
Information Retrieval manuscript No.
(will be inserted by the editor)

Efficient Distributed Selective Search

Yubin Kim · Jamie Callan ·
J. Shane Culpepper · Alistair Moffat

Received: date / Accepted: date

Abstract Simulation and analysis have shown that selective search can reduce the
cost of large-scale distributed information retrieval. By partitioning the collection into
small topical shards, and then using a resource ranking algorithm to choose a subset
of shards to search for each query, fewer postings are evaluated. In this paper we
extend the study of selective search into new areas using a fine-grained simulation,
examining the difference in efficiency when term-based and sample-based resource
selection algorithms are used; measuring the effect of two policies for assigning index
shards to machines; and exploring the benefits of index-spreading and mirroring as
the number of deployed machines is varied. Results obtained for two large datasets
and four large query logs confirm that selective search is significantly more efficient
than conventional distributed search architectures and can handle higher query rates.
Furthermore, we demonstrate that selective search can be tuned to avoid bottlenecks,
and thus maximize usage of the underlying computer hardware.

Keywords Selective search · distributed search · load balancing · efficiency

This is an extended version of work first presented as a short paper at the 2016 ACM-SIGIR International
Conference on Research and Development in Information Retrieval [30].

Y. Kim
Carnegie Mellon University
E-mail: yubink@cmu.edu

J. Callan
Carnegie Mellon University
E-mail: callan@cs.cmu.edu

J. S. Culpepper
RMIT University
E-mail: shane.culpepper@rmit.edu.au

A. Moffat
The University of Melbourne
E-mail: ammoffat@unimelb.edu.au

2 Yubin Kim et al.

1 Introduction

A selective search architecture divides a document corpus or corpus tier into P topic-
based partitions (shards), and assigns them to C processing cores, typically with
P�C ≥ 1. When a query arrives, a resource ranking algorithm (also known as “re-
source selection” or “shard ranking”) selects a small number of shards to be interro-
gated for that query. The search results from those shards are combined to produce
the final results for the query. Selective search has been shown to provide similar
effectiveness to exhaustive search when measuring early precision, and can provide
additional efficiency-effectiveness trade-offs when working in low resource environ-
ments [2, 31, 32, 33, 34].

Previous investigations argued that selective search is substantially more efficient
than a typical distributed search architecture based on the number of postings pro-
cessed when evaluating a small, single query stream. While this metric is suitable
for comparing the work done between different architectures, it does not consider
how work is divided across processors, or behavior when multiple query streams
are evaluated in parallel. The traditional distributed search architecture using a ran-
dom assignment of documents to shards tends to spread the workload evenly, and is
relatively immune to bottlenecks. In contrast, a selective search architecture, which
deliberately concentrates similar documents into a few index shards, might be vul-
nerable to uneven workloads, and hence leave processing resources idle. Selective
search might also be more sensitive to tuning parameters.

Here we use an event-based simulator to investigate the efficiency of selective
search, the details of which are discussed in Section 4. A simulator makes it possible
to investigate a wider range of machine configurations than would be practical in a
live system; in our case, we provide realistic measurements of query waiting times,
query processing costs, query latency, system throughput, and hardware utilization
under a query processing environment representative of a practical real-world im-
plementation. Our investigation extends prior work by defining a more realistic ex-
perimental methodology for studying efficiency that employs similarly sized index
shards, long query streams extracted from web search logs, and varying query arrival
rates. In particular, we present a detailed study of the computational costs, load dis-
tribution, and throughput of selective search so as to address four research questions:

RQ 1 Is selective search more efficient than exhaustive search in a parallel query
processing environment? (Section 5.1)

RQ 2 How does the choice of resource selection algorithm affect throughput and
load distribution in selective search, and how can any imbalances originating from
resource selection be overcome? (Section 5.2)

RQ 3 How do different methods of allocating shards to machines affect throughput
and load distribution across machines? (Section 5.3)

RQ 4 Does selective search scale efficiently when adding more machines and/or
shard replicas? (Section 5.4)

Efficient Distributed Selective Search 3

This paper includes and extends work initially presented in preliminary form in
a short conference paper [30], and also provides greater detail in regard to the ex-
perimental conditions, so as to make the experiments reproducible by others. Al-
though the primary focus is on search efficiency, this work also describes simple im-
provements that deliver improved search accuracy compared to prior results [31, 34],
meaning that the system we study is more similar to what would be used in practice.
Experiments that report search efficiency include information about how queries are
affected at the 50%, 75% and 99% percentiles, and how much time a typical query
spends in different parts of the system. Experiments with different resource selection
algorithms show the average utilization of machines in environments discussed by
prior research [31, 34], and investigate the load imbalances that can arise. Experi-
ments that investigate the policies for assigning shards to machines include informa-
tion about the average loads on different machines for varying query arrival rates, the
overall throughput for different shard assignment policies, and how log-based shard
assignment compares to ten different instances of the more common random assign-
ment policy. Finally, this paper includes an investigation of how selective search be-
haves as a system is scaled to a larger number of machines, which the preliminary
work did not address.

Prior to our investigation, selective search efficiency was reported presuming that
queries are evaluated sequentially. The investigation reported here provides a thor-
ough study of the efficiency and load balancing characteristics of selective search in
a parallel processing environment, to both broaden and deepen our understanding of
this retrieval architecture.

2 Related Work

Selective search integrates ideas and techniques from cluster-based retrieval, dis-
tributed retrieval, and federated search into a new architecture with distinct charac-
teristics, some of which have not yet been explored in depth. We begin by describing
these roots, and then summarize the state-of-the-art in selective search research.

2.1 Cluster-Based Retrieval

Cluster-based retrieval systems organize a corpus into hierarchical or flat clusters
during indexing. When a query is received, the most appropriate clusters are selected
using various methods. For example, cluster selection can be done by comparing
the cosine similarity of the query to cluster centroids. Systems using small collec-
tions and clusters may return all of the documents in selected clusters; systems using
larger clusters that contain many more documents than a user would browse rank
the documents in the selected clusters and return just the highest-scoring documents.
Early cluster-based retrieval systems aimed to improve the accuracy of search, but
were unable to achieve consistent improvements in effectiveness [20, 25, 60, 62].

Typically cluster-based retrieval systems have many small clusters. For example,
Can et al. used clusters with average sizes of 8–128 documents per cluster across five

4 Yubin Kim et al.

datasets [19], and Altingovde et al. used average cluster sizes of 128–313 documents
per cluster across three datasets [1]. When clusters are small, many must be selected
to maintain acceptable accuracy; Can et al. searched 10% of the clusters, a heuristic
threshold that was also used in earlier investigations.

Clusters are stored in a single index, because so many must be searched for each
query. Cluster membership information is stored in inverted list data structures, and
postings are grouped by cluster membership so that large portions of an inverted list
may be skipped during query processing [1, 19]. This architecture must bear the I/O
costs of reading complete inverted lists, and the computational costs of processing
them (albeit, efficiently). Can et al. [19] note that storing each cluster in its own
index would reduce the computational costs of processing long inverted lists, but
incur prohibitive I/O costs (primarily disk seeks) due to the large number of clusters
selected if the data collection cannot fit in memory.

2.2 Distributed Retrieval

When the index becomes too large to search quickly with a single machine, the index
is partitioned, and each partition is assigned to a distinct machine.

In term-based partitioning, each partial index is responsible for a non-overlapping
subset of the terms in the vocabulary [18, 37, 41, 66]. When the collection is searched,
only indexes that contain the query terms are searched. Because queries are typically
short, only a few indexes are required for each query, allowing multiple queries to
be evaluated in parallel. This style of index has largely fallen out of favor because it
is prone to load imbalances [42]. Cambazoglu et al. [18] provide more details about
term-based partitioning approaches.

In document-based partitioning, each partial index is responsible for a non-
overlapping subset of the documents in the collection. There are two major ap-
proaches to creating the document subsets: tiering and sharding. Tiering creates par-
titions that have different priorities. Search begins at the top tier, and progresses to
lower tiers only if necessary [7, 9, 17, 48]. Tiers can be defined based on document
characteristics such as geographic location, popularity, or assessed quality. The al-
ternative approach, sharding, creates partitions that have the same priority and are
searched in parallel [4, 14, 46, 58]. Documents are usually assigned to shards ran-
domly or in a round-robin approach. However, the assignment can also be based on
document characteristics such as source (for example, URL).

Tiering and sharding are complementary methods that can be combined. For ex-
ample, the corpus might be divided into tiers based on document popularity or au-
thority, and then each tier divided into shards, with the shards distributed across a
cluster of computers [5, 6, 8, 9, 22, 43]. A tiered document-partitioned index is the
most common architecture for web search and other large-scale search tasks.

A variety of work has explored the efficiency of sharded search systems, cov-
ering topics including: reducing the communications and merging costs when large
numbers of shards are searched [13]; load balancing in mirrored systems [23, 38];
query shedding under high load to improve overall throughput [10]; and query prun-
ing to improve efficiency [59]. Other work focuses on addressing the load imbal-

Efficient Distributed Selective Search 5

ances that arise when non-random shards are used, including the development of
techniques for strategic assignment of index postings to shards, and strategic replica-
tion of frequently-accessed elements [41, 42]. A common theme is that when a tier is
searched, all of the tier’s shards are searched.

2.3 Federated Search

Sharded indexes and their search engines are a special case of federated search sys-
tems, which integrate heterogeneous search services (for example, vertical search
engines) or search engines controlled by different organizations into a single service
[51]. Usually the goal of federation is to send queries to as few of the underlying
search services as possible, so a resource selection algorithm is used. Three types
of resource selection have been proposed for federated search: term-, sample-, and
classification-based algorithms.

In term-based methods, each search service is represented as a bag of words,
with document ranking algorithms adapted to the task of ranking resources or ser-
vices; GlOSS [24], CORI [15], and the query likelihood model [53] are all examples
of this approach. The simplest term-based resource selection algorithms are not very
different from the cluster selection algorithms used for cluster-based retrieval. Algo-
rithms developed specifically for resource ranking usually model the distribution of
vocabulary across search services [2, 16, 26, 65]. Term-based algorithms typically
only support bag-of-words queries, but some also support corpus-level or cluster-
level preferences, or Boolean constraints [15, 24, 36, 64]. A recent survey by Markov
and Crestani [39] provides a detailed analysis of several popular term-based methods.

Each search service can also be represented by a small sample of its documents.
The samples from all search services are combined to create a centralized sample
index, or CSI. When a query is received, the CSI is searched, and each top-ranked
document found in the CSI is treated as a vote for the resource from which it was
sampled. Many different methods for weighting votes from different resources have
been described [35, 44, 50, 52, 54, 55, 57].

Classification-based algorithms represent each search service using a model com-
bining various features and trained through supervised learning. Examples of features
include the presence of specific words in the query, the scores of term-based and
sample-based algorithms, and the similarity of the query to a resource-specific query
log [3, 27].

Sample-based algorithms have been regarded as being a little more effective than
term-based algorithms [51]; however, recently Aly et al. [2] argued that the term-
based Taily algorithm is more effective than the best sample-based algorithms. Term-
based and sample-based algorithms are effective when the search engines are mostly
homogeneous. Both types of algorithm are unsupervised, meaning that training data
is not required. Supervised classification-based algorithms can be more effective than
unsupervised methods; however, their main advantage is their ability to select among
heterogeneous resources (for example, “vertical” search engines), and exploit a wide
range of evidence.

6 Yubin Kim et al.

Our focus in this paper is on the use of resource selection algorithms to select a
few (of many) search engines for a particular query. However, some resource selec-
tion algorithms are very general and have been applied to a variety of other tasks,
such as blog search, desktop search, and personal metasearch [21, 28, 49, 56].

2.4 Selective Search

Selective search is an architecture for large-scale search that combines ideas from
cluster-based retrieval, document-partitioned distributed search, and federated search
architectures [31, 32, 33, 34]. The corpus is divided into topic-based shards that are
stored in separate indexes and distributed across the processing resources. When a
query arrives, a resource selection algorithm identifies a subset of shards that are
most likely to contain many of the relevant documents. The selected shards are then
searched and their answer lists merged to form an overall answer.

Puppin et al. [46] and Cacheda et al. [13] were among the first to study the com-
bination of topic-based partitioning and resource selection to improve distributed
search. They showed that partitioning a corpus into just a few large topics (11 and 17
topics, respectively) stored in separate indexes produced more efficient search than a
traditional replicated distributed system. Kulkarni and Callan [32, 33] increased the
number of clusters (for example, 50–1,000), placed greater emphasis on resource se-
lection due to the larger number of index shards, and named the architecture selective
search. They suggested that the desired number of topics is not an inherent property
of a corpus, but instead a parameter to be set based upon efficiency considerations.

Classic cluster-based retrieval systems produce many small clusters. Selective
search systems produce and search a smaller number of large topic-based clusters.
For example, Kulkarni [31] and Aly et al. [2] used clusters that contained approxi-
mately 500,000 documents, and queries typically searched 3-5 clusters. This differ-
ence makes it practical to store each cluster in its own index, which has two important
implications. First, selective search systems have much lower I/O and computational
costs than cluster-based retrieval systems because they read from disk only a small
fraction of each term’s total postings. Second, index shards can be assigned to differ-
ent machines, as is typical for distributed retrieval systems.

Previous studies showed that selective search systems and typical distributed re-
trieval architectures have similar accuracy, but that selective search systems are much
more efficient because they search only a few index shards [2, 31, 32, 33, 34]. The
topic-based indexes used for selective search are also more compatible with query
processing optimizations such as WAND than are the randomly-partitioned indexes
often used for distributed retrieval [29, 34]. However, those studies determined the
computational cost by counting the number of postings processed [2, 34], or by mea-
suring execution time on proof-of-concept implementations that were deployed on
just one or two multi-core machines and processed queries sequentially (that is, just
a single query active at any time) [31]. Cacheda et al. [13] compared the efficiency of
a cluster-based retrieval system to a traditional replicated distributed system, but the
cluster-based system had many fewer shards than a typical selective search system,
and the experiments did not consider the cost of resource selection.

Efficient Distributed Selective Search 7

The fact that selective search systems search only a few shards for each query
creates architectural choices that received little attention in prior research. When any
single query will access only a few shards, it is practical for each processor to service
query traffic for multiple shards. Kulkarni and Callan [34] studied an environment in
which dozens or hundreds of index shards were assigned to 16 processors. However
it is an open question how many shards to assign to each processor, how to assign
shards to processors, and how to balance computational loads when different index
shards attract different amounts of query traffic. In addition, it is unclear whether
selective search architectures are prone to bottlenecks or load imbalances, especially
when deployed across a larger number of machines.

2.5 Resource Selection for Selective Search

Selective search uses resource selection algorithms similar to algorithms used for
federated search. Our investigation makes use of the Taily and Rank-S resource selec-
tion mechanisms that were developed for selective search, thus we provide additional
detail about these algorithms.

In Rank-S, the query is used to rank documents in the centralized sample index
(CSI), which is a small, random sample of the total document collection. Document
scores are decayed exponentially and then treated as votes for the shards the docu-
ments were sampled from [35]. The exponentially-decayed vote of a document for its
parent resource is computed as:

Vote(d) = ScoreCSI(d)×base−RankCSI(d)

where ScoreCSI(d) and RankCSI(d) are the document score and rank obtained by
searching the CSI; and base is a configurable parameter. The final score of a resource
is ∑

k
i=1 Vote(di), the sum of the votes of the top-k documents retrieved from that

resource. Resources with a total score above 0.0001 are then selected, as originally
described by Kulkarni et al. [35].

Taily assumes that the distribution of document scores for a single query term is
approximated by a Gamma distribution. The allocation algorithm uses two parame-
ters, nc and v, where nc is roughly the depth of the final ranked list desired, and v is
the number of documents in the top nc that a resource must be estimated as contribut-
ing in order to be selected. Term scores are calculated from simple corpus statistics
and fitted to a Gamma distribution for each shard-term pair. Taily’s resource selec-
tion database records these fitted Gamma distributions for each term t in resource i,
describing the term’s score distribution in that shard. Gamma distributions are rep-
resented by two parameters, the shape parameter kt

i and the scale parameter θ t
i . At

query time, the cumulative distribution function of the Gamma distribution is used to
estimate the number of documents from each resource that will have a score above
a threshold derived from nc. Each resource that provides v or more documents is
selected [2].

When a query is received, Taily looks up two floating point numbers (the param-
eters of the fitted Gamma distribution) for each index shard per query term, whereas
Rank-S must retrieve an inverted list for each query term. Taily’s computational costs

8 Yubin Kim et al.

Result
Set

Search Queue

CPU ci

CPU 3
CPU 2

CPU 1

Resource
Selector

DB Shard pi

Shard 3
Shard 2

Shard 1

Query
Stream

Central Queue

Resource
Selection

Task
Merge
Task

Search
Task

Merge Queue

mi

Fig. 1 Architecture of the selective distributed search system. The i th of the M machines mi has ci cores,
each of which can be used for resource selection and result merging, or for shard search across any of the
pi shards allocated to this machine. Only a defined subset of the machines are able to perform resource
selection.

are linear in the number of index shards |S|, and nearly identical for each query of
length |q|. The computational costs for Rank-S vary depending on the document fre-
quency (df) of each query term in the centralized sample index. The Rank-S approach
is more efficient only when df t < |S| for query term t. That is, for most applications
Taily is faster to compute than Rank-S [2].

3 Simulation Model

Our goal is to study the computational characteristics of selective search in more
realistic and varied distributed processing environments than have been reported pre-
viously. However, acquiring, configuring, and producing repeatable experiments with
a variety of real hardware configurations is expensive and time-consuming [61]. Sim-
ulation is recognized as a viable way of modeling computational costs for complex
systems, and simulation has played an important role in a wide range of IR-related
investigations [12, 13, 14, 47, 59].

3.1 Simulation Parameters

We developed a selective search simulator1 based on DESMO-J2 a discrete event
modeling framework. The simulator has the benefit of allowing us to model a range

1 http://boston.lti.cs.cmu.edu/appendices/jir17-yubink/
2 http://desmoj.sourceforge.net/

Efficient Distributed Selective Search 9

M Number of machines; mi is the i th of these.
ci Number of cores on mi; the default is ci = 8.
C Total number of cores, ∑

M
i=1 ci.

pi Number of shards assigned to mi.
P Total number of shards. When each shard is assigned to just one machine, P = ∑

M
i=1 pi.

B Number of broker machines.
S Number of searcher machines.
T Query arrival rate described by an exponential distribution with mean 1/T .
ts Seek plus latency access time, msec/postings list, ts = 4 throughout.
tp Processing cost, msec/posting, tp = 9×10−4 throughout.
tm Merging cost, msec/item, tm = 5×10−5 throughout.

Table 1 Simulation parameters.

of hardware configurations, and provides precise estimates of a broad suite of perfor-
mance indicators. The implementation models a selective search system that incor-
porates a cluster of multi-core machines, and mimics parallel query execution across
those machines. Figure 1 describes the computational model embedded in the simu-
lator and Table 1 lists the quantities that are manipulated. The hardware is assumed
to consist of M machines, with the i th of those, machine mi, providing ci CPU cores
(ci = 8 throughout the paper). Machines may be configured to act as a broker, a
searcher, or to handle both roles.

A broker machine holds a copy of the resource selection database and performs
two tasks: resource selection, and result merging. For resource selection, the machine
has access to a shared central query queue, from which it extracts incoming queries,
determines which shards need to be searched, and then assigns shard search tasks to
other machines. Each broker machine also has a job queue for pending result merge
processes. This queue contains results returned by the searcher machines, now wait-
ing to be merged to produce a final result list for some query.

A machine mi is a searcher if it is allocated pi > 0 shards. A searcher also has
a job queue that holds shard search requests pertinent to the shards hosted on that
machine. Each of the available cores on the machine can access any of the shards
assigned to the machine, and hence can respond to any request in that machine’s
search queue. When a search job is finished, the result is returned to the result merge
queue of the originating broker. The assignment of shards and copies of the resource
selection database to machines is assumed to be fixed at indexing time, and machines
cannot access shards that are not hosted locally. A key factor for success is thus the
manner in which the P shards are partitioned across the M machines.

3.2 Selective Search Process

Algorithm 1 describes the actions that take place in each of the machines. First, if the
machine is a broker, the local result merge queue is checked for queries for which
all shard searches are complete, and merged output lists are generated if any queries
can now be finalized. Otherwise, if the machine is a searcher, the local shard queue is
checked to see if there are any searches pending; if so, the next one is actioned, and
the results directed to the merge queue for the machine that acted as broker for that

10 Yubin Kim et al.

Algorithm 1 – Processing loop for each core on machine mi.
while forever do

if isBroker(mi) and |mergequeuei|> 0 and
all shard responses have been received for some query q then

remove those responses from mergequeuei
finalize the output for query q and construct a

document ranking
else if isSearcher(mi) and |searchqueuei|> 0 then

remove a query request (q, p,b) from searchqueuei
perform a shard search for query q against shard p
append the results of the search to mergequeueb

else if isBroker(mi) and |centralqueue|> 0 then
remove a query q from centralqueue
perform resource selection for q
for each partition p to be searched for q do

determine the machine mh that is host for p
append (q, p, i) as a search request to searchqueueh

endwhile

query, which might be the same machine. A process on machine mi can search any
shard assigned to that machine.

If neither of these two activities are required, and if the machine is a broker,
the next query (if one exists) is taken from the central queue and resource selection
carried out. The result is a list of shards to be searched in order to resolve the query;
that list is mapped to a set of machine identifiers, and the query q is added to the
shard search queues for those machines. Query completion is prioritized over query
initiation, minimizing the processing time for each query, and ensuring that no query
has an an infinite time to completion.

The simulation assumes that queries arrive at the central queue at random in-
tervals determined by an exponential distribution governed by a mean query arrival
rate T . The number of machines permitted to host broker processes may be less than
M, the total number of machines, but is always at least one. Query processing costs
at the shards are computed based on the number of postings read from disk, plus an
overhead cost to account for initial latency for a disk seek. The number of postings
processed and system response times are known to have a strong correlation [38].
While more accurate methods exist [63], the main advantage comes from correctly
estimating the postings pruned from the total postings of a query.

A postings list of ` postings is thus presumed to require ts + ` · tp millisec-
onds, where ts = 4 milliseconds3 and tp = 9× 10−4 milliseconds per posting. The
processing rate – around a million postings per second – is based on measure-
ment of the cost of handling posting lists in the open source Indri search engine
(http://lemurproject.org/) on a machine with a 2.44 GHz CPU, and encom-
passes I/O costs as well as similarity calculation costs.

These parameters can be varied to explore different hardware architectures. For
example, ts can be set to zero and tp can be reduced to investigate behavior when the
index is stored in RAM or on a solid state device. Selective adjustment of tp can also
be used to mimic caching of postings lists. For example, when the experiments in this

3 http://www.anandtech.com/show/3636/western-digitals-new-velociraptor-vr200m-10k-rpm-
at-450gb-and-600gb, accessed 29/10/14.

Efficient Distributed Selective Search 11

paper were done with ts = 0 and tp = 9×10−5 milliseconds per posting, to mimic an
architecture with indexes stored in RAM and a hardware/software architecture that
processed inverted lists an order of magnitude faster, queries were processed more
quickly, but the relationships between different types of systems were unchanged.

3.3 Resource Selection and Result Merging

Resource selection costs differ according to the approach used. For sample-based
algorithms such as Rank-S, the cost is dominated by the need to process postings from
the central sample index (CSI). For these approaches, the same computational model
is used as for shard search, and a cost of ts+` · tp milliseconds is assumed for a list of
` postings. On the other hand, term-based algorithms such as Taily process statistics
from each shard that contains a query term. The cost for term-based approaches is
thus equivalent to processing a posting list of length equal to the number of shards
that contain the query term, which is always less than or equal to P, the number of
shards.

Result merging requires network transfer if the results are returned to a broker
that is not located within the same machine. This requires transferring of up to k
〈doc-id,score〉 results from each shard searched, where k is either fixed on a system-
wide basis, or is determined as part of the resource selection step. Network mes-
sages are also generated when brokers request searches for shards that are not stored
within the same machine. To ensure that the simulation was accurate, the cost of net-
work communication over a Gigabit switched network was modeled as described by
Cacheda et al. [13]. The cost of merging was measured on the same 2.44 GHz ma-
chine, and an allocation of tm = 5×10−5 milliseconds per document was found to be
appropriate.

3.4 System Output

The simulation models a system that returns the top-ranked 1,000 documents, thereby
supporting applications such as learning to rank algorithms, text-mining applications,
and TREC evaluations. Cacheda et al. [13] showed that when shards are formed ran-
domly, only a small number of documents need to be returned from each shard for
the true top-k documents to be returned with a high probability. Therefore, in the
exhaustive search system used as a baseline, each shard only returns the number of
documents that results in a 10−5 probability of missing a result in the top 1,000.
For example, this equates to returning 102 documents per shard for a 16 shard con-
figuration and 19 documents per shard for 512 shards. The assumption that docu-
ments are distributed randomly across shards does not apply to the topical indexes
used by selective search; clustering concentrates similar documents in a small num-
ber of shards. Thus, Cacheda’s technique cannot be used with selective search and
each search shard selected returns the full k = 1,000 documents. Since the exhaustive
search baseline accesses all shards, whereas selective search typically accesses 3-
5 shards, the number of documents that must be merged by the two architectures

12 Yubin Kim et al.

remains roughly comparable. In our experiments, the total number of documents
merged by the two architectures varied between 1,600 and 9,700, depending upon
the number of machines (exhaustive search) and query (selective search). Generally,
exhaustive search merges fewer documents than selective search in configurations
with fewer randomly-assigned shards, and more documents than selective search in
configurations with more random shards.

Overall, the simulator takes as input a list of queries, the resource selection cost
for each query, the shards to be searched for the query, and the search cost for each
shard. The cost is described by the sum of the lengths of the posting lists retrieved for
all query terms for the shards specified by the resource selection method. The simu-
lator then converts these posting list costs into “simulator milliseconds”. The overall
elapsed time required to process each query is taken as the difference between the ar-
rival time of that query in the central queue, and the moment at which all processing
of that query is completed. This cost includes time spent waiting in queues, network
delays, and computation time. The median end-to-end elapsed query processing time
is used as an aggregate measure of query latency. The median was preferred over the
mean because it is less affected by the very small number of slow queries, but the
conclusions of the paper remain the same with both metrics. In addition to the me-
dian latency, we also show the latency distributions in some key cases. The primary
variable in the simulator is the query arrival rate, which determines the load in the
system, and hence the extent to which query response times are affected by queuing
delays.

The load on each simulated machine is also tracked. The fraction of available
processors utilized is measured at simulation event boundaries and summarized in a
time-weighted average. This statistic is used to evaluate the evenness of load across
the modeled hardware setup.

3.5 Other Factors

The simulator models the main components of distributed and selective search archi-
tectures. However, in order to manage the complexity of the investigation (and hence
this paper), it does not include every possible optimization for large-scale search, for
example: dynamic pruning during query evaluation; postings list caching; and other
network and connectivity arrangements. Indeed, it is unclear how to simulate some
of these optimizations, for example dynamic pruning techniques, without fully im-
plementing important parts of the search engine. What we can be assured of is that
results presented in this paper are a reliable upper bound on the total processing cost
for each method, because all postings in the selected shards contribute to the final
computation. Actual processing costs in an optimized system would be somewhat
lower than what we report.

As one step towards understanding these interactions, we note that recent work
by the authors has demonstrated that the WAND dynamic pruning technique [11] re-
tains its advantages when searching within topical shards; indeed, WAND was found
to be somewhat more efficient on topic-based shards than randomly-assigned shards,
meaning that selective search has a somewhat larger advantage over exhaustive search

Efficient Distributed Selective Search 13

0 200 400 600 800

10
6

10
7

Shard

S
h

a
rd

 s
iz

e
 (

n
u

m
b

e
r

o
f

d
o

c
u

m
e

n
ts

)

Fig. 2 Sizes of ClueWeb09 shards used in experiments of Kulkarni [31].

in a more optimized system [29]. Investigations into the effects of other optimizations
typical of large-scale search environments would be a welcome addition to the liter-
ature, but are outside the scope of this paper.

4 Experimental Methodology

The simulator was applied to two large experimental collections. This section de-
scribes those data resources, including a revised partitioning scheme that constructs
approximately equal-sized sized partitions; and gives details of the effectiveness base-
lines we compare against.

4.1 Document Collections

Two web datasets, ClueWeb09-A English (abbreviated to ClueWeb09 in all of the ta-
bles) and Gov2 were used in the experimentation. These are large collections, cover-
ing more than 500 million and 25 million web pages respectively. The selective search
configurations applied to them are derived from the shard definitions for ClueWeb09
and Gov2 generated as part of the investigation carried out by Kulkarni [31].

One issue with the ClueWeb09 shard map produced by Kulkarni is that the shard
sizes are not uniform. Figure 2 plots the distribution of shard sizes in decreasing order
and reveals a large skew. The largest shard contained 7.8M documents, 12 times
the average size of 620k documents per shard. This imbalance is problematic for
two reasons. Firstly, there is a moderate correlation between the size of the shard
and the frequency at which it is selected for querying (Pearson correlation of 0.5).
That is, the larger the shard, the more likely it is to be selected for querying, which
a well-known bias of many resource selection algorithms. Secondly, when they do
get selected, large shards typically take longer to process queries, because of their
size. In combination, these two effects produce an imbalance in computation load
which is not present in the Gov2 shards. To address the imbalance of shard sizes
in ClueWeb09, the largest shards in the original shard partitioning of Kulkarni were

14 Yubin Kim et al.

Dataset # of
docs.

of
words

Vocab.
size

Avg. doc.
length

of
shards

Gov2 25M 24B 39M 949 50
ClueWeb09 504M 381B 1,226M 757 884

Table 2 Datasets and shards used in the experiments, with “M” standing for million, “B” standing for
billion, and document lengths measured in words.

Dataset Algorithm Parameters Avg. shards

Gov2 Taily n = 400, v = 50 3.0
Rank-S CSI = 1%, base = 3 4.7

ClueWeb09 Taily n = 400, v = 50 3.3
Rank-S CSI = 1%, base = 5 4.2

Table 3 Resource selection parameter settings, based on TREC Terabyte Track and TREC Web Track
queries for which relevance judgments are available, as developed by Kulkarni et al. [35] and Aly et al.
[2]. Those investigations used a variety of CSI sizes for Gov2, ranging from 0.5% to 4%. We use 1%, for
consistency with ClueWeb09. The final column lists the average number of shards per query selected by
the listed parameter settings.

divided; split via a random assignment if the resulting sub-shards would be closer
to the average shard size (by number of documents) than the original one. Note that
while smaller-than-average shards exist, they do not need to be explicitly combined;
instead, many small shards can be assigned to the same machine to combine their
load. A total of 51 shards were split into two or more smaller shards, resulting in an
increase of 77 shards, for a total of 884.

A range of other statistics for the two datasets are listed in Table 2.

4.2 Resource Selection Parameter Settings

As noted above, two resource selection techniques were used in our experiments:
the sample-based Rank-S method [35]; and the term-based Taily approach [2]. Both
require that values be set for two system parameters. For Rank-S the two key param-
eters are the size of the document sample for the centralized index (the CSI), and the
quantity base used for the exponential discounting. Taily requires values for n, con-
ceptually the depth of the result list used for estimating relevant document counts; and
for v, the score cut-off. The parameters used in our experiments are as recommended
by Aly et al. [2] and Kulkarni [31], and are summarized in Table 3.

4.3 Confirming Retrieval Effectiveness

Tables 4 and 5 list the overall effectiveness of selective search using the default pa-
rameters, spanning multiple years of the TREC Terabyte and Web Tracks. Note that
these effectiveness results are independent of the simulation process used to measure
efficiency, in that there is no influence on them of the number of machines, and of how
shards are assigned to machines – once the assignment of documents to shards has
been completed, and the resource selection parameters determined, selective search

Efficient Distributed Selective Search 15

Algorithm Terabyte Track 2004 Terabyte Track 2005 Terabyte Track 2006
P@10 NDCG@30 P@10 NDCG@30 P@10 NDCG@30

Baseline 0.56 0.43 0.62 0.49 0.57 0.48
Rank-S 0.57 0.42 0.59 0.45 0.54 0.44
Taily 0.51 0.37 0.48 0.35 0.50 0.42
Oracle 0.64 0.47 0.64 0.51 0.61 0.51

Table 4 Effectiveness of selective search with various resource selection algorithms on the Gov2 dataset,
using three available pairings of queries and relevance judgments. The “Baseline” method is an exhaustive
search of all shards. The “Oracle” shard ranking assumes that the most useful four shards are selected for
each query.

Algorithm Web Track 2009 Web Track 2010 Web Track 2011 Web Track 2012
P@10 NDCG@30 P@10 NDCG@30 P@10 NDCG@30 P@10 NDCG@30

Baseline 0.30 0.21 0.27 0.19 0.36 0.28 0.27 0.15
Rank-S 0.28 0.19 0.32 0.20 0.30 0.21 0.25 0.14
Taily 0.28 0.18 0.31 0.20 0.24 0.16 0.23 0.13
Oracle 0.37 0.25 0.45 0.32 0.42 0.35 0.33 0.20

Table 5 As for Table 4, but for the ClueWeb09 dataset, using four available pairings of queries and rele-
vance judgments.

generates the same final ranked list regardless of machines or shard allocations. The
effectiveness reported for exhaustive search was achieved using structured queries
and the sequential dependency model (SDM) [40], removing spam documents at a
Waterloo Fusion spam score threshold of 50%, similar to Aly et al. [2]. The selec-
tive search runs used a similar set-up whenever possible. For Rank-S, the CSI was
created using a random sample of the document collection and was searched using
SDM queries. For both Taily and Rank-S, the selected shards were searched using
SDM queries and retrieval scores were calculated using global term frequency data;
this produces scores that are comparable across shards, thus simplifying the result
list merging process. The final result list was filtered for spam. Note that the spam
filtering was only performed for the effectiveness results in order to generate results
comparable to prior work and was not done for the efficiency experiments. These ar-
rangements give rise to effectiveness better than was attained by Kulkarni [31], and
comparable to the levels reported by Aly et al. [2].

Results for the four Web Track query sets are listed separately rather than com-
bined across query sets, in order to distinguish the effects of different tasks on se-
lective search. In the results reported by Kulkarni [31] and by Aly et al. [2], effec-
tiveness was averaged across the 2009 and 2010 Web Track query sets; unpacking
them as we have done here reveals that selective search is not as uniformly compet-
itive as previously reported, particularly for the 2009 queries. On the other hand, on
the 2010 queries a partitioned index and good resource selection are more effective
than exhaustive search, supporting an observation originally made by Powell et al.
[45]. When the 2010 results are averaged with the 2009 results, selective and exhaus-
tive search have comparable performance. While the accuracy results are reported
with our modified shard maps, these relationships also occur when using the original
shard maps. Selective search is also less effective than exhaustive search across the
two newer query sets from 2011 and 2012.

16 Yubin Kim et al.

The effectiveness results reported in Tables 4 and 5 suggest that the parame-
ters used for Taily and Rank-S might not be optimal. To address that concern, we
performed a parameter sweep to check for better settings, but were unable to iden-
tify parameters that both yielded accuracy comparable to exhaustive search and also
searched a moderate number of shards. We also experimented with a clairvoyant “or-
acle” shard ranking, in which the four shards containing the greatest number of rele-
vant documents were presumed to always be selected, a number of shards similar to
the average searched by Rank-S and Taily. Those hypothetical results are shown in
the final row of each of Tables 4 and 5. The substantial gap between the oracle, and
Rank-S and Taily, reinforces that the accuracy of selective search depends heavily on
the resource selection process, and makes it clear that further algorithmic improve-
ments may be possible. However, our emphasis here is on efficiency, and we leave
that prospect for future work.

4.4 Query Streams

A key purpose of the simulation is measurement of the performance of selective
search under realistic query loads, including determination of the point at which each
configuration saturates. For these experiments a much larger query log is needed than
the Web Track and Terabyte Track query sets used in the effectiveness validation
shown in Tables 4 and 5. The main experiments that are reported in Section 5 make
use of the AOL query log and the TREC Million Query Track query set. These query
logs are from a different time period than the two collections, but we used the queries
(only) to measure efficiency and not effectiveness, so the discrepancy in their tempo-
ral coverage is not a concern.

In order to simulate a live query stream, the AOL log was sorted by timestamp,
and deduplicated to only contain unique queries. Deduplication has the effect of sim-
ulating a large answer cache, and more closely reflects what would happen in a pro-
duction server. For ClueWeb09, the first 1,000 queries were used as training data, to
set configuration parameters such as the number of brokers (Section 5.2), and assign-
ments of shards to machines (Section 5.3). The next 10,000 queries were used for test-
ing. Together, the queries cover a time period of 2006-03-01 00:01:03 to 2006-03-01
01:31:45. For Gov2, the timestamp-sorted AOL query stream was further filtered se-
lecting only queries that had at least one .gov-domain result click recorded. The first
1,000 queries were again used as training data, and the next 10,000 queries used for
testing, covering the time period 2006-03-01 00:01:08 to 2006-03-01 20:09:09. Two
further test query sets were also extracted from the AOL log: 10,000 queries starting
from 2006-03-08, one week after the main query stream (TestW); and another 10,000
queries commencing 2006-04-01, one month after the main query stream (TestM).
These query sequences were used in the experiments described in Section 5.3.

Two final query streams were created from the TREC Million Query Track
(MQT). The MQT queries have no timestamps and were used in the order they ap-
pear in the files provided by NIST. For Gov2, the first 1,000 queries of the 2007
query set were used for training, and 10,000 queries from the 2008 query set were

Efficient Distributed Selective Search 17

Dataset Log Train Test TestW TestM

Gov2 AOLG 1K 10K 10K 10K
Gov2 MQTG 1K 10K
ClueWeb09 AOLW 1K 10K 10K 10K
ClueWeb09 MQTW 1K 10K

Table 6 Sizes of query logs. The “Train” column indicates queries used to set parameters; the “Test”
column queries used for reporting results. The “TestW ” and “TestM” queries were sampled starting one
week and one month after the Train queries, respectively.

used for testing. For ClueWeb09, both the 1,000 training and 10,000 testing queries
were extracted from the TREC 2009 MQT sequence.

In total, 84,000 queries were used at various stages of the evaluation, split across
the categories summarized in Table 6.

5 Experimental Results

We now use the query execution simulator to investigate the efficiency and load char-
acteristics of the selective search architecture under a variety of conditions. The first
set of experiments evaluates an environment similar to the one considered by Kulka-
rni [31], but allows parallel execution of queries and tasks (Section 5.1). The second
suite of experiments explores resource selection costs, resource selection algorithms,
and how to overcome computational load imbalances arising from resource selection
(Section 5.2). The third round of experiments investigate the load and throughput
effects of two different policies for assigning shards to machines (Section 5.3). The
last experiment compares index-spreading and mirroring strategies when using addi-
tional computational resources (Section 5.4). We reiterate that retrieval effectiveness
remains constant, as reported in Tables 4 and 5, and that the simulation is used to
determine execution times only, based on long streams of actual queries for which
relevance judgments are not available.

5.1 Selective Search Efficiency

Research Question 1 asks Is selective search more efficient than exhaustive search
in a parallel query processing environment? We start by comparing the two archi-
tectures in small-scale environments similar to those examined by Kulkarni [31] and
Kulkarni and Callan [32]. The test collections were divided into topical shards and
the shards randomly distributed across all machines, with each machine receiving the
same number of shards. The same collections were also used to build an exhaustive
search baseline by constructing C (the total number of cores) evenly sized shards via
a random assignment of documents, and then allocating one shard per core to each
machine; ci = 8 in our experiments, thus eight shards were assigned to each machine.
This allows exhaustive search to make use of all cores for every query and hence max-
imize throughput. In both configurations, all machines accepted search tasks, but only
one machine (B = 1) accepted broker tasks, so as to emulate previous arrangements

18 Yubin Kim et al.

Queries Res. sel. Gov2 ClueWeb09
avg. sddev. avg. sddev.

MQT Taily 2.5 1.4 3.6 2.9
Rank-S 4.2 1.8 4.4 1.7

AOL Taily 2.9 1.6 11.9 31.3
Rank-S 4.6 1.9 4.2 1.7

Table 7 Average number of shards selected by Taily and Rank-S for the two Test logs, measured using
the same system configurations as are depicted in Figure 3.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Query Arrival Rate (queries/sec)

M
e

d
ia

n
 P

ro
c
e

s
s
in

g
 T

im
e

 (
m

s
)

AOL Exhaustive
AOL Rank−S
AOL Taily

MQT Exhaustive
MQT Rank−S
MQT Taily

(a) Gov2 dataset.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Query Arrival Rate (queries/sec)

M
e

d
ia

n
 P

ro
c
e

s
s
in

g
 T

im
e

 (
m

s
)

AOL Exhaustive
AOL Rank−S
AOL Taily

MQT Exhaustive
MQT Rank−S
MQT Taily

(b) ClueWeb09 dataset.

Fig. 3 Exhaustive search and selective search using ClueWeb09 and Gov2 datasets and the AOLW Test,
MQTW Test, AOLG Test, and MQTG Test query sets, which are shown as AOL and MQT in the labels
for brevity. The shards were randomly assigned to each machine. In these experiments, M = 2, B = 1, and
S = 2. Note that both scales are logarithmic.

Collection Queries Method T
(q/s)

Percentile Mean Max50% 75% 99%

Gov2 MQT Exhaustive 0.28 2,268 4,409 11,676 2,936 20,868
Rank-S 3.20 1,632 2,651 6,206 1,883 10,229
Taily 5.50 1,189 1,901 4,579 1,366 8,145

AOL Exhaustive 0.42 250 1,126 5,016 768 9,135
Rank-S 7.50 397 865 2,606 590 5,352
Taily 12.00 265 612 1,868 407 4,329

ClueWeb09 MQT Exhaustive 0.04 5,819 26,510 110,232 17,784 206,595
Rank-S 3.20 1,468 3,537 13,082 2,516 32,888
Taily 9.00 510 1,012 3,340 719 6,709

AOL Exhaustive 0.03 21,736 50,525 172,978 34,019 427,116
Rank-S 1.80 3,263 6,220 18,351 4,208 76,103
Taily 0.75 902 3,869 21,350 3,032 46,770

Table 8 Dispersion of per-query processing times for selected configurations, at the last point on each of
the corresponding curves in Figure 3. Columns display the 50th, 75th, 99th percentiles, the mean, and the
maximum value of individual query processing times, where time is measured in simulation milliseconds.
In these experiments, M = 2. Recall that the simulation was tuned to model the costs associated with Indri,
a research search engine; a commercial system would be likely to have lower processing times.

as closely as possible. Table 7 summarizes the average number of shards selected by
the resource selection algorithms with parameters as discussed in Section 4.

Efficient Distributed Selective Search 19

Collection Queries Method T
(q/s)

Central
queue Network Internal

queues
Resource
selection Merge

Gov2 MQT Exhaustive 0.28 21.88% 0.06% 14.91% - 0.09%
Rank-S 3.20 32.16% <0.01% 3.35% 13.38% 0.01%
Taily 5.50 30.38% <0.01% 3.44% 1.58% 0.01%

AOL Exhaustive 0.42 21.41% 0.07% 16.92% - 0.01%
Rank-S 7.50 25.67% 0.01% 2.58% 14.67% 0.04%
Taily 12.00 20.55% 0.01% 2.68% 2.50% 0.03%

ClueWeb09 MQT Exhaustive 0.04 31.57% <0.01% 25.24% - <0.01%
Rank-S 3.20 25.55% <0.01% 1.72% 53.44% 0.01%
Taily 9.00 26.36% 0.01% 5.10% 1.66% 0.02%

AOL Exhaustive 0.03 30.86% <0.01% 31.08% - <0.01%
Rank-S 1.80 22.40% <0.01% 1.93% 59.67% <0.01%
Taily 0.75 36.77% <0.01% 7.54% 0.46% 0.02%

Table 9 Breakdown of elapsed query time, in percentages, at the last point on each of the corresponding
curves in Figure 3. Central queue indicates the percentage of time spent in the central query queue; network
indicates the delays caused by network congestion; internal queues indicates time spent in system queues
such as a machine’s shard search queue or merge queue; resource selection indicates time spent performing
resource selection; and merge is time spent performing the final merge operation. The balance was spent
in shard search.

The high variance in the number of ClueWeb09 shards selected by Taily for the
AOL query set is because the distribution of Taily shard scores levels off quickly and
becomes flat, which makes it difficult for Taily to distinguish between shards. The
AOL query set used with Gov2 does not experience the same issues; these queries
are cleaner due to the filtering process that was applied. Even with these variances
affecting behavior, selective search examines only a small fraction of the shards, and
produces significant efficiency gains regardless of the resource selection method de-
ployed.

Figure 3 shows the simulated throughput of two selective search variants, com-
pared to exhaustive search. The vertical axis shows the median time to process a
single query, plotted as a function of the query arrival rate on the horizontal axis. Al-
ternative summary metrics such as the mean or the 95% percentile processing times
were also explored, and produced similar patterns of behavior. The two frames corre-
spond to the two collections, with each curve representing one combination of query
set and processing regime. The right-hand end of each plotted curve is truncated at a
point at which the system configuration is approaching saturation, defined as occur-
ring when the median processing time for queries exceeds twice the median process-
ing time for queries in a corresponding unloaded system (at an arrival rate of 0.01
queries per second, at the left-hand end of each curve). Query arrival rates were cho-
sen dynamically for each curve, so that the region of greatest gradient can be clearly
distinguished. Configurations in which the curve is lower have lower latency under
light load; configurations with elbows that are further to the right require fewer re-
sources per query, and attain higher throughput rates when the system is approaching
saturation.

To describe the variation of query processing times, Table 8 lists the 50th, 75th
and 99th percentile, mean, and max values of query processing time for several con-
figurations of selective search. The values reported are all taken at the last points in

20 Yubin Kim et al.

the plotted curves of Figure 3 – the point where each system is deemed to have ap-
proached saturation. Table 9 breaks down the average costs at the same set of system
saturation points. As expected of a system under load, queries spend a significant
fraction of their time in the central query queue, and in queues internal to each sys-
tem; network and merging costs are minimal. Note the differences in the time spent
in resource selection between Rank-S and Taily, particularly on ClueWeb09. This is
what causes the higher latency for Rank-S systems, evident in Figure 3, and is as
expected – sample-based resource selection methods are more expensive than term-
based methods. This topic is explored further in Section 5.2.

Selective search outperforms exhaustive search by a factor of more than ten on
the ClueWeb09 dataset (Figure 3b), because only a small fraction of the 884 shards
are searched for each query. Query latency is also lower in selective search, despite
the two-step process of resource selection followed by shard search. This is due to
fewer resources being used by selective search, and the fact that at low query loads,
latency is largely determined by the slowest partition that is polled. Topical shards
are smaller than random shards, thus they can be searched more quickly. A larger
fraction of the fifty possible shards are searched in the Gov2 collection (Figure 3a),
so the performance improvement is not as large. Even so, selective search of Gov2
handles four to five times the rate of queries as exhaustive search before saturating.

Taily has better throughput and latency than Rank-S for the majority of settings
tested. The only exception is for the AOLW Test queries on ClueWeb09, where the
larger number of shards searched by Taily eclipses the lower resource selection costs,
resulting in better at-load throughput for Rank-S. More broadly, selective search de-
livers markedly better performance characteristics than exhaustive search in all of the
configurations investigated, extending the findings of Kulkarni [31] and Kulkarni and
Callan [32] that selective search improves the efficiency of parallel query processing.

5.2 Resource Allocation

The difference between Rank-S and Taily is a direct consequence of the two ap-
proaches to resource selection [2]. In response, we turn to Research Question 2: How
does the choice of resource selection algorithm affect throughput and load distri-
bution in selective search, and how can any imbalances originating from resource
selection be overcome?

In the experiments illustrated in Figure 3, only one machine acted as broker, and
the shards were evenly distributed across the two machines (B = 1,S = 2). This is
similar to the configuration described by Kulkarni [31]. However, this configuration
is not optimal for selective search, and produces an uneven machine load, especially
when using Rank-S to select shards. Figure 4 plots the machine utilization of this
configuration, using Rank-S, M = 2 machines, and searching ClueWeb09 with the
AOLW Test query set. All broker tasks are handled by machine m1, which is also a
searcher. Consequently, m1 is heavily loaded compared to m2, with more than 70%
of the load caused by resource selection when the query arrival rate is 2.5 queries
per second. Similar imbalances are observed when other simulator parameters such
as query streams, collections, and hardware are varied.

Efficient Distributed Selective Search 21

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Query Arrival Rate (queries/sec)

A
v
e

ra
g

e
 L

o
a

d

m
1
 load

m
2
 load

Fig. 4 Average utilization of machines using Rank-S, the ClueWeb09 dataset, the AOLW Test queries,
M = 2, B = 1 and S = 2. Each point is the mean over 10 sequences of 1,000 queries; error bars represent
95% confidence intervals.

0 1 2 3 4
0

1000

2000

3000

4000

5000

Query Arrival Rate (queries/sec)

M
e
d
ia

n
 P

ro
c
e
s
s
in

g
 T

im
e
 (

m
s
)

B=1

B=2

(a) MQTG Test on Gov2.

0 1 2 3 4
0

1000

2000

3000

4000

5000

Query Arrival Rate (queries/sec)

M
e
d
ia

n
 P

ro
c
e
s
s
in

g
 T

im
e
 (

m
s
)

B=1

B=2

(b) AOLW Test on ClueWeb09.

Fig. 5 Varying the resources assigned to broker processes using Rank-S, with M = 2, and random shard
assignment.

The situation changes if more broker processes are permitted. Figure 5 compares
the previous B = 1 outcomes to B = 2, that is, a configuration in which both machines
perform resource selection. The change results in a moderate gain in throughput on
the Gov2 collection with the MQTG queries, and a marked improvement in through-
put on ClueWeb09 with the AOLW queries; with the difference in behavior due to the
size of the corresponding CSIs. Rank-S uses a 1% sample of the corpus to make de-
cisions, and for Gov2, a 1% sample is about half the size of an average shard. But for
ClueWeb09, the 1% CSI is about eight times the size of an average shard, and hence
a greater fraction of the search time is spent on shard selection, as is also shown in
Table 9.

Taily requires far less computation for resource selection than does Rank-S, and
the best setting was B= 1 for both datasets and all query logs. At M = 2 and B= 1, re-
source selection for Taily accounted for less than 2% of m1’s processing capability. re-
inforcing the natural advantage of term-based algorithms. As is shown in Figure 3(b),

22 Yubin Kim et al.

0 20 40 60 80
10

0

10
1

10
2

10
3

Shard index sorted by frequency

T
o
ta

l
n
u
m

b
e
r

o
f
ti
m

e
s
 s

e
le

c
te

d

AOL
W

 Train

MQT
W

 Train

Fig. 6 Popularity of the most-frequently accessed 10% of ClueWeb09 shards for the two training query
sets, as determined by Rank-S. The vertical axis indicates the total number of times a shard is selected by
that query set.

the resulting performance gains can be large. On the other hand, sample-based algo-
rithms have other advantages, including the ability to run structured queries.

5.3 Shard Assignment

With two machines (M = 2), random assignment of shards to machines distributes
query traffic evenly across machines, since there are many more shards than ma-
chines (P� M). That natural balance is eroded as M increases, because selective
search deliberately creates shards that have skewed term distributions and topical
coverage. This section examines Research Question 3: How do different methods of
shard allocation affect throughput and load distribution across multiple machines?

Figure 6 shows the relative popularity of the 88 most frequently-accessed
ClueWeb09 shards. For example, when the Rank-S resource selection algorithm is
used to select topic-based shards for the Gov2 queries from AOLG Train, the five
most popular shards account for 29% of all shards selected – 1,302 out of 4,491
shard selections. The MQT query set displays a similar, but more moderate, skew.
This unevenness of access has the potential to overload the machines that are respon-
sible for popular shards, and thereby create bottlenecks that starve other machines of
work.

The next set of experiments compare the performance of the usual Random shard
assignment and an alternative Log-based mechanism, which uses training queries to
estimate and balance the average load across machines. The training queries are fed
through the resource selection process, so that the sum of the posting list lengths for
each shard can be computed and used as an estimate of the shard’s workload. Shards
are then ordered from most to least loaded, and assigned to machines one by one,
in each case choosing the machine that currently has the lowest estimated load. Any
remaining shards that were not accessed by the training queries are assigned similarly,
based on their size. In these experiments, four sets of 1,000 training queries were
employed, AOLG Train, MQTG Train, AOLW Train and MQTW Train, as described in

Efficient Distributed Selective Search 23

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Query Arrival Rate (queries/sec)

A
v
e
ra

g
e
 L

o
a
d

(a) Random assignment.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Query Arrival Rate (queries/sec)

A
v
e
ra

g
e
 L

o
a
d

m
1
 load

m
2
 load

m
3
 load

m
4
 load

(b) Log-based assignment.

Fig. 7 Utilization of machines for selective search on Gov2, using Taily, the MQTG Test queries, M = 4,
B = 1, S = 4, and two methods of assigning shards to machines. Each point is the mean over 10 sequences
of 1,000 queries; error bars represent 95% confidence intervals. The broker resides on m1 in both configu-
rations.

Dataset Queries Allocation
method

Average loadi and range of loadi for each query arrival rate T
avg. rnge. avg. rnge. avg. rnge. avg. rnge.

6 qry/s 8 qry/s 10 qry/s 12 qry/s
Gov2 MQTG Random 0.32 0.30 0.42 0.40 0.53 0.49 0.61 0.58

Log-based 0.32 0.10 0.42 0.14 0.53 0.17 0.63 0.21

20 qry/s 30 qry/s 40 qry/s 50 qry/s
Gov2 AOLG Random 0.40 0.19 0.59 0.28 0.73 0.34 0.78 0.36

Log-based 0.40 0.14 0.59 0.20 0.73 0.25 0.78 0.26

10 qry/s 15 qry/s 20 qry/s 25 qry/s
CW09 MQTW Random 0.36 0.08 0.53 0.11 0.70 0.15 0.81 0.17

Log-based 0.36 0.05 0.53 0.07 0.70 0.09 0.82 0.10

1.5 qry/s 2.0 qry/s 2.5 qry/s 3.0 qry/s
CW09 AOLW Random 0.39 0.07 0.52 0.10 0.65 0.12 0.76 0.14

Log-based 0.39 0.01 0.52 0.02 0.65 0.02 0.77 0.03

Table 10 Average loadi and range (max loadi−min loadi) on the test query set, where loadi is the time-
averaged CPU load of machine mi, for two shard allocation policies and a range of query arrival rates, using
M = 4, B = 1, and S = 4, and with Taily resource selection throughout. CW09 stands for ClueWeb09.

Section 4.4. Using Taily’s shard selections, Gov2 had no unaccessed shards for either
query set, and for the ClueWeb09 collection, 7% and 4% of shards were unaccessed
by AOLW Train and MQTW Train respectively.

Figure 7 shows the effect of shard assignment policy on workload across M = 4
hosts for the Gov2 dataset, as query arrival rates are varied, with the vertical axis
showing machine utilization in the range 0.0 and 1.0. The wide spread of loads in
the left-hand pane shows that the Random policy produces an uneven utilization of
machines, and saturates relatively quickly due to a bottleneck on m4. In comparison,
the Log-based policy markedly reduces the load variance, and allows higher query
throughput rates to be attained. Numeric results for this and other configurations are
given in Table 10, with Log-based assignment consistently producing more uniform

24 Yubin Kim et al.

Dataset Query log Average loadi and range of loadi for each query arrival rate T
avg. rnge. avg. rnge. avg. rnge. avg. rnge.

20 qry/s 30 qry/s 40 qry/s 50 qry/s
Gov2 AOLG Test 0.40 0.14 0.59 0.20 0.73 0.25 0.78 0.26

AOLG TestW 0.38 0.13 0.56 0.19 0.71 0.24 0.76 0.25
AOLG TestM 0.32 0.14 0.47 0.20 0.62 0.26 0.72 0.30

1.5 qry/s 2.0 qry/s 2.5 qry/s 3.0 qry/s
CW09 AOLW Test 0.39 0.01 0.52 0.02 0.65 0.02 0.77 0.03

AOLW TestW 0.39 0.01 0.51 0.02 0.63 0.02 0.75 0.02
AOLW TestM 0.40 0.02 0.53 0.02 0.66 0.02 0.77 0.03

Table 11 Average loadi and range (max loadi−min loadi) as the training data ages, using the Log-based
shard allocation policy, and all other simulation settings as for Table 10. The Test queries begin immedi-
ately after the training queries; the TestW queries begin one week after the training queries; and the TestM
queries begin one month after the training queries. The MQT queries do not have timestamps. CW09
stands for ClueWeb09.

resource utilization than Random assignment. Results for Rank-S resource selection
are similar, and are omitted.

The risk of using Log-based allocations is that the learned attributes may become
dated as a result of changes in the query stream. Table 11 investigates this poten-
tial shortcoming by showing machine usage for three time-separated query sets each
containing 10,000 queries: one from immediately after the training queries; a sec-
ond set from one week after the training queries; and a third set from one month
after the training queries. Average utilization is similar in each case, and variance in-
creases marginally as the query stream evolves, but the changes are generally small.
Results for the AOL log for Gov2 one month after assignment are an exception and
have a markedly lower utilization due to a burst of shorter queries that occurred at
this time (2.18 words on average versus 2.41 and 2.44 for TestW and Test queries
respectively), meaning that at any given arrival rate less total work is required; but
the variance still remains similar. Shard assignments should be periodically revised
to maximize throughput, but it is not necessary to do it frequently, and the cost of
refreshing shard assignments can be amortized.

To demonstrate that the random assignment results shown in Figure 7 and Ta-
ble 10 are not due to outliers, ten different allocations were generated per combina-
tion of collection and query stream, and variance of the loading measured. Figure 8
presents the results for the AOLG Test query set of Gov2 and the MQTW Test query
set of ClueWeb09. The load spread of the Log-based allocation is also plotted. While
there was at least one Random allocation that produced a load spread comparable
to that of the Log-based method, the median values were all well above it. Figure 9
shows that when the number of machines is increased to M = 8, Log-based alloca-
tion produces the best load distribution even when compared to ten different Random
allocations. That is, the Log-based method reliably picks shard allocations with low
load spread, and hence leads to consistent utilization across machines.

Balanced assignment of shards and higher utilization of machines can lead to
higher query throughput, as shown in Figure 10. The Random policies shown in this
figure are the median performing assignment from Figures 8 and 9. When M = 4, in
the left column, the Log-based policies are measurably better than the Random pol-
icy for the Gov2 dataset. The difference widens when M = 8 machines are used. The

Efficient Distributed Selective Search 25

0

0.2

0.4

0.6

0.8

1

20 30 40 50
Query Arrival Rate (queries/sec)

L
o

a
d

 S
p

re
a

d

Log−based

(a) AOLG on Gov2.

0

0.2

0.4

0.6

0.8

1

10 15 20 25
Query Arrival Rate (queries/sec)

L
o

a
d

 S
p

re
a

d

Log−based

(b) MQTW Test on ClueWeb09.

Fig. 8 Distribution of load spread (max loadi−min loadi) for ten Random shard allocations, with M = 4
and B = 1. The mid-line of the box is the median, the outer edges the 25th and 75th percentile values, and
the whiskers extend to the most outlying values. The load spread for Log-based shard allocation is also
plotted, as a reference point. Note the different horizontal scales in the panes.

0

0.2

0.4

0.6

0.8

1

20 30 40 50
Query Arrival Rate (queries/sec)

L
o

a
d

 S
p

re
a

d

Log−based

(a) AOLG Test on Gov2.

0

0.2

0.4

0.6

0.8

1

30 35 40 45
Query Arrival Rate (queries/sec)

L
o

a
d

 S
p

re
a

d

Log−based

(b) MQTW on ClueWeb09.

Fig. 9 As for Figure 8, but with M = 8 and B = 8.

gap between the allocation strategies for ClueWeb09 are smaller, due to the smaller
differences in load variance between the Random and Log-based assignment, as al-
ready noted in connection with Table 10, and Figures 8 and 9. Correcting larger load
imbalances leads to more substantial throughput gains.

Finally, in most of the settings explored the Log-based assignment continues to
yield better utilization than Random allocation even after a one month interval, further
supporting the stability of the assignment. It is clear that the method of allocating
shards to machines has an impact in load distribution of selective search, and hence
throughput.

5.4 Scalability

The main focus of this paper is on low-resource environments, typically involving
two to eight multi-core machines. But one advantage of a simulation model is that
other configurations can also be explored, and we have examined larger-scale en-

26 Yubin Kim et al.

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

Query Arrival Rate (queries/sec)

M
e
d
ia

n
 P

ro
c
e
s
s
in

g
 T

im
e
 (

m
s
)

MQT Random
MQT Log−based
AOL Log−based 1 month
AOL Log−based 1 week
AOL Random
AOL Log−based

(a) Gov2, M = 4, B = 1.

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

Query Arrival Rate (queries/sec)

M
e

d
ia

n
 P

ro
c
e

s
s
in

g
 T

im
e

 (
m

s
)

MQT Random
MQT Log−based
AOL Log−based 1 month
AOL Log−based 1 week
AOL Random
AOL Log−based

(b) Gov2, M = 8, B = 8.

0 0.5 1 1.5 2
0

200

400

600

800

1000

Query Arrival Rate (queries/sec)

M
e
d
ia

n
 P

ro
c
e
s
s
in

g
 T

im
e
 (

m
s
)

AOL Log−based 1 month

AOL Log−based 1 week

AOL Random

AOL Log−based

(c) ClueWeb09, AOL.

0 1 2 3 4
0

200

400

600

800

1000

Query Arrival Rate (queries/sec)

M
e
d
ia

n
 P

ro
c
e
s
s
in

g
 T

im
e
 (

m
s
)

AOL Log−based 1 month

AOL Log−based 1 week

AOL Random

AOL Log−based

(d) ClueWeb09, AOL.

0 5 10 15 20 25
0

100

200

300

400

500

600

Query Arrival Rate (queries/sec)

M
e
d
ia

n
 P

ro
c
e
s
s
in

g
 T

im
e
 (

m
s
)

MQT Random

MQT Log−based

(e) ClueWeb09, MQT.

0 10 20 30 40 50
0

100

200

300

400

500

600

Query Arrival Rate (queries/sec)

M
e
d
ia

n
 P

ro
c
e
s
s
in

g
 T

im
e
 (

m
s
)

MQT Random

MQT Log−based

(f) ClueWeb09, MQT.

Fig. 10 The effect of shard assignment policies on throughput of selective search, using Taily with M = 4,
B = 1 (all left column panes) and M = 8, B = 8 (all right column panes). Note the differing horizontal
scales in each pair.

vironments too. Distributed IR systems typically achieve scalability in two ways: by
shard replication, and/or by increasing the number of machines available in the cluster
so that each is responsible for a smaller volume of data. We explore the scalability of
selective search using these two approaches, and consider Research Question 4: Does
selective search scale efficiently when adding more machines and/or shard replicas?

Efficient Distributed Selective Search 27

10
−2

10
−1

10
0

10
1

10
2

10
3

10
2

10
3

10
4

Query Arrival Rate (queries/sec)

M
e

d
ia

n
 P

ro
c
e

s
s
in

g
 T

im
e

 (
m

s
)

AOL Exhaustive
AOL Rank−S

AOL Taily
MQT Exhaustive

MQT Rank−S
MQT Taily

Fig. 11 Selective search and exhaustive search for ClueWeb09 and the AOLW Test and MQTW Test queries
(shown as AOL and MQT in the legend), with M = 64 and B = 64, and Log-based shard assignments.

1 2 4 8 16 32 64
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Number of Machines

T
o

ta
l
T

im
e

 (
s
)

AOL Exhaustive
AOL Rank−S
AOL Taily
MQT Exhaustive
MQT Rank−S
MQT Taily
Ideal

Fig. 12 Total time required to process 10,000 queries as a function of M, the number of machines, assum-
ing an infinite query arrival rate and B = M. The two query streams used are MQTG Test and AOLG Test,
denoted as MQT and AOL respectively. The red dash-dot line represents the gradient expected for ideal
linear speedup, where throughput is doubled with doubled machine capacity.

Note that the experiments in this section are for ClueWeb09 alone, because Gov2
only has 50 shards.

Figure 11 compares selective search and exhaustive search when M = 64 ma-
chines are used, with load balancing as described in Sections 5.2 and 5.3. With more
machines in use, the latency of exhaustive search is greatly decreased, because the
shards are all smaller. Selective search’s latency remains the same because the num-
ber of topical shards searched is not a function of M. In the configuration shown
there are 512 random shards and 884 topical shards, and the query terms’ posting lists
are now shorter on average in the random shards than in the topical shards selected
by Taily or Rank-S. Note, however, that selective search still provides substantially
higher throughput than exhaustive search; that is, while selective search takes longer
to search each accessed shard, it continues to process a much smaller total volume of
index data.

Figure 12 further demonstrates the throughput advantage held by selective search.
In this experiment, the total time required to process 10,000 queries is measured
as a function of the number of machines available. In all configurations, selective
search remains a better option for throughput, requiring less elapsed time to process

28 Yubin Kim et al.

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

Query Arrival Rate (queries/sec)

M
e
d
ia

n
 P

ro
c
e
s
s
in

g
 T

im
e
 (

m
s
)

Rank−S AOL mirrored
Rank−S AOL
Taily AOL mirrored
Taily AOL
Rank−S MQT mirrored
Rank−S MQT
Taily MQT mirrored
Taily MQT

Fig. 13 Throughput achieved for ClueWeb09, with M = 64, B = 64, and Log-based shard assignment. The
mirrored configuration is a doubled M = 32, B = 32 system, including disk space. The two query streams
are MQTG Test and AOLG Test.

a fixed number of queries. This experiment also shows that selective search scales
nearly linearly with the number of machines available. Both exhaustive and selective
search are approximately parallel to the red dash-dot line, plotted to show the gradient
that would be observed in an ideal case where throughput is doubled with doubled
machine capacity.

In Figures 11 and 12 an index spreading strategy is assumed, in which the shards
are distributed across the larger number of machines, and then the number of ma-
chines allocated to resource selection and shard search are adjusted to make the best
use of the new hardware. When there are more machines than shards, index spread-
ing is no longer feasible and a different method must be used. One alternative is to
increase throughput by using additional space and adopting a mirrored architecture.
For example, if the number of machines is doubled, two copies of each shard, twice
as many resource allocation cores, and twice as many shard search cores can be used.
Either approach can roughly double throughput.

Figure 13 compares the effect of index spreading and mirroring when M = 64
machines are employed, again plotting median query latency as a function of query
arrival rate. In most configurations, mirroring has a small throughput advantage, de-
rived from the fact that as the number of machines increases, it becomes increas-
ingly less likely that an evenly balanced shard assignment will occur. For example,
at T = 280, the standard deviation of the machine load in the ClueWeb09 MQT Test
queries is 5.2% for 64 machines, and 3.9% for a 32 machine mirrored configura-
tion using the index spreading strategy with Log-based allocation. While mirroring
requires double the disk space of index spreading and the throughput differences are
small, mirroring provides additional benefits, such as fault tolerance in case of failure.
Furthermore, some amount of replication is necessary when there are more available
machines than total shards.

The best overall solution in environments with high query traffic, or many ma-
chines may be a mix of index spreading and strategic shard mirroring (replication),
an option also noted by Moffat et al. [41]. This is may be an interesting topic for
future work.

Efficient Distributed Selective Search 29

6 Conclusion

Selective search is known to be substantially more efficient than the standard dis-
tributed architecture if computational cost is measured by counting postings pro-
cessed in a one-query-at-a-time environment [31, 32, 33]. We have confirmed and
extended those findings via a simulator that models a realistic parallel processing en-
vironment and a wide range of hardware configurations; using two large datasets and
long query streams extracted from the logs of web search engines.

Previous investigations also demonstrated that selective search is as effective as
exhaustive search [2, 31, 32, 33]. Although our work here has focused primarily on
efficiency, we refined the experimental methodology used to measure effectiveness,
and achieved stronger baseline results for the ClueWeb09 dataset. One consequence
of these changes was the discovery that in some cases selective search is less effec-
tive than exhaustive search, regardless of which resource selection algorithm is used.
Effectiveness was not our focus in this work, but our findings are recorded to benefit
other researchers that wish to pursue this topic.

Our investigation makes it clear that selective search is more efficient than con-
ventional distributed query-processing architectures. For many hardware configura-
tions the two-step selective search architecture – resource selection followed by shard
access – delivers greater total throughput (number of queries processed per time in-
terval) as well as lower latency (faster response time) than conventional exhaustive
architecture. This somewhat surprising outcome is a consequence of the small size of
the shards used by selective search, about 500K documents each in our experiments.
When many machines are available, exhaustive search latency decreases relative to
selective search and it may become the faster of the two approaches, but selective
search always has substantially higher throughput.

Other studies have shown that sample-based and term-based resource selection
algorithms have different advantages and costs [2]. Our experiments investigated the
effects of the resource selection algorithm on load distribution, latency, and through-
put. We found that Rank-S was more accurate than Taily, but also usually resulted
in higher latency and lower throughput. Moreover, if Rank-S is chosen because of
its greater effectiveness, the computational costs cause workload skews that must be
corrected by replicating resource selection (and the CSI) on multiple machines.

Selective search uses topical shards that are likely to differ in access rate. Typical
random assignments of shards produce imbalances in machine load, even when as
few as M = 4 machines are in use. A Log-based assignment policy using training
queries provided higher throughput and more consistent query processing times than
the previous random assignment approach. The Log-based assignment is also resilient
to temporal changes, and even after a delay of a month, throughput degradation was
slight.

Previous studies investigated selective search in computing environments with a
relatively small number of machines. With the aid of the simulator we also examined
the behavior of selective search using clusters of up to M = 64 machines, each with
eight processing cores. We found that selective search remains a viable architecture
with high throughput in these larger-scale computing environments. When additional
processing resources are available, mirroring (replicating all index shards) provides

30 Yubin Kim et al.

slightly better throughput than index spreading. Replication also has other advantages
such as fault-tolerance and the ability to use more machines than there are shards.
Replication of just a few high-load shards (rather than the entire index) might also be
attractive, potentially saving on storage costs without eroding throughput. We reserve
this interesting problem for future work.

After investigating the efficiency of selective search architectures, we conclude
that it is highly attractive in low resource environments typical of academic institu-
tions and small businesses, and that the load imbalances of a naive configuration can
be readily addressed. At larger scale, the latency advantages are lost unless smaller
shards are formed, but even using the original shards, selective search continues to
provide substantially higher throughput than exhaustive search.

Acknowledgment We thank the three referees for their detailed and helpful input.
This work was supported by the National Science Foundation (IIS-1302206); and by
the Australian Research Council (DP140101587 and DP140103256). Shane Culpep-
per is the recipient of an Australian Research Council DECRA Research Fellowship
(DE140100275). Yubin Kim is the recipient of the Natural Sciences and Engineering
Research Council of Canada PGS-D3 (438411). Any opinions, findings, conclusions
or recommendations expressed in this paper are those of the authors, and do not nec-
essarily reflect those of the sponsors.

References

1. I. S. Altingovde, E. Demir, F. Can, and O. Ulusoy. Incremental cluster-based retrieval using com-
pressed cluster-skipping inverted files. ACM Transactions on Information Systems, 26(3):15:1–15:36,
June 2008.

2. R. Aly, D. Hiemstra, and T. Demeester. Taily: Shard selection using the tail of score distributions.
In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 673–682, 2013.

3. J. Arguello, J. Callan, and F. Diaz. Classification-based resource selection. In Proceedings of the
18th International ACM Conference on Information and Knowledge Management, pages 1277–1286,
2009.

4. C. S. Badue, R. Baeza-Yates, B. Ribeiro-Neto, A. Ziviani, and N. Ziviani. Analyzing imbalance
among homogeneous index servers in a web search system. Information Processing & Management,
43(3):592–608, 2007.

5. R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Silvestri. Challenges on distributed
web retrieval. In Proceedings of the 23rd IEEE International Conference on Data Engineering, pages
6–20, 2007.

6. R. Baeza-Yates, A. Gionis, F. Junqueira, V. Plachouras, and L. Telloli. On the feasibility of multi-site
web search engines. In Proceedings of the 18th International ACM Conference on Information and
Knowledge Management, pages 425–434, 2009.

7. R. Baeza-Yates, V. Murdock, and C. Hauff. Efficiency trade-offs in two-tier web search systems. In
Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 163–170, 2009.

8. L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The Google cluster architecture. IEEE
Micro, 23(2):22–28, 2003.

9. U. Brefeld, B. B. Cambazoglu, and F. P. Junqueira. Document assignment in multi-site search engines.
In Proceedings of the 4th ACM International Conference on Web Search and Data Mining, pages 575–
584, 2011.

Efficient Distributed Selective Search 31

10. D. Broccolo, C. Macdonald, S. Orlando, I. Ounis, R. Perego, F. Silvestri, and N. Tonellotto. Query
processing in highly-loaded search engines. In Proceedings of the 20th International Symposium on
String Processing and Information Retrieval, pages 49–55, 2013.

11. A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query evaluation using a
two-level retrieval process. In Proceedings of the 12th International ACM Conference on Information
and Knowledge Management, pages 426–434, 2003.

12. F. J. Burkowski. Retrieval performance of a distributed database utilising a parallel process document
server. In Proceedings of the 2nd International Symposium on Databases in Parallel and Distributed
Systems, pages 71–79, 1990.

13. F. Cacheda, V. Carneiro, V. Plachouras, and I. Ounis. Performance analysis of distributed informa-
tion retrieval architectures using an improved network simulation model. Information Processing &
Management, 43:204–224, 2007.

14. B. Cahoon, K. S. McKinley, and Z. Lu. Evaluating the performance of distributed architectures for
information retrieval using a variety of workloads. ACM Transactions on Information Systems, 18(1):
1–43, 2000.

15. J. Callan. Distributed information retrieval. In Advances in Information Retrieval, pages 127–150,
2000.

16. J. Callan, M. Connell, and A. Du. Automatic discovery of language models for text databases. In
Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pages
479–490, 1999.

17. B. B. Cambazoglu, E. Varol, E. Kayaaslan, C. Aykanat, and R. Baeza-Yates. Query forwarding in
geographically distributed search engines. In Proceedings of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 90–97, 2010.

18. B. B. Cambazoglu, E. Kayaaslan, S. Jonassen, and C. Aykanat. A term-based inverted index partition-
ing model for efficient distributed query processing. ACM Transactions on the Web, 7(3):15:1–15:23,
2013.

19. F. Can, I. S. Altingövde, and E. Demir. Efficiency and effectiveness of query processing in cluster-
based retrieval. Information Systems, 29(8):697–717, 2004.

20. W. B. Croft. A model of cluster searching based on classification. Information Systems, 5(3):189–195,
1980.

21. J. L. Elsas, J. Arguello, J. Callan, and J. G. Carbonell. Retrieval and feedback models for blog feed
search. In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 347–354, 2008.

22. G. Francès, X. Bai, B. B. Cambazoglu, and R. Baeza-Yates. Improving the efficiency of multi-site
web search engines. In Proceedings of the 7th ACM International Conference on Web Search and
Data Mining, pages 3–12, 2014.

23. A. Freire, C. Macdonald, N. Tonellotto, I. Ounis, and F. Cacheda. Hybrid query scheduling for a
replicated search engine. In Proceedings of the 35th European Conference on Information Retrieval,
pages 435–446, 2013.

24. L. Gravano, H. Garcı́a-Molina, and A. Tomasic. GlOSS: Text-source discovery over the internet.
ACM Transactions on Database Systems, 24:229–264, 1999.

25. A. Griffiths, H. Luckhurst, and P. Willett. Using inter-document similarity information in document
retrieval systems. Journal of the American Society for Information Science, 37:3–11, 1986.

26. D. Hawking and P. Thistlewaite. Methods for information server selection. ACM Transactions on
Information Systems, 17(1):40–76, 1999.

27. C. Kang, X. Wang, Y. Chang, and B. Tseng. Learning to rank with multi-aspect relevance for vertical
search. In Proceedings of the 5th ACM International Conference on Web Search and Data Mining,
pages 453–462, 2012.

28. J. Kim and W. B. Croft. Ranking using multiple document types in desktop search. In Proceed-
ings of the 33rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 50–57, 2010.

32 Yubin Kim et al.

29. Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat. Does selective search benefit from WAND opti-
mization? In Proceedings of the 38th European Conference on Information Retrieval, pages 145–158,
2016.

30. Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat. Load-balancing in distributed selective search.
In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 905–908, 2016.

31. A. Kulkarni. Efficient and Effective Large-Scale Search. PhD thesis, Carnegie Mellon University,
2013.

32. A. Kulkarni and J. Callan. Document allocation policies for selective searching of distributed in-
dexes. In Proceedings of the 19th ACM International Conference on Information and Knowledge
Management, pages 449–458, 2010.

33. A. Kulkarni and J. Callan. Topic-based index partitions for efficient and effective selective search. In
SIGIR Workshop on Large-Scale Distributed Information Retrieval, 2010.

34. A. Kulkarni and J. Callan. Selective search: Efficient and effective search of large textual collections.
ACM Transactions on Information Systems, 33(4):17:1–17:33, 2015.

35. A. Kulkarni, A. Tigelaar, D. Hiemstra, and J. Callan. Shard ranking and cutoff estimation for topically
partitioned collections. In Proceedings of the 21st ACM International Conference on Information and
Knowledge Management, pages 555–564, 2012.

36. X. Liu and W. B. Croft. Cluster-based retrieval using language models. In Proceedings of the 27th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 186–193, 2004.

37. C. Lucchese, S. Orlando, R. Perego, and F. Silvestri. Mining query logs to optimize index partitioning
in parallel web search engines. In Proceedings of the 2nd International Conference on Scalable
Information Systems, pages 43:1–43:9, 2007.

38. C. Macdonald, N. Tonellotto, and I. Ounis. Learning to predict response times for online query
scheduling. In Proceedings of the 35th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 621–630, 2012.

39. I. Markov and F. Crestani. Theoretical, qualitative, and quantitative analyses of small-document ap-
proaches to resource selection. ACM Transactions on Information Systems, 32(2):9:1–9:37, Apr.
2014.

40. D. Metzler and W. B. Croft. A Markov random field model for term dependencies. In Proceedings of
the 28th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 472–479, 2005.

41. A. Moffat, W. Webber, and J. Zobel. Load balancing for term-distributed parallel retrieval. In Pro-
ceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 348–355, 2006.

42. A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates. A pipelined architecture for distributed text
query evaluation. Information Retrieval, 10(3):205–231, 2007.

43. S. Orlando, R. Perego, and F. Silvestri. Design of a parallel and distributed web search engine. In
Proceedings of the International Conference on Parallel Computing, pages 197–204, 2001.

44. G. Paltoglou, M. Salampasis, and M. Satratzemi. Integral based source selection for uncooperative
distributed information retrieval environments. In Proceedings of the 2008 ACM Workshop on Large-
Scale Distributed Systems for Information Retrieval, pages 67–74, 2008.

45. A. L. Powell, J. C. French, J. Callan, M. Connell, and C. L. Viles. The impact of database selection
on distributed searching. In Proceedings of the 23rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 232–239, 2000.

46. D. Puppin, F. Silvestri, and D. Laforenza. Query-driven document partitioning and collection selec-
tion. In Proceedings of the 1st International Conference on Scalable Information Systems, page 34,
2006.

47. B. A. Ribeiro-Neto and R. A. Barbosa. Query performance for tightly coupled distributed digital
libraries. In Proceedings of the 3rd ACM Conference on Digital Libraries, pages 182–190, 1998.

Efficient Distributed Selective Search 33

48. K. M. Risvik, Y. Aasheim, and M. Lidal. Multi-tier architecture for Web search engines. In Proceed-
ings of the 1st Latin American Web Congress, pages 132–143, 2003.

49. J. Seo and W. B. Croft. Blog site search using resource selection. In Proceedings of the 17th Interna-
tional ACM Conference on Information and Knowledge Management, pages 1053–1062, 2008.

50. M. Shokouhi. Central-rank-based collection selection in uncooperative distributed information re-
trieval. In Proceedings of the 29th European Conference on Information Retrieval, pages 160–172,
2007.

51. M. Shokouhi and L. Si. Federated search. Foundations and Trends in Information Retrieval, 5(1):
1–102, 2011.

52. L. Si and J. Callan. Relevant document distribution estimation method for resource selection. In
Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development
in Informaion Retrieval, pages 298–305, 2003.

53. L. Si and J. Callan. The effect of database size distribution on resource selection algorithms. In
Distributed Multimedia Information Retrieval, pages 31–42. LNCS volume 2924, 2004.

54. L. Si and J. Callan. Unified utility maximization framework for resource selection. In Proceedings of
the 13th International ACM Conference on Information and Knowledge Management, pages 32–41,
2004.

55. L. Si and J. Callan. Modeling search engine effectiveness for federated search. In Proceedings of
the 28th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 83–90, 2005.

56. P. Thomas and D. Hawking. Server selection methods in personal metasearch: A comparative empir-
ical study. Information Retrieval, 12(5):581–604, Oct. 2009.

57. P. Thomas and M. Shokouhi. SUSHI: Scoring scaled samples for server selection. In Proceedings of
the 32nd Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 419–426, 2009.

58. A. Tomasic and H. Garcia-Molina. Caching and database scaling in distributed shared-nothing in-
formation retrieval systems. In Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, pages 129–138, 1993.

59. N. Tonellotto, C. Macdonald, and I. Ounis. Efficient and effective retrieval using selective pruning. In
Proceedings of the 6th ACM International Conference on Web Search and Data Mining, pages 63–72,
2013.

60. E. M. Voorhees. The effectiveness and efficiency of agglomerative hierarchic clustering in document
retrieval. Technical report, Cornell University, 1985.

61. W. Webber and A. Moffat. In search of reliable retrieval experiments. In Proceedings of the 10th
Australasian Document Computing Symposium, pages 26–33, Dec. 2005.

62. P. Willett. Recent trends in hierarchic document clustering: A critical review. Information Processing
& Management, 24(5):577–597, 1988.

63. H. Wu and H. Fang. Analytical performance modeling for top-k query processing. In Proceedings of
the 23rd ACM International Conference on Conference on Information and Knowledge Management,
pages 1619–1628, 2014.

64. J. Xu and W. B. Croft. Cluster-based language models for distributed retrieval. In Proceedings of
the 22nd Annual Internation ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 254–261, 1999.

65. B. Yuwono and D. L. Lee. Server ranking for distributed text retrieval systems on internet. In Pro-
ceedings of the 5th International Conference on Database Systems for Advanced Applications, pages
41–49, 1997.

66. J. Zhang and T. Suel. Optimized inverted list assignment in distributed search engine architectures.
In Parallel and Distributed Processing Symposium, pages 1–10, March 2007.

