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Abstract 
We investigate two strategies to improve the context-
dependent deep neural network hidden Markov model (CD-
DNN-HMM) in low-resource speech recognition. Although 
outperforming the conventional Gaussian mixture model 
(GMM) HMM on various tasks, CD-DNN-HMM acoustic 
modeling becomes challenging with limited transcribed speech, 
e.g., less than 10 hours. To resolve this issue, we firstly exploit 
dropout which prevents overfitting in DNN finetuning and 
improves model robustness under data sparseness. Then, the 
effectiveness of multilingual DNN training is evaluated when 
additional auxiliary languages are available. The hidden layer 
parameters of the target language are shared and learned over 
multiple languages. Experiments show that both strategies 
boost the recognition performance significantly. Combining 
them results in further reduction in word error rate, achieving 
11.6% and 6.2% relative improvement on two limited data 
conditions. 
Index Terms: Dropout, deep neural networks, multilingual 
learning, speech recognition 

1. Introduction 
The recently proposed context-dependent deep neural network 
hidden Markov model (CD-DNN-HMM) has shown superior 
performance over the traditional state-of-the-art GMM-HMM 
on automatic speech recognition (ASR) tasks [1, 2, 3]. This 
acoustic modeling technique differs from the earlier ANN-
HMM hybrid systems in that there are more hidden layers in 
the DNN topology. Moreover, CD-DNN-HMM models the 
tied context-dependent states directly, rather than takes 
context-independent phonemes as targets. Previous studies 
reveal that the number of parameters in CD-DNN-HMM is 
generally much larger than that of GMM-HMM [4]. For 
example, the 5-hidden-layer fully-connected CD-DNN-HMM 
in [4] has 12 times more parameters than its corresponding 
GMM-HMM system. Due to the large parameter space, CD-
DNN-HMM has encountered special challenges when applied 
to limited training data, e.g., less than 10 hours of transcribed 
speech [5].  

To alleviate the effects of data sparseness, attempts have 
been made to build sparse DNN, either through imposing 
regularizers on hidden-layer parameters [4, 6] or through 
rounding close-to-zero parameters back to zero [4, 7]. 
Although speeding up model training greatly, these methods 
fail to improve recognition performance significantly [4]. 
Meanwhile, in the deep learning community, Hinton et al. [8] 
proposed dropout to prevent overfitting and showed consistent 
improvement on various applications such as speech and video 
object recognition. On each presentation of a training example, 
dropout randomly omits each hidden unit with a probability 
which is referred to as drop factor in this work. The resulting 

DNN is an approximate averaging of multiple neural networks 
sharing parameters but trained separately. Effectiveness of 
random dropout has been reported on phone classification [8] 
and large vocabulary continuous speech recognition (LVCSR) 
[9]. In this paper, we investigate dropout to improve CD-
DNN-HMM in the context of low-resource speech recognition. 
We implement dropout in the manner that activations of DNN 
hidden units are masked with a binomial distribution governed 
by the drop factor. Extensive empirical studies are conducted 
to find the optimal dropout configuration (drop factor, learning 
rate, etc) for LVCSR. On the GlobalPhone corpus [10], we 
experiment with two low-resource conditions with 5 hours and 
2 hours of training data respectively. Dropout consistently 
improves the recognition performance of CD-DNN-HMM 
across different levels of data availability. 

Another approach to boosting low-resource CD-DNN-
HMM is to take advantage of additional data from other 
languages or domains. There has been a number of works 
dedicated to training multilingual bottleneck features [11, 12, 
13, 14] or probabilistic posterior features [5, 12] used in 
tandem systems. In contrast, less attention has been paid to 
CD-DNN-HMM systems in multilingual settings. On this 
aspect, [5] employs out-of-language untranscribed speech to 
help unsupervised pretraining on the target language. This 
method can benefit both hybrid and tandem systems, 
especially when training data on the target language becomes 
highly limited. In this study, we explore the parameter sharing 
idea introduced in [15] for low-resource CD-DNN-HMM 
systems. Specifically, parameters of DNN hidden layers are 
shared and collaboratively learned over multiple languages. 
Experiments with GlobalPhone demonstrate the advantage of 
multilingual DNN training with superior recognition 
performance. Combining this strategy with dropout results in 
further WER reduction. Compared with the baseline CD-
DNN-HMM, the best results we achieve give 6.2% and 11.6% 
relative improvement on the 5 hours and 2 hours low-resource 
conditions respectively. 

2. CD-DNN-HMM and Dropout 
A DNN is a multi-layer perceptron (MLP) which consists of 
many hidden layers. This section gives a brief review of the 
components in CD-DNN-HMM systems and describes the 
application of dropout. The multilingual DNN training 
strategy is examined in the experiments (see Section 3.5). 

2.1. Deep neural network 

In CD-DNN-HMM, we train a DNN with a softmax output 
layer to classify the input acoustic features into classes 
corresponding to context-dependent tied states. After training, 
the DNN output is an estimate of the posterior probability P(s |

to ) of each state s given the observation to  at time t. On the 
hidden layers, DNN computes the activations of conditionally 



independent hidden units given the input vector. When using 
sigmoid activation, the emission of the l-th layer, i.e., the input 
to the l+1-th layer, can be computed as follows: 
 

1( )l l l lσ −= +u Wu b ,     1 ≤  l  < L               (1) 
 

where 0 t=u o , lW  is the matrix of connection weights 
between the l-1-th and l-th layers, lb  is the bias vector at the 
l-th layer, 1(1 exp( ))( ) xxσ −+ −=  is the sigmoid function. 
The output layer produces an estimate of the posterior 
probability P(s | to ) of each state s given the observation to : 
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DNN is trained through stochastic gradient descent (SGD), in 
which a cross-entropy cost function over the set of training 
examples is optimized. The true class label on each speech 
frame can be obtained by forced-alignment of the observations 
with the transcripts. 

Training DNN directly with error back-propagation (BP) 
may be problematic in that BP easily gets stuck at poor local 
optima. Unsupervised pretraining based on restricted 
Boltzmann machine (RBM) has been shown to mitigate this 
effect. A RBM is an undirected graphical model with a set of 
nodes representing visible units and a set of nodes representing 
hidden units. RBM training involves maximizing the 
likelihood of the observations with the contrastive divergence 
algorithm [16]. A stack of RBMs can be trained in a greedy 
layer-wise manner and used to initialize the parameters of 
DNN. The first layer of a DNN corresponds to a Gaussian-
Bernoulli RBM and each of the other hidden layers 
corresponds to a Bernoulli-Bernoulli RBM. Interested readers 
can refer to [17] for details on RBM. 

2.2. Speech recognition with CD-DNN-HMM 
In ASR, CD-DNN-HMM shares the model structure (phone 
set, HMM topology, tying of context-dependent states) coming 
from an initial GMM-HMM model that has been ML-trained 
on the same data. That model is also used to generate the class 
label of each frame through forced-alignment. However, CD-
DNN-HMM differs from GMM-HMM in that the acoustic 
model’s Gaussian mixtures are replaced with the DNNs. The 
emission probability of the HMM state s can be computed by 
converting state posteriors in Eq. (2) as follows [1]: 
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where P(s | to ) is the state posterior probability from Eq. (2), 
( )P s  is the state prior probability which can be approximately 

estimated from the training data by simple counting, the 
observation probability P( to ) is independent of the word 
sequence and can be ignored. 

2.3. DNN training with dropout 
Dropout randomly omits each hidden unit with the probability 
equal to hidden drop factor (HDF) when each training frame is 
presented. This has the effect of performing model averaging 
over a large number of networks and thus enhancing model 

generality [8]. In our implementation, two modifications are 
made to realize dropout training of DNN. 

First, in the feed-forward network, the emission of each 
hidden unit is masked to zero with the probability of HDF. 
The activation at the l-th hidden layer can be rewritten as 
 

1( )l l l lσ −= +u Wu b  ,     1 ≤  l  < L            (4) 
 

The masked emission at the l-1-th hidden layer is obtained 
from the following operation: 

1 1l l− − ⊗=u u v                                (5) 

where the vector  v  has the same dimension as 1l−u , ⊗  
represents element-wise product. Elements in v  are binary 
variables sampled from a binomial distribution governed by 
HDF. Since unit activations are conditionally independent 
given the input, each variable in v  is further simplified as an 
independent sample from a Bernoulli distribution where 
P( 0iv = ) = HDF with 1 ≤  i  ≤ | v  |. Dropout can also be 
applied to the network input. The same operation in Eq. (5) is 
performed on the observations with the masking probability 
which is called input drop factor (IDF). The suitable HDF and 
IDF values will be examined in our experiments. 

The dropout network can still be trained with SGD. Most 
of the configurations (batch size, decaying schedule, 
momentum, etc) are inherited from the standard BP without 
dropout. It has been shown that dropout is not sensitive to the 
choice of these configurations [8]. However, we must set a 
larger learning rate for dropout than for the standard BP. This 
is because dropout is training an model ensemble and thus 
each update must have a large impact [18]. 

The second change involves compensating DNN model 
parameters in testing (i.e., decoding for ASR). Specifically, 
when the training of dropout DNN terminates, the connection 
matrices are scaled according to the dropout factors, i.e., 

1 1(1 )IDF−= ⋅W W  

(1 )l lHDF−= ⋅W W      2 ≤  l  <= L            (6) 

Note that dropout is imposed only in the training stage. We 
can consider this compensation by assuming HDF=0.5. During 
training, DNN parameters are optimized with half of hidden 
units randomly deactivated. In testing when dropout is 
removed, all the hidden units (twice as many as in training) 
become active, and thus the connection parameters need to be 
halved.   

3. Experiments 

3.1. Experimental setup 
In our experiments, we use the GlobalPhone corpus [10] 
which contains recordings of native speakers reading 
newspapers in up to 19 languages. Among these languages, 
German (GE) is taken as the target language on which we try 
to improve CD-DNN-HMM. To evaluate multilingual DNN 
training, we simulate a multilingual setting by taking Spanish 
(SP) and Portuguese (PO) from the corpus as the auxiliary 
languages. When preparing the datasets, we notice that the 
previously published results are not directly comparable with 
each other, mainly due to different data partitions, language 
models and corpus releases. The full GE, SP  and  PO  datasets  
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Table 1. Statistics of the datasets used in our experiments. 
 

 GE SP PO 
 

training (Hr) 14.9 17.6 22.7 
dev (Hr) 2.0 2.0 1.6 
eval (Hr) 1.5 1.7 1.8 

 
 

 

in our experiments have the statistics in Table 1. 
We are interested in how CD-DNN-HMM performs when 

training data becomes highly limited. On the target language 
GE, we experiment with two low-resource conditions with 2 
hours and 5 hours of training data respectively. Both subsets 
are created by randomly selecting 47 utterances (for 5 hours) 
and 17 utterances (for 2 hours) from each speaker [19, 20]. To 
ensure coverage of variability, we keep the number of training 
speakers the same as in the full set. 

3.2. Baseline GMM-HMM 
We build the standard ML GMM-HMM systems on the full 
GE 15-hour training set, as well as the 5-hour and 2-hour 
subsets. In each system, 9 frames of 13-dimensional MFCCs, 
normalized with per-speaker cepstral mean subtraction, are 
spliced together and projected down to 40 dimensions with 
linear discriminant analysis (LDA). The number of context-
dependent triphone states (i.e., DNN targets) for the three 
systems are 2568, 1228 and 894 respectively, with an average 
of 12, 9 and 6 Gaussian components per state. On top of the 
ML systems, discriminative training is performed using the 
boosted maximum mutual information  (BMMI) criterion [21]. 
Figure 2 presents the performance of the BMMI models on the 
GE dev set and Table 2 presents their results on the eval set. 

3.3. Baseline CD-DNN-HMM 
On each GE training set, CD-DNN-HMM is directly based on 
the corresponding ML system built in the previous section. 
CD-DNN-HMM inherits the HMM structure from the ML 
system.     We use 11 frames (5 on each side) of MFCCs, 
which are globally normalized to zero mean and unit variance, 
as DNN input. Layer-wise pretraining is carried out to 
initialize the network parameters, with the learning rate of 
0.005 for Gaussian-Bernoulli RBM and 0.01 for Bernoulli-
Bernoulli RBM. Pretraining runs for 20 epochs for each layer. 
During finetuning, we use an exponentially decaying learning 
rate schedule for SGD. Specifically, the learning rate starts 
from 0.08 and remains unchanged until we observe increase of 
cross-validation (CV) error. Then the learning rate is halved at 
each epoch until the CV error stops to drop any more. A 
momentum of 0.5 is used in both pretraining and finetuning 
for gradient  smoothing. The batch size is 128 for pretraining 
and 256 for finetuning. Under each low-resource condition, 
pretraining is performed only on the available data. This 
differs from [5] which takes additional untranscribed speech 
from GE or even other languages for pretraining. Each DNN 
hidden layer consists of 1024 units, which is observed to 
perform better than 512 units and similarly as 2048 units. The 
performance of baseline CD-DNN-HMM on the GE dev set is 
shown in Figure 2. 

3.4. CD-DNN-HMM with dropout 
For the dropout DNN, finetuning uses the same decay 
schedule, but a much larger starting learning rate which is set 
to 1.2 in our experiments. There are two variations in dropout 

configurations: input dropout factor (IDF) and hidden dropout 
factor (HDF). We first explore the value of HDF by setting 
IDF=0, i.e., no dropout on the network input. From Figure 1(a), 
we observe that on both 5-hour and 2-hour sets, CD-DNN-
HMM performs best when HDF equals 0.2. Then we fix 
HDF=0.2 and tune the value of IDF. It turns out that IDF 
greater than 0 definitely degrades the recognition results (see 
Figure 1(b)). This contradicts with [8] in which dropout on the 
observations brings further improvement. We think it is partly 
because the speech data in our datasets are relatively clean, 
and thus the denoising effects [22] caused by IDF > 0 are 
blurred. The impact of IDF on more noisy datasets will be 
examined in our future work. 

A comparison between dropout (IDF=0, HDF=0.2) and the 
standard BP is made on the GE dev set and the results are 
shown in Figure 2. We can see that CD-DNN-HMM provides 
lower WER than the corresponding BMMI GMM-HMM 
model. With the same pretraining, dropout outperforms 
standard BP consistently and performs better when DNN is 
finetuned with limited training data. Additionally, as the 
number of hidden layers increases, standard BP encounters 
overfitting indicated by the degradation of WER. This effect is 
mitigated by dropout, especially on the 2-hour and 5-hour sets. 
Figure 3 further demonstrates the ability of dropout to deal 
with overfitting by showing the frame CV error in finetuning. 
After some (e.g., 40) epochs, the CV error begins to rise when 
using standard BP. In contrast, dropout controls overfitting 
effectively and achieves consistently lower CV error. 

For the different DNN configurations in Figure 2, we pick 
the ones with the lowest WER and use them to decode the GE 
eval set. The results are shown in Table 2. Again, dropout 
brings gains to CD-DNN-HMM across various training sets. 
Its advantage is more pronounced when the amount of data 
becomes less, e.g., on the 5-hour and 2-hour sets. 

3.5. Multilingual DNN training 
Finally, low-resource CD-DNN-HMM is further improved 
with multilingual DNN training. To prepare the auxiliary data, 
we select 5 hours of speech from each source language SP or 
PO. On the SP_5Hr (or PO_5Hr) set, we build an ML GMM-
HMM system which has 1244 (or 1157) tied states and 
produces the frame-level class labels. 

Under each GE limited condition (2 or 5 hours), the DNN 
parameters, except the softmax layer, are tied across all the 
languages. In this work, we only focus on how multilingual 
training helps in DNN finetuning. That is, the additional SP 
and PO data are not used for pretraining. RBMs trained under 
this GE condition are used for DNN initialization. DNNs over   
 

 
 
 
Figure 1: WER of CD-DNN-HMM on GE dev set. (a) HDF is 
varied with IDF=0. (b) IDF is varied with HDF=0.2. DNN 
has 4 hidden layers on 2 hours and 5 hidden layers on 5 hours. 
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(a) 2-hour training set                (b) 5-hour training set 
 
Figure 3: CV error rate during DNN finetuning over 100 
epochs. The starting learning rate, 0.08 for BP and 1.2 for 
dropout, is not halved through the 100 epochs. DNN has 4 
hidden layers on 2 hours and 5 hidden layers on 5 hours. 
 
the three languages have the configuration (number of hidden 
layers) corresponding to the best case in Figure 2. Then each 
epoch of finetuning traverses data from all the languages, 
rather than only from GE. To prevent overfitting, the tied  
DNN  parameters  are decoupled when learning rate on the 
target language GE begins to halve. 

Table 3 shows how CD-DNN-HMM performs on the GE 
eval set when different auxiliary data are available. We can see 
that using SP_5Hr brings significant gains to the baseline CD-
DNN-HMM on both 2-hour and 5-hour GE conditions. In 
comparison, gains obtained from adding more data PO_5Hr 
become smaller. Dropout can be naturally applied to this 
multilingual setting, where every language adopts dropout in 
finetuning. Incorporating dropout reduces WER further down 
to 24.6% on the 2- hour set and 22.5% on the 5-hour set. This 
corresponds to 11.6% and 6.2% relative improvement on the 
two low-resource conditions. 
 

Table 2. Performance of CD-DNN-HMM on the German 
evaluation set with various training sets. 
 

Systems 2 hours 5 hours full 
 

BMMI 30.4 27.9 25.2 
BP_random 29.0 24.6 21.4 
BP_RBM 27.8 24.1 21.2 
dropout_RBM 26.3 23.1 20.4 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Performance of multilingual DNN training on the 
German evaluation set. 

 

Method auxiliary data GE 2Hr GE 5Hr
 

BP_RBM N/A 27.8 24.1 
 

BP_RBM SP_5Hr 26.2 23.6 
BP_RBM SP_5Hr+PO_5Hr 25.8 23.4 

dropout_RBM SP_5Hr+PO_5Hr 24.6 22.5 
 

4. Conclusions and Future Work 
In this paper, we investigate two strategies to improve CD-
DNN-HMM in the context of low-resource speech recognition. 
Firstly, the dropout method is applied in DNN finetuning to 
prevent overfitting and improve model robustness. Secondly, 
we evaluate the effectiveness of multilingual DNN training 
when additional auxiliary data are available from other 
languages. Experiments show that both strategies can improve 
the recognition performance of CD-DNN-HMM especially 
with sparse training data. Combining them results in further 
reduction in WER, achieving 11.6% and 6.2% relative 
improvement on the 2-hour and 5-hour limited conditions 
respectively. 

As discussed in Section 3.4, in the future work, we will 
examine the effectiveness of input dropout under more noisy 
datasets. Also, dropout will be extended to the tandem systems 
where DNN is intended for bottleneck or class posterior front-
end extraction. 
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Figure 2: Comparison between dropout and standard BP in terms of WER% on GE dev set.  BP_RBM and dropout_RBM  
represent BP and dropout with RBM pretraining, while BP_random means that network parameters are randomly initialized. 
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