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Abstract. Self-assessment and study choice are two important metacognitive 

processes involved in Self-Regulated Learning. Yet not much empirical work 

has been conducted in ITSs to investigate how we can best support these two 

processes and improve students’ learning outcomes. The present work rede-

signed an Open Learner Model (OLM) with three features aimed at supporting 

self-assessment (self-assessment prompts, delaying the update of the skill bars 

and progress information on the problem type level). We also added a problem 

selection feature. A 2x2 experiment with 62 7th graders using variations of an 

ITS for linear equation solving found that students who had access to the OLM 

performed significantly better on the post-test. To the best of our knowledge, 

the study is the first experimental study that shows an OLM enhances students’ 

learning outcomes with an ITS. It also helps establish that self-assessment has 

key influence on student learning of problem solving tasks. 

Keywords: Self-regulated learning, open learner model, self-assessment, study 
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1 Introduction 

Theories of Self-Regulated Learning (SRL) emphasize that students are active learn-

ers [13]. Different metacognitive processes are involved in SRL, such as goal setting, 

self-assessment, help-seeking, self-monitoring, study choice, etc. Two common meta-

cognitive processes are self-assessment and study choice. Self-assessment refers to 

students’ ability to evaluate how well they are learning/have learned. Study choice 

means that students make their own decisions with respect to the learning materials 

they study. More accurate self-assessment can lead to better study choice, which can 

further result in more efficient and effective learning [13]. Studies conducted with 

memory tasks and reading comprehension have found some ways to scaffold stu-

dents’ self-assessment and study choice, such as generating delayed key words [5]. 

Nevertheless, not much such work has been conducted with problem solving tasks, 

which is an area that Intelligent Tutoring Systems (ITSs) frequently focus on. The 

mechanism of self-assessing for solving math problems could be significantly differ-

ent from memory task and reading comprehension. 
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ITS researchers have been interested in the potential of Open Learner Models 

(OLM) to prompt students’ reflection and metacognition [3]. Many ITSs have a learn-

er model that intelligently tracks students’ learning progress or their skill mastery. An 

OLM affords students access to part/all of progress information, often in different 

formats, which may help them reflect on what they know well and not so well. Bull 

and colleagues [4] found that first year college students were interested in viewing 

their misconceptions in an OLM, and believed that viewing such information could 

help them better assess their learning and allocate efforts. Hartley and Mitrovic [6] 

compared students’ learning gains when with or without access to an inspectable 

OLM, but found no significant effect on the learning gains due to the OLM [6]. In our 

own prior work, we conducted surveys and interviews with experienced Cognitive 

Tutor users and found that they inspect the tutor’s OLM (the Skillometer) quite fre-

quently but do not actively use it to help them reflect or self-assess [8]. Similar work 

has also been conducted in the field of adaptive hypermedia. Brusilovsky et al. [2] 

found that with adaptive navigation support in QuizGuide (an adaptive system pro-

vides students self-assessment quizzes), students’ participation was increased in the 

system, as well as their final academic performance. The adaptive navigation support 

has similar features as the OLMs, as it highlights to the students the important topics 

and topics that need more practice. Thus, as Bull et al. [3] point out, more empirical 

studies are needed to investigate how we can design an OLM to effectively facilitate 

students’ metacognition, such as self-assessment and study choice. Moreover, it is 

also worth investigating to what extent access to an OLM and particular features of 

OLMs can significantly increase students’ learning gains. 

There has been limited prior work on study choice within ITS; typically, the ITS is 

responsible for selecting problems for the students. Mitrovic and Martin [9] found that 

in an ITS for SQL, lower-performing students learned in a "faded" condition in which 

they went from system-selected problems to student-selected problems. However, this 

study did not establish a statistically significant difference with other problem selec-

tion methods (fully system-selected or fully student-selected) [9]. The effect of prob-

lem selection on students’ learning outcomes is still open for further investigation.  

In the current work, we redesigned the Skillometer (OLM) of an ITS for linear 

equation solving so that it facilitates students’ self-assessment. Specifically, we de-

signed and implemented three new features for the Skillometer to support a brief self-

assessment phase at the end of each tutor problem: self-assessment prompts, delaying 

the update of the skill bars (so that the updating of the skill bars can function as feed-

back on students’ self-assessment) and showing students’ progress on the problem 

type level in addition to on the skill level (to give students an overview of their pro-

gress in the tutor). We also implemented a problem selection feature in the tutor that 

lets students select their next problem.  

We hypothesize that 1) having access to the redesigned OLM can enhance students’ 

learning outcomes and self-assessment accuracy; 2) letting students select their own 

problems in the tutor could afford them opportunities to apply the results of their self-

assessment and improve their learning outcomes even further. We conducted a 2x2 

classroom experiment with 62 7th graders with the linear equation tutor to investigate 

the hypotheses.  



2 Methods 

2.1 Linear Equation Tutor and the Open Learner Model  

 

Fig. 1. The interface of the linear equation tutor 

We investigate the relationship between OLM, self-assessment and study choice with-

in an ITS for linear equations. This tutor is an example-tracing tutor built using the 

Cognitive Tutor Authoring Tools [1, 11]. It was first designed and implemented by 

Maaike Waalkens [11] and has been used in two prior studies with around 150 stu-

dents from grades 7 and 8. The tutor teaches five types of linear equations of varying 

difficulty levels (see Table 1). Figure 1 shows the main interface of the tutor: in addi-

tion to solving the equations, students need to self-explain each main step. The tutor 

provides step-by-step guidance for each problem. It also applies knowledge tracing 

and mastery learning to adaptively select problems for each student, so as to make 

sure the student reaches mastery on all targeted skills. 

Table 1. Five types of equations in the linear equation tutor 

Equations Example Level 

One Step x+5 = 7 Level 1 

Two Steps 2x+1=7 Level 2 

Multiple Steps 3x+1=x+5 Level 3 

Parentheses 2(x+1)=8 Level 4 

Parentheses, more difficult 2(x+1)+1=5 Level 5 

     

    As discussed in the introduction, we redesigned the OLM so as to support students’ 

self-assessment and reflection at the end of each problem. We used a user-centered 

design approach to redesign the OLM. We started with building paper and digital 



prototypes for the OLM based on literature review. To refine the initial prototypes, we 

conducted think-aloud sessions with these prototypes in a local middle school with 7 

students. Based on the findings from the think-alouds, we finalized the design as 

shown in Figure 2 and Figure 3. The five types of equations were categorized from 

level 1 to level 5 based on the skills involved, in order to more systematically reflect 

students’ learning progress in the OLM. We implemented two views of the OLM with 

three new features: self-assessment prompts, delaying the update of the skill bars and 

showing progress on the problem type level. We also implemented a problem selec-

tion feature in the tutor to let students select their next problem.  

 

Fig. 2. View-1 of the OLM 

Self-Assessment Prompts. View-1 of the OLM is initially hidden on the tutor in-

terface but is revealed after the student finishes the problem. After students complete 

each problem, three self-assessment prompts are shown one by one (see Figure 2). 

(The level and skill bars on the right in Figure 2 are not displayed yet at this point in 

time, so that students answer the self-assessment questions unaided by the skill bars.) 

Students are asked to rate how well they think they can solve the problems in the 

current level on a scale from 1 to 7, then answer whether in their own assessment they 

have mastered the skills in the current level, and finally select the skill that they think 

is least mastered at this time. After that, the “View My Skills” button appears. 

 

Fig. 3. View-2 of the OLM 



Delaying the Update of the Skill Bars. Once students click the “View My Skills” 

button, the level and skill bars (on the right of Figure 2) are shown and start updating 

after 1 second (i.e., they move to their new positions, based on the student’s perfor-

mance on the problem they just completed). The updating of the bars serves as feed-

back on students’ responses to the self-assessment prompts. The black vertical lines 

allow for a before/after comparison.   

Showing Progress on the Problem Type Level. Figure 3 shows View-2 of the 

OLM, which is displayed to students in between problems (when they click the done 

button after the skill bars have finished updating). View-2 shows a summary of their 

progress with respect to each level as well as how many problems they have solved at 

that level. 

Selecting the Next Problem. Further, on View-2, students can select the level they 

want to work on next by clicking the “Get One Problem” button for the preferred 

level. If a level is fully mastered, the “Get One Problem” button is hidden, so students 

can only select levels that contain unmastered skills. To complete the tutor they must 

master all levels.  

2.2 Experimental Design, Participants, Procedure and Measurements 

We conducted a 2x2 experiment with independent factors OLM (whether or not both 

views of the OLM are shown to the students) and PS (whether or not students could 

select their next problem from an unfinished level) with 62 7th grade students from 

one teacher’s three classes at a local public middle school in Pittsburgh. The partici-

pants were randomly assigned to one of the four conditions. The OLM+PS condition 

used the interfaces we introduced in 2.1. The other three conditions used versions of 

the interfaces that were modified to match the manipulation. Specifically, for the 

OLM+noPS condition, View-1 of the OLM was unchanged, but View-2 was revised 

to have only a single “Get One Problem” button, rather than one for each level. Stu-

dents in this condition were given problems from level 1 to 5 sequentially (they need-

ed to finish level 1 first and then get problems from level 2, and so on). For the 

noOLM+PS condition, View-1 was not shown to the students. On View-2, all pro-

gress information was hidden (i.e., the progress bars and the number of problems 

completed for each level), but students could freely select their next problem from 

unmastered levels. Lastly, for the noOLM+noPS condition, View-1 was also not 

shown. For View-2, the progress information was hidden and there was only one sin-

gle “Get One Problem” button.   

The four conditions followed the same procedure. They all completed a paper pre-

test on the same day for around 25 minutes, and started to work with the tutor in their 

computer lab from the next day for five consecutive days. On each day, all students 

worked on the tutor for one class period of 41 minutes. If a student finished early (in 

less than 5 periods), they were directed to work in a Geometry unit. After the five 

days, all conditions again completed an immediate paper post-test on the same day in 

one class period.  

The pre- and post-tests were in similar format and measured students’ knowledge of 

solving linear equations. We created two equivalent test forms and administered them 



in counterbalanced orders. There were two types of test items on both tests: procedur-

al and conceptual items. Procedural items were the same five types of equations stu-

dents had practiced in the tutor. Conceptual items were True/False questions measur-

ing the knowledge and understanding of the key concepts involved in equations. We 

also measured students’ self-assessment accuracy for the procedural items on both 

tests. Students were asked to rate from 1 to 7 regarding how well they think they can 

solve each equation before they actually solved it. Formula 1 calculates the absolute 

accuracy of students’ self-assessment [10], where “N” represents the number of tasks, 

“c” stands for students’ confidence ratings on their ability to finish the task while “p” 

represents their actual performance on that task.  

 Absolute Accuracy Index = 
 

 
∑ (     )

  
                  (1) 

    Besides the pre- and post-tests, we analyzed tutor log data to determine if there 

were differences between the conditions in students’ learning behaviors in the tutor. 

3     Results 

56 students finished all five levels (reached mastery) after 5 class periods. We ana-

lyzed the 56 students’ pre-test and post-test performance, tutor log data and their self-

assessment data. We report the p-values and effect sizes (partial η²) for the main ef-

fects and interactions. An effect size partial η² of .01 corresponds to a small effect, .06 

to a medium effect, and .14 to a large effect (Cohen’s guidelines for effect sizes). 

    Learning Effects of the Linear Equation Tutor. There were 7 procedural items 

and 12 conceptual items on both tests. The procedural items were graded from 0 to 1, 

with partial credit given where appropriate. Cronbach’s Alpha for the 7 procedural 

items on the pre-test is .794, and .669 on the post-test. For the conceptual items, the 

Cronbach’s Alphas are .626 and .672 for pre- and post-test respectively.  

Table 2. Means and SDs for the test performance for all four conditions 

 

Conditions 

Pre-Test  

(Procedural) 

Post-Test  

(Procedural) 

Pre-Test 

(Conceptual) 

Post-Test 

(Conceptual) 

OLM+PS .439 (.263) .711 (.230) .483 (.215) .515 (.188) 

OLM+noPS .555 (.347) .684 (.222) .472 (.166) .541 (.230) 

noOLM+PS .358 (.201) .625 (.237) .391 (.216) .357 (.195) 

noOLM+noPS .490 (.204) .634 (.290) .436 (.164) .462 (.202) 

         

    A 1-way ANOVA shows that there were no significant differences between the 

conditions on the pre-test. To examine the learning gains from pre- to post-test, we 

ran repeated measures ANOVAs (with OLM and PS as independent variables) on 

procedural items, conceptual items and the sum of the two (the overall test score). The 

results reveal that the conditions together improved significantly from pre- to post-test 

on the test as a whole (F (1, 52) = 13.927, p = .000, η² = .211) and on the procedural 



items separately (F (1. 52) = 35.239, p = .000, η² = .404), both with effect sizes con-

sidered to be very large. No significant improvement on conceptual items was found.  

    Effects of Open Learner Model (OLM). We also ran ANOVAs (with OLM and 

PS as independent variables) for the post-test results. There was a significant main 

effect of OLM on the overall test scores (F (3, 52) = 4.903, p = .031, η² = .078), as 

well as on the conceptual items (F (3, 52) = 5.212, p = .026, η² = .082). No significant 

main effect was found for the procedural items. In short, the two OLM conditions 

performed better on the post-test than the two groups who did not have access to the 

OLM. We then looked at process measures from the tutor log data to determine 

whether having access to the OLM significantly influenced students’ behaviors while 

learning with the tutor. The process measures shown in Table 3 are commonly used in 

Cognitive Tutor studies [7]. As shown in Table 3, the two OLM conditions made 

fewer incorrect attempts, requested fewer hints and had a lower average assistance 

score ((hints + incorrect attempts) / total steps). ANOVAs (with OLM and PS as in-

dependent variables) show that there was a marginally significant main effect of OLM 

on incorrect attempts (F (3, 52) = 3.608, p = .062, η² = .059), and a significant main 

effect of OLM on average assistance score (F (3, 52) = 3.292, p = .009, η² = .116). 

There was no significant main effect of OLM on the number of hints.  

 Table 3. Means and SDs of process measures for all four conditions 

 OLM+PS OLM+noPS noOLM+PS noOLM+noPS 

Total number of problems 32.80 (9.15) 36.93 (11.50) 34.23 (6.51) 39.31 (9.30) 

Incorrect attempts per step   .248 (.180) .261 (.164) .337 (.256) .364 (.182) 

Hints per step .157 (.138) .190 (.178) .221 (.197) .268 (.433) 

Average assistance score .260 (.178) .268 (.166) .321 (.123) .532 (.368) 

     

    Effects of Problem Selection (PS). ANOVAs (with OLM and PS as independent 

variables) found no significant main effect of PS on the overall post-test score or on 

the two categories of post-test items separately. For log data, the students in the PS 

conditions made fewer incorrect attempts, requested fewer hints, had a lower average 

assistance score, and needed fewer problems to reach mastery in the tutor. The effect 

of PS was marginally significant on the average assistance score (F (3, 52) = 3.292, p 

= .075, η² = .056), but was not significant for the other dependent measures men-

tioned above.  

Effects of the Interaction between OLM and PS. We did not find any significant 

interactions between OLM and PS on the post-test results. From the log data, we 

found an interaction that was on the borderline of significance for the average assis-

tance score (ANOVA, F (3, 52) = 2.804, p = .100, η² = .049). Specifically, when stu-

dents did not have access to the OLM, control over problem selection led to a lower 

assistance score, whereas with access to the OLM, their assistance score was the same 

regardless of whether they had control over problem selection.  

Self-Assessment (SA) Accuracy. We also evaluated students’ self-assessment ac-

curacy. Figure 4 shows the frequencies of each self-assessment score (on the left) as 

well as how students’ actual test performance relates to their self-assessment score 



(on the right). For both pre- and post-tests, the actual test scores increase as the self-

assessment scores increase. We also compared students’ self-assessment scores on the 

pre- and post-tests. A repeated measures ANOVA reveals that students’ self-

assessment scores increased significantly from pre- to post-test (F (1, 52) = 13.078, p 

= .001, η² = .201; pre-test Mean = 4.706, post-test Mean = 5.270). No significant dif-

ferences were found between the conditions.  

 

Fig. 4. The frequencies of different SA scores and the distribution of the test performance 

    Table 4 shows students’ absolute accuracy of self-assessment (the lower the index, 

the better students’ self-assessment). An absolute accuracy index of .14 means that a 

student answers a question correctly and s/he is 62.6% confident (according to 

Schraw [10], 50% confident is considered to be moderately accurate). Therefore, as 

shown in Table 4, the students had moderate to high accuracy of self-assessment. No 

significant differences were found among the conditions.       

Table 4. The absolute self-assessment (SA) accuracy for different conditions 

 OLM+PS OLM+noPS noOLM+PS noOLM+noPS 

Pre-test SA accuracy .186 (.163) .146 (.145) .147 (.128) .143 (.146) 

Post-test SA accuracy .127 (.115) .127 (.088) .166 (.077) .106 (.084) 

4 Discussion, Conclusion and Future Work 

We conducted a controlled classroom experiment to investigate the effectiveness of 

having access to an OLM and having problem selection in an ITS, an area where not 

much empirical work has been conducted. Firstly, the pre- and post-test results reveal 

that students’ knowledge of solving linear equations improved significantly, with 

large effect sizes on both the procedural problems and whole test, affirming the effec-

tiveness of the tutor. Secondly, having access to an OLM resulted in better perfor-

mance on the post-test. OLMs are a common feature in ITS. Although much effort 

has been put into the design and evaluation of the OLMs, and it has often been theo-

rized that OLMs enhance the effectiveness of ITSs, we know of no prior experimental 

studies that had demonstrated an OLM significantly enhances student learning com-

pared to a noOLM condition. The advantage of our OLM conditions suggests that the 



reflective self-assessment activities scaffolded by the OLM can significantly enhance 

students’ learning outcomes, similar to the paper-based support in White and Freder-

iksen [12]. Specifically, students were prompted to reflect and self-assess on their 

learning status after each problem, with the display and updating of the OLM func-

tioning as implicit feedback on their self-assessment. In this way, students might have 

been reminded of the errors and difficulties they had while solving each problem, as 

well as how they had corrected/resolved them. Such reflective process could enhance 

their understanding and help them learn from their errors. In addition, being exposed 

to their progress could also keep the students alerted the whole time. They would be 

more careful and motivated to stay focused on the learning. As revealed by the log 

data, the students with the OLM needed significantly less assistance from the system 

and made marginally significantly fewer incorrect attempts.  

Thirdly, we did not find any significant main effect of PS on post-test results. In the 

log data, we only found that the students in the PS conditions had a marginally signif-

icant lower assistance score, suggesting that having control over problem selection 

leads to a somewhat smoother experience when solving problems. We also found the 

interaction between OLM and PS was on the borderline of significance for the aver-

age assistance score. When students had to select their own problems, they might be 

spurred to be more careful and active in their learning process, as evidenced by the 

lower assistance score. However, the fact that no significant results were found on the 

post-test suggests that more studies are still needed to investigate whether and how 

problem selection can enhance students’ learning outcome in ITSs. 

In regard to self-assessment, we found that students’ self-assessment scores (confi-

dence ratings) increased significantly from pre- to post-test, with a large effect size. 

Another interesting finding is that the participating students generally had moderate to 

high accuracy of self-assessment on the procedural problems, which is different from 

what have been observed in lots of prior work focusing on memory tasks and reading 

comprehension [5]. One explanation could be that the superficial features of equations 

correspond well with their difficulty levels, i.e. equations with more terms (or with 

parentheses) normally are more difficult. Consequently, it might be easier for the 

students to make accurate self-assessment on these questions. However, the mecha-

nisms of self-assessment for different learning tasks need to be clarified in future 

research. Regardless, the increased self-assessment, especially given that it was accu-

rate, should be viewed as positive result in its own right; arguably, learning is not 

truly robust if not accompanied by accurate self-assessment. 

    In sum, the present study shows that having an OLM while learning with a tutor 

leads to better learning outcomes, while the effects of having control over problem 

selection still need further investigation. Our findings help establish that reflective 

self-assessment is beneficial for students learning with math problem solving tasks in 

ITSs. To the best of our knowledge, our study is the first controlled experiment that 

supports the theoretical claim that OLMs can enhance students’ learning outcomes. 

The future design of effective OLMs should consider incorporating features that can 

facilitate students’ self-assessment to better support metacognition and Self-Regulated 

Learning. 
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