to know how many bits in communication is needed to
get the agreement distillation with high probability, then we do not really need to calculate the exact
hypercontractivity domain.

Theorem 3.4 can be rephrased as following: if we want to achieve success probability 2−γk in the
communication distillation problem, we needs to exchange at least ck bits in the protocol where

c ≥ sup
(p,q)-hypercontractive on µ

{
1− q′

(
1 + γ − 1

p

)}
.

If we want to achieve Ω(1) probability for any k, then we need γ → 0. Then want to calculate the

minimum of q′

p′ . If we define q∗(p) as the infimum value of q such that µ is (p, q)-hypercontractive with

fixed p. Then q∗(p)′

p′ is a monotone increasing in p as mentioned in Theorem 1, [AGKN13]. Therefore we
only need to calculate

lim
p→1

q∗(p)′

p′
= lim
p→1

p− 1

q∗(p)− 1
.

.
We propose the following conjecture:

Conjecture 3.8. Suppose
q∗(p) = inf

(p,q)-hypercontractive on µ
q.

If µ is the joint distribution that Y is a uniform random Boolean variable and X is the ternary output
of Y passed through a binary erasure channel BEC(ε), then

lim
p→1

p− 1

q∗(p)− 1
= log 1−ε

2

1

2
,

when ε > 1
2 .

This gives the tight bound for communication distillation problem with high probability and reverse
BEC channel.
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4 Decoupling

4.1 Introduction

In this section, we focus on decoupling. Broadly speaking, decoupling refers to the idea of analyzing a
complicated random sum involving dependent random variables by comparing it to a simpler random
sum where some independence is introduced between the variables. For perhaps the simplest example,
if (aij)

n
i,j=1 ∈ R and x1, . . . ,xn,y1, . . . ,yn are independent uniform ±1 random variables, we might ask

how the moments of

n∑
i,j=1

aijxixj , and its “decoupled version”

n∑
i,j=1

aijxiyj

compare. The theory of decoupling inequalities developed originally in the study of Banach spaces,
stochastic processes, and U -statistics, mainly between the mid-’80s and mid-’90s; see [dlPG99] for a
book-length treatment.

The powerful tool of decoupling seems to be relatively under-used in theoretical computer science. (A
recent work of Makarychev and Sidirenko [MS14] provides an exception, though they use a much different
kind of decoupling than the one studied in this section.) In this work we will observe several places where
decoupling can be used in a “black-box” fashion to solve or simplify problems quite easily.

The main topic of the section, however, is to study a partial form decoupling that we call “one-block
decoupling”. The advantage of one-block decoupling is that for degree-k polynomials we can achieve
bounds with only polynomial dependence on k, as opposed to the exponential dependence on k that arises
for the standard full decoupling. Although one-block decoupling does not introduce as much independence
as full decoupling does, we show several applications where one-block decoupling is sufficient.

Let f denote a multilinear polynomial of degree at most k in n variables x = (x1, . . . , xn), with
coefficients aS from a separable Banach space:

f(x) =
∑
S⊆[n]
|S|≤k

aSxS ,

where we write xS =
∏
i∈S xi for brevity. (The coefficients aS will be real in all of our applications;

however we allow them to be from a Banach space since the proofs are no more complicated.)
We begin by defining our notion of partial decoupling:

Definition 4.1. The one-block decoupled version of f , denoted f̆ , is the multilinear polynomial over 2n
variables y = (y1, . . . , yn) and z = (z1, . . . , zn) defined by

f̆(y, z) =
∑
S⊆[n]

1≤|S|≤k

aS
∑
i∈S

yizS\i.

In other words, each monomial term like x1x3x7 is replaced with y1z3z7 + z1y3z7 + z1z3y7. In case f
is homogeneous we have the relation f̆(x, x) = kf(x).

Let us also recall the traditional notion of decoupling:

Definition 4.2. The (fully) decoupled version of f , which we denote by f̃ , is a multilinear polynomial

over k blocks x(1), . . . , x(k) of n variables; each x(i) is x(i) = (x
(i)
1 , . . . , x

(i)
n ). It is formed as follows: for

each monomial xS in f , we replace it with the average over all ways of assigning its variables to different
blocks. More formally,

f̃(x(1), . . . , x(k)) = a∅ +
∑
S⊆[n]

1≤|S|≤k

(k − |S|)!
k!

· aS
∑

injective
b:S→[k]

∏
i∈S

x
(b(i))
i .
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The definition is again simpler if f is homogeneous. For example, if f is homogeneous of degree 3,
then each monomial in f like x1x3x7 is replaced in f̃ with

1

6
(w1y2z3 + w1z2y3 + y1w2z3 + y1z2w3 + z1w2y3 + z1y2w3).

(Here we wrote w, y, z instead of x(1), x(2), x(3), for simplicity.) Note that f̃(x, x, . . . , x) = f(x) always
holds, even if f is not homogeneous.

We conclude by comparing the two kinds of decoupling. Assume for simplicity that f is homogeneous of
degree k. The fully decoupled version f̃(x(1), . . . , x(k)) is in “block-multilinear form”; i.e., each monomial
contains exactly one variable from each of the k “blocks”. This kind of structure has often been recognized
as useful in theoretical computer science; see, e.g., [KN08, Lov10, KM13, AA15]. By contrast, the one-

block decoupling f̆(y, z) does not have such a simple structure; we only have that each monomial contains
exactly one y-variable. Nevertheless we will see several examples in this section where having one-block
decoupled form is just as useful as having fully decoupled form. And as mentioned, we will show that it
is possible to achieve one-block decoupling with only poly(k) parameter losses, whereas full decoupling
in general suffers exponential losses in k.

Remark 4.3. We have also chosen different “scalings” for the two kinds of decoupling. For example,
in the homogeneous case, we have f̃(y, z, z, . . . , z) = 1

k · f̆(y, z) and also Var[f̃ ] = 1
(k−1)! Var[f̆ ] for

f : {±1}n → R.

4.1.1 Classical decoupling inequalities

Traditional decoupling inequalities compare the probabilistic behavior of f and f̃ under independent
random variables (usually symmetric ones; e.g., standard Gaussians). The easier forms of the inequalities
compare expectations under a convex test function; e.g., they can be used to compare p-norms. The
following was essentially proved in [dlP92]; see [dlPG99, Theorem 3.1.1,(3.4.23)–(3.4.27)]:

Theorem 4.4. Let Φ : R≥0 → R
≥0 be convex and nondecreasing. Let x = (x1, . . . ,xn) consist of

independent real random variables with all moments finite, and let x(1), . . . ,x(k) denote independent
copies. Then

E
[
Φ
(∥∥∥f̃(x(1), . . . ,x(k)

)∥∥∥)] ≤ E
[
Φ
(
Ck‖f(x)‖

)]
,

where Ck = kO(k) is a constant depending only on k.

Another line of research gave comparisons between tail bounds for f and f̃ . This culminated in the
following theorem from [dlPMS95, Gin98]; see also [dlPG99, Theorem 3.4.6]:

Theorem 4.5. In the setting of Theorem 4.4, for all t > 0,

Pr
[∥∥∥f̃(x(1), . . . ,x(k)

)∥∥∥ > Ckt
]
≤ Dk Pr

[
‖f(x)‖ > t

]
,

where Ck = Dk = kO(k). The analogous reverse bound also holds.

4.1.2 DFKO theorems

A key theme in analysis of Boolean functions is the dichotomy between functions with “Gaussian-like”
behavior and functions that are essentially “juntas”. Recall that f is said to be an (ε, C)-junta if ‖f−g‖22 ≤
ε for some g : {±1}n → R depending on at most C input coordinates. Partially exemplifying this theme is
a family of theorems stating that any Boolean function f which is not essentially a junta must have a large
“Fourier tail” — something like

∑
|S|>k f̂(S)2 > δ. Examples of such results include Friedgut’s Average

Sensitivity Theorem [Fri98], the FKN Theorem [FKN02] (sharpened in [JOW12, O’D14]), the Kindler–
Safra Theorem [KS02, Kin02], and the Bourgain Fourier Tail Theorem [Bou02]. The last of these implies
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that any f : {±1}n → {±1} which is not a (.01, kO(k))-junta must satisfy
∑
|S|>k f̂(S)2 > k−1/2+o(1).

This k−1/2+o(1) bound was made more explicit in [KN06], and the optimal bound of Ω(k−1/2) was
obtained in [KO12]. These “Fourier tail” theorems have had application in fields such as PCPs and
inapproximability [Kho02, Din07], sharp threshold theory [FK96], extremal combinatorics [EFF12], and
social choice [FKN02].

All of the aforementioned theorems concern Boolean-valued functions; i.e., those with range {±1}.
By contrast, the DFKO Fourier Tail Theorem [DFKO07] is a result of this flavor for bounded functions;
i.e., those with range [−1,+1].

DFKO Fourier Tail Theorem. Suppose f : {±1}n → [−1,+1] is not an (ε, 2O(k)/ε2)-junta. Then∑
|S|>k

f̂(S)2 > exp(−O(k2 log k)/ε).

Most applications do not use this Fourier tail theorem directly. Rather, they use a key intermediate
result, [DFKO07, Theorem 3], which we will refer to as the “DFKO Inequality”. This was the case, for
example, in a recent work on approximation algorithms for the Max-kXOR problem [BMO+15].

DFKO Inequality. Suppose f : {±1}n → R has degree at most k and Var[f ] ≥ 1. Let t ≥ 1 and
suppose that MaxInf [f ] ≤ 2−O(k)/t2. Then Pr[|f(x)| > t] ≥ exp(−O(t2k2 log k)).

Returning to the theme of “Gaussian-like behavior” versus “junta” behavior, we may add that the
DFKO results straightforwardly imply (by the Central Limit Theorem) analogous, simpler-to-state results
concerning functions on Gaussian space and Hermite tails. We record these generic consequences here;
see, e.g., [O’D14, Sections 11.1, 11.2] for a general discussion of such implications, and the definitions of

Hermite coefficients f̂(α).

Corollary 4.6. Any f : Rn → [−1,+1] satisfies the Hermite tail bound∑
|α|>k

f̂(α)2 > exp(−O(k2 log k)/Var[f ]).

Furthermore, suppose z is a standard n-dimensional Gaussian random vector and t ≥ 1. Then any n-
variate polynomial f of degree at most k with Var[f(z)] ≥ 1 satisfies Pr[|f(z)| > t] ≥ exp(−O(t2k2 log k)).

Even though the Gaussian results in Corollary 4.6 are formally easier than their Boolean counterparts,
we are not aware of any way to prove them — even in the case n = 1 — except via DFKO.

Tightness of the bounds. In [DFKO07, Section 6] it is shown that the results in Corollary 4.6 are
tight, up to the log k factor in the exponent; this implies the same statement about the DFKO Fourier
Tail Theorem and the DFKO Inequality. The tight example in both cases is essentially the univariate,
degree-k Chebyshev polynomial.1

In the next subsection we will show how to use our one-block decoupling result to remove the log k in
the exponential from both DFKO theorems. The results immediately transfer to the Gaussian setting,
and we therefore obtain the tight exp(−Θ(k2)) bound for all versions of the inequality.

4.2 Our results

We now state our new versions of Theorems 4.4, 4.5 which apply only to one-block decoupling, but that
have polynomial dependence of Ck on k.

1Formally speaking, [DFKO07, Section 6] only argues tightness of the Boolean theorems, but their constructions are
directly based on the degree-k Chebyshev polynomial applied to a single standard Gaussian.
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As before, let f(x) =
∑
|S|≤k aSxS be an n-variate multivariate polynomial of degree at most k with

coefficients aS in a Banach space; let x = (x1, . . . ,xn) consist of independent real random variables with
all moments finite, and let y, z be independent copies. We consider three slightly different hypotheses:

H1: x1, . . . ,xn ∼ N(0, 1) are standard Gaussians.

H2: x1, . . . ,xn are uniformly random ±1 values.

H3: x1, . . . ,xn are uniformly random ±1 values and f is homogeneous.

Theorem 4.7. If Φ : R≥0 → R
≥0 is convex and nondecreasing, then

E
[
Φ
(∥∥∥f̆(y, z)

∥∥∥)] ≤ E
[
Φ
(
Ck‖f(x)‖

)]
.

Also, if t > 0 (and we assume f ’s coefficients aS are real under H2, H3), then

Pr
[∥∥∥f̆(y, z)

∥∥∥ > Ckt
]
≤ Dk Pr

[
‖f(x)‖ > t

]
.

Here

Ck =


O(k) under H1,

O(k2) under H2,

O(k3/2) under H3,

Dk =

{
O(k) under H1,

kO(k) under H2, H3.

Remark 4.8. The bound Ck = O(k) under H1 is best possible (assuming that Dk ≤ exp(O(k2))).

The key idea of the proof is to express f̆(y, z) as a “small” linear combination of expressions of the
form f(αix+ βiy), where α2

i + β2
i = 1 (in the Gaussian case) or |αi|+ |βi| = 1 (in the Boolean case).

4.2.1 Main application: tight versions of the DFKO theorems

One main application of Theorem 4.7 is the tight version of DFKO theorems. we first get an optimal
version of the DFKO Inequality in the Gaussian setting.

Theorem 4.9. Let f : Rn → R be a polynomial of degree at most k, and let x ∼ N(0, 1)n be a standard
n-dimensional Gaussian vector. Assume Var[f(x)] ≥ 1. Then for t ≥ 1 it holds that Pr[|f(x)| > t] ≥
exp(−O(t2k2)). Furthermore, if f is multilinear and homogeneous then the lower bound may be improved
to exp(−O(t2k)).

Our method of proof is actually to first prove the results in the Gaussian setting, where the one-block
decoupling makes the proofs quite easy. Then we can transfer the results to the Boolean setting by using
the Invariance Principle [MOO10]. This methodology — proving the more natural Gaussian tail bound
first, then transferring the result to the Boolean setting via Invariance — is quite reminiscent of how the
optimal form of Bourgain’s Fourier Tail Theorem was recently obtained [KO12].

Corollary 4.10. Theorem 4.9 holds when x ∼ {±1}n is uniform and we additionally assume that
MaxInf [f ] ≤ exp(−Ct2k2), or just exp(−Ct2k) in the homogeneous case. Here C is a universal constant.

Then we obtain the sharp DFKO Fourier Tail Theorem.

Corollary 4.11. Suppose f : {±1}n → [−1,+1] is not an (ε, 2O(k2/ε))-junta. Then∑
|S|>k

f̂(S)2 > exp(−O(k2)/ε). (1)

A similar (but easier) proof can be used to derive the following Gaussian version of Corollary 4.11;
alternatively, one can use a generic CLT argument, noting that the only “junta” a Gaussian function can
be close to is a constant function:

Corollary 4.12. Any f : Rn → [−1,+1] satisfies the Hermite tail bound∑
|α|>k

f̂(α)2 > exp(−O(k2)/Var[f ]).

This strictly improves upon Corollary 4.6.
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4.2.2 Other applications

In a recent work comparing quantum query complexity to classical randomized query complexity, Aaron-
son and Ambainis [AA15] proved the following:

Theorem 4.13. Let f be an N -variate degree-k homogeneous block-multilinear polynomial with real
coefficients. Assume that under uniformly random ±1 inputs we have ‖f‖∞ ≤ 1. Then there is a
randomized query algorithm making 2O(k)(N/ε2)1−1/k nonadaptive queries to the coordinates of x ∈
{±1}N that outputs an approximation to f(x) that is accurate to within ±ε (with high probability).

The authors “strongly conjecture[d]” that the assumption of block-multilinearity could be removed,
and gave a somewhat lengthy proof of this conjecture in the case of k = 2, using [DFKO07] . We note
that the full conjecture follows almost immediately from full decoupling:

Theorem 4.14. Aaronson and Ambainis’s Theorem 4.13 holds without the assumption of block-multilinearity
or homogeneity.

Another application of one-block decoupling is also on a conjecture proposed by Aaronson and Am-
bainis. A very notable open problem in analysis of Boolean functions is the Aaronson–Ambainis (AA)
Conjecture, originally proposed in 2008 [Aar08, AA14]:

AA Conjecture. Let f : {±1}n → [−1,+1] be computable by a multilinear polynomial of degree at
most k, f(x) =

∑
|S|≤k aSxS. Then MaxInf i[f ] ≥ poly(Var[f ]/k).

The AA Conjecture is known to imply (and was directly motivated by) the following folklore conjecture
concerning the limitations of quantum computation, dated to 1999 or before [AA14]:

Quantum Conjecture. Any quantum query algorithm solving a Boolean decision problem using T
queries can be correctly simulated on a 1 − ε fraction of all inputs by a classical query algorithm using
poly(T/ε) queries.

Because of their importance for quantum computation, Aaronson has twice listed these conjectures
as “semi-grand challenges for quantum computing theory” [Aar05, Aar10].

We use our results to show that the assumption that f is one-block decoupled is completely without
loss of generality.

Theorem 4.15. The AA Conjecture holds if and only if it holds for one-block decoupled functions f .

We also show that the best known result towards the conjecture can be proven extremely easily for
one-block-decoupled functions.
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5 Property testing on k-wise uniformity

5.1 k-wise uniformity and almost k-wise uniformity

We say that a probability distribution over {−1, 1}n is k-wise uniform if its marginal distribution on
every subset of k coordinates is the uniform distribution. For Fourier analysis of the Hamming cube, it
is convenient to identify the distribution with its density function ϕ : {−1, 1}n → R

≥0 satisfying

E
x∼{−1,1}n

[ϕ(x)] = 1.

We write x ∼ ϕ to denote that x is a random variable drawn from the associated distribution with
density ϕ:

Pr
x∼ϕ

[x = x] =
ϕ(x)

2n

for any x ∈ {−1, 1}n. Then a well-known fact is that a distribution is k-wise uniform if and only if the
Fourier coefficient of ϕ is 0 on every subset S ⊆ [n] of size between 1 and k:

ϕ̂(S) = E
x∼ϕ

[∏
i∈S

xi

]
= 0.

k-wise uniformity is an essential tool in theoretical computer science. Its study dates back to work of
Rao [Rao47]. They studied k-wise uniform sets, which are special cases of k-wise uniform distribution.
A subset of {−1, 1}n is a k-wise uniform set if the uniform distribution on this subset is k-wise uniform.
Rao gave constructions of a pairwise-uniform set of size n+1 (when n = 2r−1 for any integer r), a 3-wise
uniform set of size 2n (when n = 2r for any integer r), and a lower bound (reproved in [ABI86, CGH+85])
that a k-wise uniform set on {−1, 1}n requires size at least Ω(nbk/2c). An alternative proof of the lower
bound for even k is shown in [AGM03] using a hypercontractivity-type technique, as opposed to the linear
algebra method. Coding theorists have also heavily studied k-wise uniformity, since MacWilliams and
Sloane showed that linear codes with dual minimum distance k + 1 correspond to k-wise uniform sets
in [MS77]. The importance in theoretical computer science of k-wise independence for derandomization
arose simultaneously in many papers, with [KW85, Lub86] emphasizing derandomization via the most
common pairwise-uniformity case, and [ABI86, CGH+85] emphasizing derandomization based on k-wise
independence more generally.

A distribution is “almost k-wise uniform” if its marginal distribution on every k coordinates is very
close to the uniform distribution. Typically we say two distributions ϕ,ψ are δ-close, if the total variation
distance between ϕ and ψ is at most δ; and we say they are δ-far, if the total variation distance between
them is more than δ. A reasonable notion, proposed by Naor and Naor in [NN93], is that the distribution
has a small bias over every non-empty subset of at most k coordinates. We say density function ϕ is
(ε, k)-wise uniform if for non-empty set S ⊆ [n] with size at most k,

|ϕ̂(S)| =

∣∣∣∣∣Pr
x∼ϕ

[∏
i∈S

xi = 1

]
− Pr

x∼ϕ

[∏
i∈S

xi = −1

]∣∣∣∣∣ ≤ ε.
The original paper about almost k-wise uniformity is [NN93], which is concerned with derandomiza-

tion; e.g., they use (ε, k)-wise uniformity for derandomizing the “set balancing (discrepancy)” problem.
Alon et al. give a further discussion of the relationship between almost k-wise uniformity and derandom-
ization in [AGM03]. The key idea is the following: In many cases of randomized algorithms, the analysis
only relies on the property that the random bits are k-wise uniform, as opposed to fully uniform. Since
there exists an efficiently samplable k-wise uniform distribution on a set of size at most O(nbk/2c), one
can reduce the number of random unbiased bits used in the algorithm down to O(k log n). To further
reduce the number of random bits used, a natural line of thinking is to consider distributions which
are “almost k-wise uniformity”. Alon et al. [AGHP92] showed that we can deterministically construct
(ε, k)-wise uniform sets that are of size poly(2k, log n, 1/ε), much smaller than exact k-wise uniform ones
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(roughly Ω(nbk/2c) size). Therefore we can use substantially fewer random bits by taking random strings
from an almost k-wise uniform distribution.

However we need to ensure that the original analysis of the randomized algorithm still holds under
the almost k-wise uniform distribution. This is to say that if the randomized algorithm behaves well on
a k-wise uniform distribution, it may also work as well with an (ε, k)-wise uniform distribution, when the
parameter ε is small enough.

5.1.1 The Closeness Problem

For the analysis of derandomization, it would be very convenient if (ε, k)-wise uniformity – which means
that “every k-local view looks close to uniform” – implies global δ-closeness to k-wise uniformity. A
natural question that arises, posed in [AGM03], is the following:

How small can δ be, such that the following is true: For every (ε, k)-wise uniform distribution ϕ on
{−1, 1}n, ϕ is δ-close to some k-wise uniform distribution?

We will refer to this question as the Closeness Problem.
On one hand, the main message of [AGM03] showed a lower bound: For every even constant k > 4,

they gave an (ε, k)-wise uniform distribution with ε = O(1/nk/4−1), yet which is 1
2 -far from every k-wise

uniform distribution in total variation distance.
On the other hand, [AGM03] proved a very simple theorem that δ ≤ O(nkε) always holds. Despite

simplicity, this upper bound has been used many times in well known results.
One application is in circuit complexity. [AGM03]’s upper bound is used for fooling disjunctive

normal formulas (DNF) [Baz09] and AC0 [Bra10]. In these works, once the authors showed that k-
wise uniformity suffices to fool DNF/AC0, they deduced that (O(1/nk), k)-uniform distributions suffice,
and hence O(1/nk)-biased sets sufficed trivially. [AGM03]’s upper bound is also used as a tool for the
construction of two-source extractors for a similar reason in [CZ16, Li16].

The notions of pairwise-uniformity, k-wise uniformity, and δ-closeness to k-wise uniformity are also
important for hardness of constraint satisfactory problems (CSPs). Austrin and Mossel [AM09] shows
that one can obtain integrality gaps and UGC-hardness for CSPs based on k-wise uniform distributions
of small support size. If a predicate is k-wise uniform, Kothari et al. [KMOW17] showed that one can
get SOS-hardness of refuting random instances of it when there are around n(k+1)/2 constraints. Indeed,
[KMOW17] shows that if we have a predicate that is δ-close to k-wise uniform, then with roughly n(k+1)/2

random constraints, SOS cannot refute that a (1−O(δ))-fraction of constraints are satisfiable. This also
motivates studying δ-closeness to k-wise uniformity, and how it relates to Fourier coefficients. δ-closeness
to k-wise uniformity is also discussed in [AOW15] on hardness of random CSP.

Alon et al. [AAK+07] investigated the Closeness Problem further by improving the upper bound to

O((n log n)k/2ε). Indeed, they showed a strictly stronger fact that a distribution isO
(√

W1...k[ϕ] logk/2 n
)

-

close to some k-wise uniform, where W1...k[ϕ] =
∑

1≤|S|≤k ϕ̂(S)2. Rubinfeld and Xie [RX13] generalized
some of these results to non-uniform k-wise independent distributions over larger product spaces.

Though Alon et al. [AAK+07] did not mention it explicitly, they also give a lower bound for the

Closeness Problem of δ ≥ Ω
(
n(k−1)/2

logn ε
)

for k > 2 by considering the uniform distribution on a set of

O(nk) random chosen strings. No previous work gave any lower bound for the most natural case of
k = 2.

5.1.2 The Testing Problem

Another application of the Closeness Problem is to property testing of k-wise uniformity. Suppose we
have sample access from an unknown and arbitrary distribution; we may wonder whether the distribution
has a certain property. This question has received tremendous attention in the field of statistics. The
main goal in the study of property testing is to design algorithms that use as few samples as possible,
and to establish lower bound matching these sample-efficient algorithms. In particular, we consider the
property of being k-wise uniform:
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Given sample access to an unknown and arbitrary distribution ϕ on {−1, 1}n, how many samples do
we need to distinguish between the case that ϕ is k-wise uniform versus the case that ϕ is δ-far from every
k-wise uniform distribution?

We will refer to this question as the Testing Problem.
We say a testing algorithm is a δ-tester for k-wise uniformity if the algorithm outputs “Yes” with

high probability when the distribution ϕ is k-wise uniform, and the algorithm outputs “No” with high
probability when the distribution ϕ is δ-far from any k-wise uniform distribution (in total variation
distance).

Property testing is well studied for Boolean functions and distributions. Previous work studied test-
ing related properties of distribution, including uniformity [GR11, BFR+00, RS09] and independence
[BFF+01, BKR04, ADK15, DK16].

[AGM03, AAK+07, Xie12] discussed about testing k-wise uniformity. [AGM03] constructed a δ-tester
for k-wise uniformity with sample complexityO(n2k/δ2), and [AAK+07] improved it toO(nk logk+1 n/δ2).
As for lower bounds, [AAK+07] show that Ω(n(k−1)/2/δ) samples are necessary, albeit only for k > 2.
This lower bound is in particular for distinguishing the uniform distribution from δ-far-from-k-wise.

5.2 Our results

We show sharper upper and lower bounds for the Closeness Problem, which are tight for k even and
k = 1. Comparing to the result in [AAK+07], we get rid of the factor of (log n)k/2.

Theorem 5.1. Any density ϕ over {−1, 1}n is δ-close to some k-wise uniform distribution, where

δ ≤ ek
√

W1...k[ϕ] = ek
√ ∑

1≤|S|≤k

ϕ̂(S)2.

Consequently, if ϕ is (ε, k)-wise uniform, i.e., |ϕ̂(S)| ≤ ε for every non-empty set S with size at most k,
then

δ ≤ eknk/2ε.

For the special case k = 1, the corresponding δ can be further improved to δ ≤ ε.

Our new technique is trying to mend the original distribution to be k-wise uniform all at once. We
want to show that some mixture distribution (ϕ + wψ) is k-wise uniform with small mixture weight w.
The distance between the final mixture distribution and the original distribution ϕ is bounded by O(w).
Therefore we only need to show that the mending distribution ψ exists for some small weight w. Showing
the existence of such a distribution ψ can be written as the feasibility of a linear program (LP). We upper
bound w by bounding the dual LP, using the hypercontractivity inequality.

Our result is sharp for all even k, and is also sharp for k = 1. We state the matching lower bound for
even k:

Theorem 5.2. For any n and even k, and small enough ε, there exists some (ε, k)-wise uniform dis-
tribution ϕ over {−1, 1}n, such that ϕ is δ-far from every k-wise uniform distribution in total variation
distance, where

δ ≥ Ω

(
1

k

)k
nk/2ε.

Our method for proving this lower bound is again LP duality. Our examples in the lower bound are
symmetric distributions with Fourier weight only on level k. The density functions then can be written
as binary Krawtchouk polynomials which behave similar to Hermite polynomials when n is large. Our
dual LP bounds use various properties of Krawtchouk and Hermite polynomials.

Interestingly both our upper and lower bound utilize LP-duality, which we believe is the most natural
way of looking at this problem.

We remark that we can derive a lower bound for odd k from Theorem 5.2 trivially by replacing k by
k − 1. There exists a gap of

√
n between the resulting upper and lower bounds for odd k. We believe
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that the lower bound is tight, and the upper bound may be improvable by a factor of
√
n, as it is in the

special case k = 1. We leave it as a conjecture for further work:

Conjecture 5.3. Suppose the distribution ϕ over {−1, 1}n is (ε, k)-wise uniform. Then ϕ is δ-close to
some k-wise uniform distribution in total variation distance, where

δ ≤ O(nbk/2cε).

We show a better upper bound for sample complexity for the Testing Problem:

Theorem 5.4. There exists a δ-tester for k-wise uniformity of distributions on {−1, 1}n with sample

complexity O
(
1
k

)k/2 nk
δ2 . For the special case of k = 1, the sample complexity is O

(
logn
δ2

)
.

A natural δ-tester of k-wise uniformity is mentioned in [AAK+07]: Estimate all Fourier coefficients
up to level k from the samples. If they are all smaller than ε then output “Yes”. In fact this algorithm is
exactly attempting to check whether the distribution is (ε, k)-wise uniform. Hence the sample complexity
depends on the upper bound for the Closeness Problem. Therefore we can reduce the sample complexity

of this algorithm down to O
(
nk logn
δ2

)
via our improved upper bound for the Closeness Problem. One

log n factor remains because we need to union-bound over the O(nk) Fourier coefficients up to level k.
To further get rid of the last log n factor, we present a new algorithm that estimates the Fourier weight
up to level k,

∑
1≤|S|≤k ϕ̂

2(S), rather than estimating these Fourier coefficients one by one.
Unfortunately, a lower bound for the Closeness Problem does not imply a lower bound for the Testing

Problem directly. In [AAK+07], they showed that a uniform distribution over a random subset of {−1, 1}n

of size O(n
k−1

δ2 ), is almost surely δ-far from any k-wise uniform distribution. On the other hand, by the
Birthday Paradox, it is hard to distinguish between the fully uniform distribution on all strings of length
n and a uniform distribution over a random set of such size. This gives a lower bound for the Testing
Problem as Ω(n(k−1)/2/δ). Their result only holds for k > 2; there was no previous non-trivial lower
bound for testing pairwise uniformity. We show a lower bound for the pairwise case.

Theorem 5.5. Any δ-tester for pairwise uniformity of distributions on {−1, 1}n needs at least Ω( nδ2 )
samples.

For this lower bound we analyze a symmetric distribution with non-zero Fourier coefficients only on
level 2. We prove that it is hard to distinguish a randomly shifted version of this distribution from the
fully uniform distribution. This lower bound is also better than [AAK+07] in that we have a better
dependence on the parameter δ ( 1

δ2 rather than 1
δ ). Unfortunately we are unable to generalize our lower

bound for higher k.
Notice that for our new upper and lower bounds for k-wise uniformity testing, there still remains a

quadratic gap, for k ≥ 2, indicating that the upper bound might be able to be improved. Both the lower
bound in our result and that in [AAK+07] show that it is hard to distinguish between the fully uniform
distribution and some specific sets of distributions that are far from k-wise uniform. We show that if one
wants to improve the lower bound, one will need to use a distribution in the “Yes” case that is not fully
uniform, because we give a sample-efficient algorithm for distinguishing between fully uniform and δ-far
from k-wise uniform:

Theorem 5.6. For any constant k, for testing whether a distribution is fully uniform or δ-far from every
k-wise uniform distribution, there exists an algorithm with high probability (> 2

3 ) with sample complexity

O(k)k · nk/2 · 1
δ2 ·

(
log n

δ

)k/2
.

In fact, for testing whether a distribution is αk-wise uniform or δ-far from k-wise uniform with α > 4
(assuming αk is an even integer), there exists an algorithm with high probability (> 2

3 ) with sample

complexity O(α)k/2 · nk/2 · 1
δ2 ·

(
nk

δ4

)1/(α−2)
.

We remark that testing fully uniformity can be treated as a special case of testing αk-wise uniformity
approximately, by setting α = log n

δ .
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Testing full uniformity has been studied in [GR11, BFR+00]. Paninski [Pan08] showed that testing
whether an unknown distribution on {−1, 1}n is Θ(1)-close to fully uniform requires 2n/2 samples. Ru-
binfeld and Servedio [RS09] studied testing whether an unknown monotone distribution is fully uniform
or not.

The fully uniform distribution has the nice property that every pair of samples is different in n
2±O(

√
n)

bits with high probability when the sample size is small. Our algorithm first rejects those distributions
that disobey this property. We show that the remaining distributions have small Fourier weight up to
level 2k. Hence by following a similar analysis as the tester in Theorem 5.4, we can get an improved
upper bound when these lower Fourier weights are small.

The lower bound remains the same as testing k-wise vs. far from k-wise. Our tester is tight up to a
logarithm factor for the pairwise case, and is tight up to a factor of Õ(

√
n) when k > 2.

We compare our result and previous best known bounds from [AAK+07] in Table 1. (We omit factors
depending on k.)

Upper bound Lower bound
[AAK+07] Our results [AAK+07] Our results

Closeness Problem O(nk/2(logn)k/2ε)
O(nk/2ε)

Ω
(
n(k−1)/2

logn
ε
)

Ω(nbk/2cε)
O(ε) for k = 1

Testing k-wise vs.
O

(
nk(logn)k+1

δ2

)
O
(
nk

δ2

)
Ω

(
n(k−1)/2

δ

)
for k > 2 Ω

( n
δ2

)
for k = 2

far from k-wise O
(
logn
δ2

)
for k = 1

Testing n-wise vs.
O

(
nk(logn)k+1

δ2

)
O
(
nk/2

δ2
(log n

δ
)k/2

)
Ω

(
n(k−1)/2

δ

)
for k > 2 Ω

( n
δ2

)
for k = 2

far from k-wise O
(
logn
δ2

)
for k = 1

Table 1: Summary of our results
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[Gin98] Evarist Giné. A consequence for random polynomials of a result of de la Peña and
Montgomery-Smith. In Probability in Banach Spaces 10, volume 43 of Progress in Prob-
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