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ABSTRACT

We present a learning-to-rank approach for resource selection. We
develop features for resource ranking and present a training ap-
proach that does not require human judgments. Our method is
well-suited to environments with a large number of resources such
as selective search, is an improvement over the state-of-the-art in
resource selection for selective search, and is statistically equiva-
lent to exhaustive search even for recall-oriented metrics such as
MAP@1000, an area in which selective search was lacking.
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1 INTRODUCTION

Selective search is a federated search architecture where a collection
is clustered into topical shards. At query time, a resource selection
algorithm is used to select a small subset of shards to search.

Recent work showed that while selective search is equivalent
to exhaustive search for shallow metrics (e.g. P@10), it performs
worse for recall-oriented metrics (e.g. MAP) [5]. This is a problem
because modern retrieval systems apply re-ranking operations to a
base retrieval, which can require deep result lists [10].

In this paper, we present learning to rank resources, a resource se-
lection method based on learning-to-rank. While learning-to-rank
has been widely studied for ranking documents, its application to
ranking resources has not been studied in depth. We take advantage
of characteristics of the resource ranking problem that are distinct
from document ranking; we present new features; and we propose
a training approach that uses exhaustive search results as the gold
standard and show that human judgments are not necessary.

Our approach is suitable for efficiently ranking the hundreds
of shards produced by selective search and is an improvement
over the state-of-the-art in resource selection for selective search.
In addition, our approach is statistically equivalent to exhaustive
search in MAP@1000, a deep recall-oriented metric.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan

© 2017 ACM. 978-1-4503-5022-8/17/08...$15.00

DOI: 10.1145/3077136.3080657

Yubin Kim
Carnegie Mellon University
yubink@cs.cmu.edu

Jamie Callan
Carnegie Mellon University
callan@cs.cmu.edu

2 RELATED WORK

There are three main classes of resource selection algorithms: term-
based, sample-based, and supervised approaches. Term-based algo-
rithms models the language distribution of each shard. At query
time, they determine the relevance of a shard by comparing the
query to the stored language model [1, 12]. Sample-based algo-
rithms estimate the relevance of a shard by querying a small sample
index of the collection, known as the centralized sample index (CSI)
[9,11, 13, 14]. Supervised methods use training data to learn models
to evaluate shard relevance, with most methods training a classifier
per shard [2, 4]. However, training a classifier for every shard is
expensive in selective search, where shards number in hundreds.
Thus, supervised methods have not been used for selective search.
Techniques that train a single classifier would be more suitable for
selective search. Balog [3] trained a learning-to-rank algorithm
for a TREC task and Hong et al. [6] learned a joint probabilistic
classifier. The latter is used as a baseline in this work.

3 MODEL

Let g denote a query and ®(q,s;) denote features extracted from
the ith shard for the query. The goal of learning-to-rank is to
find a shard scoring function f(®(q,s)) that can minimize the loss

function defined as: L(f) = quQ l(g,f)dP(q). We use I(q, f) =

Yisi>qs) 1{f(2(g,si)) < f(@(q,s))} , where s; >4 s; denotes shard
pairs for which s; is ranked higher than s; in the gold standard
shard ranking w.r.t query q.

We used SVM" %"k [7], which optimizes pair-wise loss. List-wise
algorithms such as ListMLE [16] produced similar results, thus we
only report results with SV M" "k,

The training process requires a gold standard shard ranking for
each training query. We propose two definitions of the ground truth,
relevance-based and overlap-based. In the relevance-based approach,
the optimal shard ranking is determined by the number of relevant
documents a shard contains. Thus, the training data require queries
with relevance judgments, which can be expensive to obtain. The
overlap-based approach assumes that the goal of selective search
is to reproduce the document ranking of exhaustive search. The
optimal shard ranking is determined by the number of documents
in a shard that were ranked highly by exhaustive search. This does
not require manual relevance judgments.

4 FEATURES

4.1 OQuery-Independent Information

Shard Popularity: Indicates how often the shard had relevant
(relevance-based) or top-ranked (overlap-based) documents for
training queries. It is query-independent and acts as a shard prior.



4.2 Term-Based Statistics

Term-based features can be easily precomputed, thus are efficient.
Taily Features: One feature is the Taily [1] score calculated for
query q and shard s. However, Taily scores can vary greatly across
shards and queries. For robustness, we add two additional features.
If shard s is ranked r¢ for query g, the inverse rank is 1/rs, which
directly describes the importance of s relative to other shards. The
binned rank is ceiling(rs /b), where b is a bin-size. We use b = 10,
meaning that every 10 consecutive shards are considered equally
relevant. This feature helps the model to ignore small differences
between shards with similar rankings.

Champion List Features: For each query term, the top-k best
documents were found. The number of documents each shard
contributes to the top-k was stored for each shard-term pair. For
multi-term queries, the feature values of each query term were
summed. We use two values of k = {10,100}, generating 2 features.
Query Likelihood Features: The log-likelihood of a query with
respect to the unigram language model of each shard is: L(qls) =
2teqlogp(tls), where p(t|s) is the shard language model, the aver-
age of all document language models p(t|d) in the shard. Document
language model p(t|d) is estimated using MLE with Jelinek-Mercer
smoothing. Query likelihood, inverse query likelihood, and binned
query likelihood features are created for body, title, and inlink rep-
resentations, yielding a total of 9 features.

Query Term Statistics: The maximum and minimum shard term
frequency across query terms, e.g. st finax(q,s) = maxseq stf(t,s),
where st f(¢,s) is the frequency of term ¢ in shard s. We include the
maximum and minimum of st f - id f where idf is the inverse doc-
ument frequency over the collection. These 4 features are created
for body, title, and inlink representations, yielding 12 features.
Bigram Log Frequency: The frequency of each bigram of the
query in a shard is bfq(s) = Ypeq logbfy(s), where bfy (s) is the
frequency of bigram b in shard s. This feature can estimate term
correlation. To save storage, we only store bigrams that appear
more than 50 times in the collection.

4.3 Sample-Document (CSI-Based) Features

These features are based on retrieval from the centralized sample
index (CSI), which may provide term co-occurrence information.
CSI retrieval is expensive, and thus is slower to calculate.

Rank-S and ReDDE Features: Similar to Taily features, the shard
scores given by Rank-S [9] and ReDDE [13], as well as the inverse
rank and binned rank features for a total of 6 features.

Average Distance to Shard Centroid: The distance between the
top-k documents retrieved from the CSI to their respective shards’
centroids. Intuitively, if the retrieved documents are close to the
centroid, the shard is more likely to contain other similar, highly-
scoring documents. For multiple documents from the same shard,
the distances are averaged. We use two distance metrics: KL di-
vergence and cosine similarity Note that because KL divergence
measures distance rather than similarity, we use the inverse of the
averaged KL divergence as the metric. We generated features for
k = {10,100} and also a feature measuring the distance between
the shard’s centroid to its single highest scoring document in the
top 100 of the CSI results, for a total of 6 features.

5 EXPERIMENTAL METHODOLOGY

Datasets: Experiments were conducted with ClueWeb09-B and
Gov2. ClueWeb09-B (CW09-B) consists of 50 million pages from
the ClueWeb09 dataset. Gov2 is 25 million web pages from the US
government web domains. For relevance-based models, 200 queries
from the TREC 09-12 Web Track topics were used for CW09-B, and
150 queries from the TREC 04-06 Terabyte Track topics were used
for Gov2. Models were trained by 10-fold cross-validation. For
overlap-based models, training queries were sampled from the AOL
and Million Query Track query logs. Models were tested with the
TREC queries. Optimal shard ranking for the overlap method was
defined by the number of documents each shard contains that were
within the top N = 2K retrieved from exhaustive search. We found
N € [1K,3K] produced stable results.

Proposed methods and baselines: We used three sources of
training data: relevance-based training data (L2R-TREC), and overlap-
based training data (L2R-AOL and L2R-MQT). We used linear SV M" "k
where C was chosen by cross validation. Our method was compared
against state-of-the-art unsupervised models (Taily [1], ReDDE [13],
and Rank-S [9]); and a supervised model Jnt [6]. Int was trained
and tested using TREC queries with 10-fold cross-validation.
Evaluation Metrics: Search accuracy was measured by P@10,
NDCG@30 and MAP@1000. To test the proposed methods’ superi-
ority to baselines, a query-level permutation test with p < 0.05 was
used. To test the equivalence to exhaustive search, a non-inferiority
test [15] was used to assert that results of the more efficient se-
lective search were at least as accurate as exhaustive search. The
equivalence is established by rejecting the null hypothesis that
selective search is at least 5% worse than exhaustive search with a
95% confidence interval.

Selective Search Setup: We used 123 shards for CW09-B and 199
shards for Gov2 [5]. A 1% central sample index (CSI) was created for
ReDDE and Rank-S baselines and CSI based features. Jnt followed
the original implementation and used a 3% CSL

Search Engine Setup: Retrieval was performed with Indri, using
default parameters. Queries were issued using the sequential de-
pendency model (SDM) with parameters (0.8,0.1,0.1). For CW09-B,
documents with a Waterloo spam score below 50 were removed 1.

6 EXPERIMENTS

6.1 Overall Comparison

Our method was compared to four baselines and exhaustive search.
We tested shard rank cutoffs from 1-8% of total shards; 10 for
CW09-B and 16 for Gov2. The automatic cutoffs of Rank-S and
Taily performed similarly to fixed cutoffs and are not shown. Shard
rankings by L2R enabled more accurate search than all baselines
in both datasets (Figure 1). The search accuracy of L2R models is
higher than the baselines at nearly every shard rank cutoff.

Table 1 compares L2R models and the baselines at two shard
rank cutoffs. The first cutoff is the point where the shallow metrics
(P@10 and NDCG@?30) stablize: 4 for CW09-B and 6 for Gov2. The
second cutoff is where MAP@1000 become stable: 8 for CW09-B
and 12 for Gov2. L2R models improve over the baselines at both
shard cutoffs. For shallow metrics, L2R reaches exhaustive search

Uhttps://plg.uwaterloo.ca/ gvcormac/



at the first cutoff. Furthermore, searching the first 8 out of 12
shards ranked by L2R is statistically non-inferior to searching all
shards exhaustively, even for the recall-oriented MAP@1000. All
the baselines have a 10% gap from exhaustive search in MAP@1000.

6.2 Effect of Training Data

One might expect the relevance-based model (L2R-TREC) to be bet-
ter than overlap-based models (L2R-AOL and AOL-MQT), because
it uses manual relevance judgments. A model trained with over-
lap data might favor shards that contain false-positive documents.
However, there is little difference between the two training methods.
L2R-TREC was statistically better than TREC or AOL for MAP@1000
in Gov2, but the relative gain is only 2%; in all other cases, there is
no statistically significant differences among the three models. Fur-
thermore, models trained with relevance and overlap data agreed on
which features are important (not shown due to space constraints).
This analysis indicates that unlike learning to rank document mod-
els, we can train a learning to rank resource selector on a new
dataset before we have relevance judgments.

6.3 OQuery Length

We compare L2R-MQT to the baselines using MAP@1000 for queries
with different lengths on CW09-B, shown in Figure 1. Gov2 and
other training data produced similar results and are not shown.
For single-term queries, existing methods are already equivalent
to or better than exhaustive search, and L2R-MQT retains this good
performance. The advantage of L2R-MQT comes from multi-term
queries, where the best baseline Jnt still has a 10% gap from ex-
haustive search. For these queries, the improvement of L2R-MQT
over the Taily is expected, because Taily does not model term
co-occurrence. However, L2R-MQT also out-performs ReDDE and
Rank-S, which account for term co-occurrence by retrieving docu-
ments from the CSI, but are limited by only having a sample view
of the collection. L2R draws evidence from both the sample and the
whole collection. Jnt also fuses sample- and term-based features,
but most of its features are derived from ReDDE or Taily-like meth-
ods and do not carry new information. L2R improved over Jnt by
using novel features that encode new evidence.

CwWo09-B

0.40} | Taily, T=8 EEE L2R-MQT, T=8
0.35||EZ2 ReDDE, T=8 I Exhaustive

) 3(58)
Query Length

Figure 1: MAP@1000 for queries on CW09-B, grouped by query
length. Parentheses on the X axis present the number of queries in
each group. T is the shard rank cutoff.

Table 2: Effectiveness and efficiency of FAST features. ALL uses all
features. FAST does not use sample-document features. T: shard
rank cutoff. : non-inferiority to exhaustive.

P NDCG MAP | Average

Methed | 5,4 @30  @1000 Cogst
Redde | 0.363* 0.275° 0.187 | 156,180
Cwo09 | Taily | 0346 0260  0.175 470
B | Int 0.367* 0.277* 0.192 | 468,710
ALL 0.375°  0.286" 0.202° | 158,529

(T=8) | FAST | 0.373* 0.285* 0.201* 2,349
Redde | 0.579% 0.445° 0289 | 105,080

Gov2 | Taily | 0518 0403  0.256 758
Int 0.588* 0.465" 0.292 | 315875

ALL 0.593* 0.474" 0.309° | 108,306
(T=12) | FAST | 0.587* 0.471* 0.310* 3,226

6.4 Feature Analysis

The L2R approach uses three classes of features: query-independent,
term-based, and sample-document (CSI). These three feature classes
have substantially different computational costs and contributions.

Fast vs. Slow features: Sample-document (CSI-based) features
have a high computational cost, because they search a sample
(typically 1-2%) of the entire corpus. Term-based features have a
low computational cost, because they lookup just a few statistics
per query term per shard. Costs for query-independent features are
lower still. The third experiment compares a slow model that uses all
features (ALL) to a fast version that does not use sample-document
features (FAST).

We estimate the resource selection cost by the amount of data
retrieved from storage. For CSI-based features, the cost is the size
of postings of every query term in the CSI. For term-based features,
the cost is the amount of sufficient statistics required to derive all
term-based features. The query-independent feature only looks up
the shard popularity, so the cost is one statistic per shard.

Table 2 compares FAST with ALL and baselines by their accuracy
and average resource selection cost per query. ReDDE results were
similar to Rank-S and are not shown. Taily has been the state-of-
the-art term-based (‘faster’) resource selection algorithm. However,
FAST is substantially more accurate. FAST also outperformed Jnt
with over 100X speed up. Compared to ALL, FAST is 67 times faster
on CW09-B and 34 times faster on Gov2. Although FAST has slightly
lower search accuracy than ALL, the gap is not large and is not
statistically significant, indicating that the information from the
CSI features can be covered by the more efficient features.

We conclude that a resource ranker composed of only query-
independent and term-based features is as accurate as exhaustive
search and a ranker that includes CSI features. CSI features improve
accuracy slightly, but at a significant additional computational cost.

Importance of Feature Types: We investigate the contribu-
tion of other types of features: query-independent features and
term-based features, where the term-based features were sub-divided
into unigram and bigram features. Table 3 presents the results for
the leave-one-out analysis conducted on FAST. On CW09-B, remov-
ing any feature set from FAST led to lower performance. This indi-
cates that each set of features covers different types of information,



Table 1: Search accuracy comparison between 3 L2R models and baselines at two rank cutoffs for two datasets. A: statistically significant
improvement compared to Jnt, the best resource selection baseline. *: non-inferiority to exhaustive search .

CW09-B Gov2
Method T=4 T=8 T=6 T=12
P NDCG MAP P@10 NDCG  MAP P NDCG MAP P NDCG  MAP

@10 @30  @1000 @30 @1000 @10 @30 @1000 | @10 @30 @1000
Redde 0.355  0.262 0.176 | 0.363* 0.275*  0.187 0.580*  0.445 0.267 | 0.587 0.4600% 0.289
Rank-S 0.350  0.259 0.175 | 0.360* 0.268 0.183 0.570  0.440 0.263 | 0.585* 0.461*  0.286
Taily 0.346  0.260 0.172 | 0.346  0.260 0.175 0.518  0.403 0.235 | 0.530  0.418 0.256
Int 0.370*  0.269 0.178 | 0.367F 0.277°  0.192 0.582*  0.459 0.278 | 0.588* 0.465*  0.292
L2R-TREC || 0.374* 0.281*  0.192% | 0.377* 0.286%* 0.2024* || 0.593* 0.469*  0.2994 | 0.591* 0.4754* 0.3134%
L2R-AOL 0.374* 0.2814* 0.1914 | 0.375* 0.2874* 0.2024* || 0.593* 0.470%* 0.2914 | 0.587* 0.470*  0.3074*
L2R-MQT 0.382*  0.2854%* 0.193% | 0.375% 0.286%* 0.2024* || 0.586* 0.465*  0.2924 | 0.593* 0.4744* 0.3094*
Exh 0.372  0.288 0.208 | 0.372  0.288 0.208 0.585  0.479 0.315 | 0.585  0.479 0.315

Table 3: Performance of L2R-MQT using feature sets constructed
with leave-one-out. ‘- X’ means the feature was excluded from FAST.
Text in bold indicates the lowest value in the column.

Feature Set P@10 NDCG@30 MAP@1000
FAST 0.373 0.285 0.201
CW09 | - Unigram 0.303 0.226 0.138
-B - Bigram 0.364 0.275 0.187
(T=8) | - Independent | 0.368 0.282 0.199
FAST 0.592 0.471 0.310
Gov2 | - Unigram 0.592 0.468 0.301
- Bigram 0.582 0.462 0.296
(T=12) | - Independent | 0.591 0.471 0.303

and all are necessary for accurate shard ranking. Among these fea-
tures, unigram features were most important because CW09-B has
many single-term queries. On Gov2, the only substantial difference
is observed when bigram features are excluded.

7 CONCLUSION

This paper investigates a learning-to-rank approach to resource
selection for selective search. Much attention has been devoted
to learning-to-rank documents, but there has been little study of
learning-to-rank resources such as index shards. Our research
shows that training data for this task can be generated automati-
cally using a slower system that searches all index shards for each
query. This approach assumes that the goal of selective search is to
mimic the accuracy of an exhaustive search system, but with lower
computational cost. This assumption is not entirely true—we would
like selective search to also be more accurate—but it is convenient
and effective.

We show that the learned resource selection algorithm produces
search accuracy comparable to exhaustive search down to rank
1,000. This paper is the first that we know of to demonstrate results
that are statistically significantly equivalent to exhaustive search
for MAP@1000 on an index that does not have badly skewed shard
sizes. Accuracy this deep in the rankings opens up the possibility
of using a learned reranker on results returned by a selective search
system, which was not practical in the past.

Most prior research found that sample-document algorithms
such as ReDDE and Rank-S are a little more accurate than term-based
algorithms such as Taily for selective search resource selection;

however, sample-document resource selection algorithms have far
higher computational costs that increases query latency in some
configurations [8]. This work suggests that sample-document fea-
tures provide only a small gain when combined with other types of
features. It may no longer be necessary to choose between accuracy
and query latency when using a learned resource ranker.
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